Approximation Solution for Fuzzy Fractional-Order Partial Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- i.
- is upper semi-continuous on R;
- ii.
- is fuzzy convex;
- iii.
- is normal;
- iv.
- Closure of is compact.Then stands for the space of fuzzy numbers. For denote and Then, from the above conditions, it follows that the -level set is the closed interval for any . For arbitrary and , the addition and scalar multiplication are given by
- (1)
- (2)
- (1)
- (2)
- (3)
Fuzzy Fractional Calculus
- (i)
- Let be an (i)-differentiable fuzzy-valued function. Then, we have
- (ii)
- Let be a (ii)-differentiable fuzzy-valued function. Then, we have
3. Fuzzy Fractional Partial Differential Equations
3.1. Generalized Two-Dimensional Differential Transform Method
3.2. Fuzzy Variational Iteration Method
3.3. Applications
4. Fuzzy Time-Fractional Telegraphic Equations
- Consider the two-dimensional fuzzy fractional telegraphic equations of the formSubject to the initial conditions
- Consider the three-dimensional fuzzy fractional telegraphic equations of the formSubject to the initial conditions
4.1. Fuzzy Reduced Differential Transform Method
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
4.2. Two-Dimensional Fuzzy Time-Fractional Telegraphic Equations
4.3. Three-Dimensional Fuzzy Time-Fractional Telegraphic Equations
4.4. Applications and Results
5. Fuzzy Time-Fractional Diffusion Equation
5.1. Analysis of the Method
5.2. Application of the Method
5.3. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agarwal, R.P.; Lakshmikanthama, V.; Nieto, J.J. On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Meth. Appl. 2009, 72, 2859–2862. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
- Mazandarani, M.; Kamyad, A.V. Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 12–21. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 2009, 71, 1311–1328. [Google Scholar] [CrossRef] [Green Version]
- Stefanini, L. A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst. 2010, 161, 1564–1584. [Google Scholar] [CrossRef]
- Bede, B.; Stefanini, L. Generalized differentiability of fuzzy-valued functions. Fuzzy Setes Syst. 2013, 230, 119–141. [Google Scholar]
- Long, H.V.; Nieto, J.J.; Son, N.T.K. New approach for studying nonlocal problems related to differential systems and partial differential equations in generalized fuzzy metric space. Fuzzy Sets Syst. 2018, 331, 26–46. [Google Scholar] [CrossRef]
- Zhou, J.K. Differential Transformation and Its Applications for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986. (In Chinese) [Google Scholar]
- Osman, M.; Gong, Z.T.; Mohammed, A. Differential transform method for solving fuzzy fractional wave equation. J. Comput. Anal. Appl. 2021, 29, 431–453. [Google Scholar]
- Osman, M.; Gong, Z.; Mustafa, A.M.; Yang, H. Solving fuzzy (1+n)-dimensional Burgers equation. Adv. Differ. Equ. 2021, 2021, 219. [Google Scholar] [CrossRef]
- Ẅnal, E.; Gökdoǧan, A. Solution of conformable fractional ordinary differential equations via differential transform method. Optik 2017, 128, 264–273. [Google Scholar]
- Keskin, Y.; Oturanc, G. Reduced differential transform method for partial diferential equations. Inter. J. Nonli. Sci. Numer. 2009, 10, 741–749. [Google Scholar]
- Abazari, R.; Masoud, G. Extended two-dimensional DTM and its application on nonlinear PDEs with proportional delay. Int. J. Comput. Math. 2011, 88, 1749–1762. [Google Scholar] [CrossRef]
- Keskin, Y.; Oturanc, G. Reduced differential transform method for fractional partial diferential equations. Non. Sci. Lett. A 2010, 1, 61–72. [Google Scholar]
- Saadatmandi, A.; Dehghan, M. Numerical solution of hyperbolic telegraph equation using the ChebyshevTau Method. Meth. Part. Diff. Equ. 2010, 26, 239–252. [Google Scholar] [CrossRef]
- Abazari, R.; Abazari, M. Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM. Commun. Nonli. Sci. Numer. Simul. 2012, 17, 619–629. [Google Scholar] [CrossRef]
- Osman, M.; Xia, Y.; Omer, O.A.; Hamoud, A. On the fuzzy solution of linear-nonlinear partial differential equations. Mathematics 2022, 10, 2295. [Google Scholar] [CrossRef]
- Osman, M.; Gong, Z.; Mustafa, A.M. A fuzzy solution of nonlinear partial differential equations. Open J. Math. Anal. 2021, 5, 51–63. [Google Scholar] [CrossRef]
- He, J.H. Homotopy perturbation technique. Comput. Mehods. Appl. Mech. Eng. 1999, 1783, 257–262. [Google Scholar] [CrossRef]
- He, J.H. A coupling method of Homotopy technique and a perturbation technique for non-linear problems. Internat. J. Non-linear Mech. 2000, 35, 7–43. [Google Scholar] [CrossRef]
- Doan, V.T.; Massa, F.; Tison, T.; Naceur, H. Coupling of Homotopy Perturbation Method and Kriging surrogate model for an efficient fuzzy linear buckling analysis: Application to additively manufactured lattice structures. Appl. Math. Model. 2021, 97, 602–618. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Araghi, M.A.F.; Sidorov, D. Dynamical strategy on homotopy perturbation method for solving second kind integral equations using the CESTAC method. J. Comput. Appl. Math. 2022, 411, 114226. [Google Scholar] [CrossRef]
- He, J.H. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 1998, 167, 57–68. [Google Scholar] [CrossRef]
- He, C.H.; He, J.H.; Sedighi, H.M. Fangzhu: An ancient Chinese nanotechnology for water collection from air: History, mathematical insight, promises and challenges. Math. Methods Appl. Sci. 2020. [Google Scholar] [CrossRef]
- He, J.H. A short review on analytical methods for to a fully fourth-order nonlinear integral boundary value problem with fractal derivatives. Int. J. Numer. Methods Heat Fluid Flow 2020, 30, 4933–4943. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Variational iteration method: New development and applications. Comput. Math. Appl. 2007, 54, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Allahviranloo, T.; Abbasbandy, S.; Behzadi, S.S. Solving nonlinear fuzzy differential equations by using fuzzy variational iteration method. Soft Comput. 2014, 18, 2191–2200. [Google Scholar] [CrossRef]
- Osman, M.; Gong, Z.T.; Mustafa, A.M. Comparison of fuzzy Adomian decomposition method with fuzzy VIM for solving fuzzy heat-like and wave-like equations with variable coefficients. Adv. Differ. Equ. 2020, 2020, 327. [Google Scholar] [CrossRef]
- Mungkasi, S. Variational iteration and successive approximation methods for a SIR epidemic model with constant vaccination strategy. Appl. Math. Model. 2021, 90, 1–10. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Gong, Z.; Osman, M. The solution of fuzzy variational problem and fuzzy optimal control problem under granular differentiability concept. Int. J. Comput. Math. 2020, 98, 1495–1520. [Google Scholar] [CrossRef]
- Chu, Y.M.; Hani, E.H.B.; El-Zahar, E.R.; Ebaid, A.; Shah, N.A. Combination of Shehu decomposition and variational iteration transform methods for solving fractional third order dispersive partial differential equations. Numer. Methods Partial. Differ. Equ. 2021, 1–18. [Google Scholar] [CrossRef]
- Ahmad, H.; Akgu, A.; Khan, T.A.; Stanimirovic, P.S.; Chu, Y.M. New Perspective on the Conventional Solutions of the Nonlinear Time-Fractional Partial Differential Equations. Complexity 2020, 2020, 8829017. [Google Scholar] [CrossRef]
- Puri, M.L.; Ralescu, D.A. Fuzzy random variables. J. Math. Anal. Appl. 1986, 114, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Allahviranlooa, T.; Gouyandeha, Z.; Armanda, A.; Hasanoglub, A. On fuzzy solutions for heat equation based on generalized Hukuhara differentiablity. Fuzzy Sets Syst. 2015, 265, 1–23. [Google Scholar] [CrossRef]
- Salahshour, S.; Allahviranloo, T.; Abbasbandy, S. Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlin. Sci. Numer. Simul. 2012, 17, 1372–1381. [Google Scholar] [CrossRef]
- Rivaz, A.; Fard, O.S.; Bidgoli, T.A. Solving fuzzy fractional differential equations by generalized differential transform method. SeMA J. 2016, 73, 149–170. [Google Scholar] [CrossRef]
- Momani, S.; Odidat, Z.; Erturk, V.S. Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation. Phys. Lett. A 2007, 370, 379–387. [Google Scholar] [CrossRef]
- Jumarie, G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 2009, 22, 378–385. [Google Scholar] [CrossRef]
- Wu, G.; Lee, E.W.M. Fractional variational iteration method and its application. Phys. Lett. A 2010, 374, 2506–2509. [Google Scholar] [CrossRef]
- Osman, M.; Gong, Z.; Mustafa, A.M. Application to the fuzzy fractional diffusion equation by using fuzzy fractional variational Homotopy perturbation iteration method. Adv. Res. J. Multid. Discov. 2020, 51, 15–26. [Google Scholar]
Lower ES | Lower AS | Lower Error | Upper ES | Upper AS | Upper Error | |
---|---|---|---|---|---|---|
0 | 9.0017 | 1.0376 | 7.9641 | 27.005 | 3.1128 | 23.892 |
0.1 | 9.9019 | 1.1414 | 8.7605 | 26.105 | 3.0091 | 23.096 |
0.2 | 10.802 | 1.2451 | 9.5569 | 25.205 | 2.9053 | 22.299 |
0.3 | 11.702 | 1.3489 | 10.353 | 24.305 | 2.8015 | 21.503 |
0.4 | 12.602 | 1.4527 | 11.15 | 23.404 | 2.6978 | 20.707 |
0.5 | 13.503 | 1.5564 | 11.946 | 22.504 | 2.594 | 19.91 |
0.6 | 14.403 | 1.6602 | 12.743 | 21.604 | 2.4903 | 19.114 |
0.7 | 15.303 | 1.7639 | 13.539 | 20.704 | 2.3865 | 18.317 |
0.8 | 16.203 | 1.8677 | 14.335 | 19.804 | 2.2827 | 17.521 |
0.9 | 17.103 | 1.9715 | 15.132 | 18.904 | 2.179 | 16.725 |
1 | 18.003 | 2.0752 | 15.928 | 18.003 | 2.0752 | 15.928 |
Lower ES | Lower AS | Lower Error | Upper ES | Upper AS | Upper Error | |
---|---|---|---|---|---|---|
0 | 4.5766 × 10 | 7.5201 × 10 | −7.5201 × 10 | 8.9702 × 10 | 1.4739 × 10 | −1.4739 × 10 |
0.1 | 4.7615 × 10 | 7.8239 × 10 | −7.8239 × 10 | 8.7157 × 10 | 1.4321 × 10 | −1.4321 × 10 |
0.2 | 4.9501 × 10 | 8.1337 × 10 | −8.1337 × 10 | 8.4649 × 10 | 1.3909 × 10 | −1.3909 × 10 |
0.3 | 5.1423 × 10 | 8.4496 × 10 | −8.4496 × 10 | 8.2178 × 10 | 1.3503 × 10 | −1.3503 × 10 |
0.4 | 5.3382 × 10 | 8.7714 × 10 | −8.7714 × 10 | 7.9743 × 10 | 1.3103 × 10 | −1.3103 × 10 |
0.5 | 5.5377 × 10 | 9.0993 × 10 | −9.0993 × 10 | 7.7345 × 10 | 1.2709 × 10 | −1.2709 × 10 |
0.6 | 5.7409 × 10 | 9.4332 × 10 | −9.4332 × 10 | 7.4983 × 10 | 1.2321 × 10 | −1.2321 × 10 |
0.7 | 5.9478 × 10 | 9.7731 × 10 | −9.7731 × 10 | 7.2658 × 10 | 1.1939 × 10 | −1.1939 × 10 |
0.8 | 6.1583 × 10 | 1.0119 × 10 | −1.0119 × 10 | 7.037 × 10 | 1.1563 × 10 | −1.1563 × 10 |
0.9 | 6.3725 × 10 | 1.0471 × 10 | −1.0471 × 10 | 6.8118 × 10 | 1.1193 × 10 | −1.1193 × 10 |
1 | 6.5903 × 10 | 1.0829 × 10 | −1.0829 × 10 | 6.5903 × 10 | 1.0829 × 10 | −1.0829 × 10 |
Lower ES | Lower AS | Lower Error | Upper ES | Upper AS | Upper Error | |
---|---|---|---|---|---|---|
0 | 1.5835 × 10 | 2.0092 × 10 | −2.0092 × 10 | 2.5336 × 10 | 3.2147 × 10 | −3.2147 × 10 |
0.1 | 1.9247 × 10 | 2.4422 × 10 | −2.4422 × 10 | 2.0636 × 10 | 2.9051 × 10 | −2.9051 × 10 |
0.2 | 2.3184 × 10 | 2.9416 × 10 | −2.9416 × 10 | 1.6623 × 10 | 2.6184 × 10 | −2.6184 × 10 |
0.3 | 2.7695 × 10 | 3.5141 × 10 | −3.5141 × 10 | 1.3225 × 10 | 2.3535 × 10 | −2.3535 × 10 |
0.4 | 3.2835 × 10 | 4.1662 × 10 | −4.1662 × 10 | 1.0377 × 10 | 2.1092 × 10 | −2.1092 × 10 |
0.5 | 3.8659 × 10 | 4.9052 × 10 | −4.9052 × 10 | 8.0163 × 10 | 1.8844 × 10 | −1.8844 × 10 |
0.6 | 4.5226 × 10 | 5.7384 × 10 | −5.7384 × 10 | 6.0831 × 10 | 1.6781 × 10 | −1.6781 × 10 |
0.7 | 5.2595 × 10 | 6.6735 × 10 | −6.6735 × 10 | 4.5226 × 10 | 1.4892 × 10 | −1.4892 × 10 |
0.8 | 6.0831 × 10 | 7.7185 × 10 | −7.7185 × 10 | 3.2835 × 10 | 1.3167 × 10 | −1.3167 × 10 |
0.9 | 6.9998 × 10 | 8.8816 × 10 | −8.8816 × 10 | 2.3184 × 10 | 1.1597 × 10 | −1.1597 × 10 |
1 | 8.0163 × 10 | 1.0171 × 10 | −1.0171 × 10 | 1.5835 × 10 | 1.0171 × 10 | −1.0171 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, M.; Almahi, A.; Omer, O.A.; Mustafa, A.M.; Altaie, S.A. Approximation Solution for Fuzzy Fractional-Order Partial Differential Equations. Fractal Fract. 2022, 6, 646. https://doi.org/10.3390/fractalfract6110646
Osman M, Almahi A, Omer OA, Mustafa AM, Altaie SA. Approximation Solution for Fuzzy Fractional-Order Partial Differential Equations. Fractal and Fractional. 2022; 6(11):646. https://doi.org/10.3390/fractalfract6110646
Chicago/Turabian StyleOsman, Mawia, Almegdad Almahi, Omer Abdalrhman Omer, Altyeb Mohammed Mustafa, and Sarmad A. Altaie. 2022. "Approximation Solution for Fuzzy Fractional-Order Partial Differential Equations" Fractal and Fractional 6, no. 11: 646. https://doi.org/10.3390/fractalfract6110646