Previous Issue
Volume 9, June
 
 

Quantum Beam Sci., Volume 9, Issue 3 (September 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 4666 KB  
Article
Strain and Electric Field Engineering for Enhanced Thermoelectric Performance in Monolayer MoS2: A First-Principles Investigation
by Li Sun, Ensi Cao, Wentao Hao, Bing Sun, Lingling Yang and Dongwei Ao
Quantum Beam Sci. 2025, 9(3), 26; https://doi.org/10.3390/qubs9030026 - 18 Aug 2025
Viewed by 381
Abstract
Optimizing thermoelectric (TE) performance in two-dimensional materials has emerged as a pivotal strategy for sustainable energy conversion. This study systematically investigates the regulatory mechanisms of uniaxial strain (−2% to +2%), temperature (300–800 K), and out-of-plane electric fields (0–1.20 eV/Å) on the thermoelectric properties [...] Read more.
Optimizing thermoelectric (TE) performance in two-dimensional materials has emerged as a pivotal strategy for sustainable energy conversion. This study systematically investigates the regulatory mechanisms of uniaxial strain (−2% to +2%), temperature (300–800 K), and out-of-plane electric fields (0–1.20 eV/Å) on the thermoelectric properties of monolayer MoS2 via first-principles calculations combined with Boltzmann transport theory. Key findings reveal that uniaxial strain modulates the bandgap (1.56–1.86 eV) and carrier transport, balancing the trade-off between the Seebeck coefficient and electrical conductivity. Temperature elevation enhances carrier thermal excitation, boosting the power factor to 28 × 1010 W·m−1·K−2·s−1 for p-type behavior and 27 × 1010 W·m−1·K−2·s−1 for n-type behavior at 800 K. The breakthrough lies in the exceptional suppression of lattice thermal conductivity (κ1) by out-of-plane electric fields—at 1.13 eV/Å, κ1 is reduced to single-digit values (W·m−1·K−1), driving ZT to ~4 for n-type MoS2 at 300 K. This work demonstrates that synergistic engineering of strain, temperature, and electric fields effectively decouples the traditional trade-off among the Seebeck coefficient, conductivity, and thermal conductivity, providing a core optimization pathway for 2D thermoelectric materials via electric field-mediated κ1 regulation. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

14 pages, 12986 KB  
Article
Validation of an EGSnrc Monte Carlo Model of a 10 MV Photon Beam for Varian Clinac iX Linac, Including Flattening and Flattening-Free Modes
by Wafa M. Al-Saleh
Quantum Beam Sci. 2025, 9(3), 25; https://doi.org/10.3390/qubs9030025 - 14 Aug 2025
Viewed by 236
Abstract
Modelling of linear accelerators using the Monte Carlo method is critical for precise radiotherapy planning. In addition, detailed and accurate dose estimation to the organ at risk can be assessed and optimized. In this study, EGSnrc Monte Carlo code was utilized to model, [...] Read more.
Modelling of linear accelerators using the Monte Carlo method is critical for precise radiotherapy planning. In addition, detailed and accurate dose estimation to the organ at risk can be assessed and optimized. In this study, EGSnrc Monte Carlo code was utilized to model, tune, and validate a 10 MV photon head model of a Varian Clinac iX linear accelerator for different field sizes, including flattening and flattening-free modes. Gamma analysis was utilized to compare the model with measured data to determine the best parameters for the incident electron on the target. The main results revealed that, for both flattening and flattening-free modes, the incident electron’s optimal energy is 9.5 MeV, with a 0.1 cm circular full width half maximum (FWHM) and a 0.07° angular divergence. The model is suitable for field sizes extending from 1 × 1 to 30 × 30 cm2. The comparison of large field sizes, which includes both 20 × 20 and 30 × 30 cm2, reflects the accuracy of the geometrical model of the flattening filter. Altering the FWHM has a notable effect on the profile, particularly in the penumbral region, although adjusting the angular divergence has little effect. The dose rate for the flattening filter-free beam compared to the flattening filter beam increased by a factor of four. The validated model demonstrates excellent agreement with measured data. Thus, it can provide accurate dose calculations and can be used in future studies to test treatment accuracy and patient safety, especially for advanced radiotherapy techniques. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

12 pages, 2579 KB  
Article
Fast Transformation of PbTe Using a Multiphase Mixture of Precursors: First Insights
by Hugo Rojas-Chávez, Nina Daneu, Manuel A. Valdés-Madrigal, Guillermo Carbajal-Franco, Marcela Achimovičová and José M. Juárez-García
Quantum Beam Sci. 2025, 9(3), 24; https://doi.org/10.3390/qubs9030024 - 11 Jul 2025
Viewed by 432
Abstract
For the first time, a mixture of PbTe and Pb- and Te-oxides coated with carbon, under electron beam irradiation (EBI), was transformed into quantum dots, nanocrystals, nanoparticles and grains of PbTe with a sintered appearance. A small portion of non-stoichiometric phases was also [...] Read more.
For the first time, a mixture of PbTe and Pb- and Te-oxides coated with carbon, under electron beam irradiation (EBI), was transformed into quantum dots, nanocrystals, nanoparticles and grains of PbTe with a sintered appearance. A small portion of non-stoichiometric phases was also obtained. By selecting conditions that favor the instantaneous transformation, the Gibbs free energy barrier is lowered for obtaining different PbTe structures. The driving force associated with the high-energy milling requires 4 h of processing time to reach a complete transformation, while a high-energy source kinetically affects precursor surfaces to cause an abrupt global chemical transformation instantly. Importantly, the size of the PbTe structures increases as they approach the irradiation point, implying a growth process that is affected by the local temperature reached during the EBI. Imaging after the EBI process revealed morphological variations in PbTe, which can be attractive for use in thermoelectric materials. The results of this study provide the first insights into electron-beam-induced reactions using a multiphase mixture of precursors. Therefore, it is believed that this proposal can also be applied to obtain other binary semiconductor structures, even ternary ones. Full article
(This article belongs to the Special Issue New Challenges in Electron Beams)
Show Figures

Figure 1

10 pages, 1130 KB  
Article
DNA Damage Induced by Fast Neutron and Gamma Rays Evaluated Using qPCR
by Youichirou Matuo, Miyabi Yanami, Shingo Tamaki, Yoko Akiyama, Yoshinobu Izumi, Fuminobu Sato, Isao Murata and Kikuo Shimizu
Quantum Beam Sci. 2025, 9(3), 23; https://doi.org/10.3390/qubs9030023 - 7 Jul 2025
Viewed by 338
Abstract
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples [...] Read more.
We developed a novel dosimetric method using DNA molecules as a radiation sensor. The amount of neutron or gamma rays irradiated DNA damage was determined by evaluating the amount of DNA serving as a template for qPCR. The absorbed doses in the samples were estimated using the tally of the “t-product” in the data from the PHITS Monte Carlo particle transport simulation code. The neutron fluence for each sample was measured using the niobium activation reaction 93Nb (n, 2n) 92mNb, and the absorbed dose per neutron fluence was estimated to be 7.1 × 10−11 Gy/(n/cm2). Based on the PHITS modeling, the effects of neutron beams are attributed to the combination of proton and alpha particle beams. The results from qPCR showed that neutrons caused more DNA damage than gamma rays. The qPCR method demonstrated that neutron irradiation caused 1.13-fold more DNA damage compared to gamma ray irradiation; however, this result did not show a statistically significant difference. This method we developed, using DNA molecules as a radiation sensor, may be useful for biodosimetry. Full article
(This article belongs to the Section Medical and Biological Applications)
Show Figures

Figure 1

10 pages, 2216 KB  
Article
A Solid-State Three-Stage Nd:YVO4 Laser Amplifier System Based on AOM Pulse Picker-Integrated Modulator
by Zhenyu Li, Yawen Zheng, Zhengtao Zhang, Peipei Lu, Zhen Zeng, Zhongsheng Zhai and Boya Xie
Quantum Beam Sci. 2025, 9(3), 22; https://doi.org/10.3390/qubs9030022 - 1 Jul 2025
Viewed by 457
Abstract
In recent years, ultrafast bursts with high power have been applied in many significant fields. However, the peak power of the pulse train generated by fiber lasers is limited by fiber characteristics from nonlinear effects, which can only be at the level of [...] Read more.
In recent years, ultrafast bursts with high power have been applied in many significant fields. However, the peak power of the pulse train generated by fiber lasers is limited by fiber characteristics from nonlinear effects, which can only be at the level of milliwatt. In this research, the pulse frequency is reduced by an AOM pulse picker-integrated modulator. With M2 and pulse width guaranteed, the frequency of the reduced pulse train is amplified by a solid-state three-stage Nd:YVO4 amplifier system. Finally, the peak power of the pulse train is increased. The final output pulse repetition rate of the experiment is 1 MHz with a pulse width of 8.09 picoseconds and a peak power of up to 3.7 MW. Full article
(This article belongs to the Section High-Power Laser Physics)
Show Figures

Figure 1

Previous Issue
Back to TopTop