Local and Global Mild Solution for Gravitational Effects of the Time Fractional Navier–Stokes Equations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (i)
- In view of and Fubini theorem, we have
- (ii)
- Similarly
- (i)
- ∀,
- (ii)
- ∀ and , =
- (iii)
- ∀, =
- (iv)
- ∀, =
3. Global and Local Existence in
4. Global Existence in
- (a)
- The function
- (b)
- The function
- (c)
- satisfy (4) for
- (i)
- The continuous and bounded function is
- (ii)
- Furthermore, the function is also continuous and bounded , moreover,
5. Local Existence in
- (i)
- A continuous mapping inis defined aswith;
- (ii)
- A continuous mapping inis defined as with a limiting value of function;
- (iii)
- (a*)
- A continuous mapping is defined as
- (b*)
- A continuous mapping with limiting value of function is defined as withwith a norm defined by
6. Existence Locally in
7. Regularity
8. Application
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mainardi, F.; Carpinteri, A. (Eds.) Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Machado, T.; Kiryakova, V.; Mainardi, F. A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 2010, 13, 329–334. [Google Scholar]
- El-Shahed, M.; Salem, A. On the generalized Navier–Stokes equations. Appl. Math. Comput. 2004, 156, 287–293. [Google Scholar] [CrossRef]
- Lemarié-Rieusset, P.G. Recent Developments in the Navier–Stokes Problem; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Goedbloed, J.H.; Goedbloed, J.P.; Poedts, S. Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Davidson, P.A. An Introduction to Magnetohydrodynamics; Cambridge University Press: New York, NY, USA, 2002; p. 781. [Google Scholar]
- Desjardins, B.; Le Bris, C. Remarks on a nonhomogeneous model of magnetohydrodynamics. Differ. Integral Equat. 1998, 11, 377–394. [Google Scholar] [CrossRef]
- Niazi, A.U.K.; He, J.; Shafqat, R.; Ahmed, B. Existence, Uniqueness, and Eq–Ulam-Type Stability of Fuzzy Fractional Differential Equation. Fractal Fract. 2021, 5, 66. [Google Scholar] [CrossRef]
- Shafqat, R.; Niazi, A.U.K.; Jeelani, M.B.; Alharthi, N.H. Existence and Uniqueness of Mild Solution Where α∈(1,2) for Fuzzy Fractional Evolution Equations with Uncertainty. Fractal Fract. 2022, 6, 65. [Google Scholar] [CrossRef]
- Alnahdi, A.S.; Shafqat, R.; Niazi, A.U.K.; Jeelani, M.B. Pattern Formation Induced by Fuzzy Fractional-Order Model of COVID-19. Axioms 2022, 11, 313. [Google Scholar] [CrossRef]
- Khan, A.; Shafqat, R.; Niazi, A.U.K. Existence Results of Fuzzy Delay Impulsive Fractional Differential Equation by Fixed Point Theory Approach. J. Funct. Spaces 2022, 2022, 4123949. [Google Scholar] [CrossRef]
- Abuasbeh, K.; Shafqat, R.; Niazi, A.U.K.; Awadalla, M. Local and Global Existence and Uniqueness of Solution for Time-Fractional Fuzzy Navier–Stokes Equations. Fractal Fract. 2022, 6, 330. [Google Scholar] [CrossRef]
- Ganji, Z.Z.; Ganji, D.D.; Ganji, A.; Rostamian, M. Analytical solution of time-fractional Navier–Stokes equation in polar coordinate by homotopy perturbation method. Numer. Methods Partial. Differ. Equat. 2010, 26, 117–124. [Google Scholar] [CrossRef]
- Momani, S.; Zaid, O. Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 77, 488–494. [Google Scholar] [CrossRef]
- Carvalho-Neto, P.M.D.; Gabriela, P. Mild solutions to the time fractional Navier–Stokes equations in RN. J. Differ. Equat. 2015, 259, 2948–2980. [Google Scholar] [CrossRef]
- Zhou, Y. Fractional evolution equations and inclusions. In Analysis and Control; Elsevier: Amsterdam, The Netherland, 2015. [Google Scholar]
- Wang, R.N.; Chen, D.H.; Xiao, T.J. Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equat. 2012, 52, 202–235. [Google Scholar] [CrossRef] [Green Version]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 2009, 228, 3137–3153. [Google Scholar] [CrossRef] [Green Version]
- Herrero, H.; Mancho, A.M. On pressure boundary conditions for thermoconvective problems. Int. J. Numer. Methods Fluids 2002, 39, 391–402. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuasbeh, K.; Shafqat, R.; Niazi, A.U.K.; Salman, H.J.A.; Ghafli, A.A.A.; Awadalla, M. Local and Global Mild Solution for Gravitational Effects of the Time Fractional Navier–Stokes Equations. Fractal Fract. 2023, 7, 26. https://doi.org/10.3390/fractalfract7010026
Abuasbeh K, Shafqat R, Niazi AUK, Salman HJA, Ghafli AAA, Awadalla M. Local and Global Mild Solution for Gravitational Effects of the Time Fractional Navier–Stokes Equations. Fractal and Fractional. 2023; 7(1):26. https://doi.org/10.3390/fractalfract7010026
Chicago/Turabian StyleAbuasbeh, Kinda, Ramsha Shafqat, Azmat Ullah Khan Niazi, Hassan J. Al Salman, Ahmed A. Al Ghafli, and Muath Awadalla. 2023. "Local and Global Mild Solution for Gravitational Effects of the Time Fractional Navier–Stokes Equations" Fractal and Fractional 7, no. 1: 26. https://doi.org/10.3390/fractalfract7010026
APA StyleAbuasbeh, K., Shafqat, R., Niazi, A. U. K., Salman, H. J. A., Ghafli, A. A. A., & Awadalla, M. (2023). Local and Global Mild Solution for Gravitational Effects of the Time Fractional Navier–Stokes Equations. Fractal and Fractional, 7(1), 26. https://doi.org/10.3390/fractalfract7010026