Development of Concrete Incorporating Recycled Aggregates, Hydrated Lime and Natural Volcanic Pozzolan
Abstract
:1. Introduction
2. Materials and Methods
- May react with strong acids generating carbon dioxide.
- Colour: white when they are pure, but changes colour between grey and black because of the carbonaceous impurities they contain.
- Resistance: presents resistance to the compression factor, the value ranges between 98.4–583.5 kg per square centimetre.
- Density: 2.65–2.75 kg per litre
- It can react with water.
3. Results
4. Life Cycle Analysis
5. Conclusions
- A good relationship between the workability and the satisfactory mechanical behaviour that the concrete was obtained with the presence of these three unconventional materials for concrete designs.
- The introduction of recycled aggregates, lime, and volcanic pozzolan (replacement 10% crushed aggregate + 10% binder) leads to an increase of up to 34% in compressive strength compared to the conventional concrete mix.
- The non-destructive tests show a good performance in the concrete’s quality where the concrete rebound increases when lime and pozzolana are included in the mix design.
- The life-cycle-cost analysis indicates that partial replacement of mineral aggregates with recycled aggregates shows a minor reduction in the total cost of concrete mixes.
- The sustainable investigation shows that although recycled concrete aggregates possessed similar greenhouse gas emissions with natural mineral aggregates, the low transport distance of recycled concrete contributes significantly to the environmental impact of the concrete manufacturing system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Compressive Strength f’c (MPa): | 28 | |||||
Slump | 10 | cm | ||||
Coarse aggregate | Fine aggregate | |||||
P.V.V. = | 1491.11696 | kg/m3 | P-V.S. = | 1480.14 | kg/m3 | |
P.V.S. = | 1345.133482 | kg/m3 | Ds.s.s. = | 2662 | kg/m3 | |
D.s.s.s.= | 2599 | kg/m3 | M.F. = | 2.4 | ||
Absorption = | 1.2 | % | Absorption = | 3.71 | % | |
Abs. real = | 1.4 | % | Abs.real = | 3.91 | % | |
a/c = | 0.6 | |||||
water (litres) | 205 | cement (kg/m3): | 359.8091667 | # bags/m3: | 7196 | |
Air (%): | 1.8 | |||||
Water content: | 215.89 | |||||
Concrete 1 m3 | ||||||
CEMENT | 0114 | m3 | ||||
WATER: | 0216 | m3 | ||||
COARSE AGG.: | 0379 | m3 | ||||
AIR: | 0.02 | m3 | ||||
SAND: | 0271 | m3 |
References
- Quiñonez, E.A.; Pozo, L.I. Elaboración de Bloque a Base de Escombros de Hormigón, cal y Puzolana Para Viviendas del Cantón Durán. Bachelor’s Thesis, Universidad Laica Vicente Rocafuerte, Guayaquil, Ecuador, 2019. [Google Scholar]
- Ávila, A.S.; Cabrera, M.U. Caracterización de la Ceniza Volcánica del Tungurahua Para la Fabricación de un Aglomerante Cal-puzolana. Bachelor’s Thesis, Universidad de Cuenca, Cuenca, Ecuador, 2010. [Google Scholar]
- Bompa, D.V.; Elghazouli, A.Y. Mechanical properties of hydraulic lime mortars and fired clay bricks subjected to dry-wet cycles. Constr. Build. Mater. 2021, 303, 124458. [Google Scholar] [CrossRef]
- Gargiani, R. Concrete from Archeology to Invention, 1700–1769: The Renaissance of Pozzolana and Roman Construction Techniques; EPFL Press: Lausanne, Switzerland, 2013. [Google Scholar]
- Moreno-Anselmi, L.A.; Garcia, M.A.O.; Polo, K.A.R. Mechanical properties of concrete made with recycled aggregates extracted from debris of baked clay masonry. Rev. Espac. 2019, 40, 12. [Google Scholar]
- Sabău, M.; Bompa, D.V.; Silva, L.F.O. Comparative carbon emission assessments of recycled and natural aggregate concrete: Environmental influence of cement content. Geosci. Front. 2021, 12, 101235. [Google Scholar]
- Sabău, M.; Remolina, D.J. Prediction of Compressive Strength of General-Use Concrete Mixes with Recycled Concrete Aggregate. Int. J. Pavement Res. Technol. 2021. [Google Scholar] [CrossRef]
- Zapana, D.V. Estudio de la Influencia de la Pureza de la Caliza, Tamaño de Partícula y Temperatura Para Obtener Oxido de Calcio de alta Reactividad Mediante un Diseño Experimental 2K. Bachelor’s Thesis, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú, 2019. [Google Scholar]
- Topcu, I.B. Physical and mechanical properties of concretes produced with waste concrete. Cem. Concr. Res. 1997, 27, 1817–1823. [Google Scholar] [CrossRef]
- Bedoya, C.; Dzul, L. El Concreto con Agregados Reciclados Como Proyecto de Sostenibilidad Urbana. Rev. Ing. Construcción 2015, 30, 99–108. Available online: https://scielo.conicyt.cl/pdf/ric/v30n2/art02.pdf (accessed on 14 March 2021). [CrossRef] [Green Version]
- Garcia-Troncoso, N.; Li, L.; Cheng, Q.; Mo, K.H.; Ling, T.-C. Comparative study on the properties and high temperatures resistance of self-compacting concrete with various types of recycled aggregates. Case Stud. Constr. Mater. 2021, 15, e00678. [Google Scholar]
- ASTM D692. Standard Specification for Coarse Aggregate for Asphalt Paving Mixtures US; American Society of Testing Materials: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Meddah, M.S.; Al-Harthy, A.; Ismail, M.A. Recycled Concrete Aggregates and Their Influences on Performances of Low and Normal Strength Concretes. Buildings 2020, 10, 167. [Google Scholar]
- Kang, T.H.K.; Kim, W.; Kwak, Y.K.; Hong, S.G. The choice of recycled concrete aggregates for flexural members. In Proceedings of the 18th International Association for Bridge and Structural Engineering Congress on Innovative Infrastructures, Seoul, Korea, 19–21 September 2012. [Google Scholar]
- Yang, K.H.; Chung, H.S.; Ashour, A.F. Influence of type and replacement level of recycled aggregates on concrete properties. ACI Mater. J. 2008, 105, 289–296. [Google Scholar]
- Rao, M.C.; Bhattacharyya, S.K.; Barai, S.V. Influence of filed recycled coarse aggregate on properties of concrete. Mater. Struct. 2011, 44, 205–220. [Google Scholar]
- Xiao, J. Recycled Aggregate Concrete Structures; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Sogo, M.; Sogabe, T.; Maruyama, I.; Sato, R.; Kawai, K. Shear behavior of reinforced recycled concrete beams. In Proceedings of the International RILEM Conference on the Use of Recycled Materials in Buildings and Structures, Barcelona, Spain, 8 November 2004; pp. 610–618. [Google Scholar]
- Xiao, J.; Sun, Y.D.; Falkner, H. Seismic performance of frame structures with recycled aggregate concrete. Eng. Struct. 2006, 28, 1–8. [Google Scholar] [CrossRef]
- Yang, Y.; Han, L. Experimental behavior of recycled aggregate concrete filled steel tubular columns. J. Constr. Steel Res. 2006, 62, 1310–1324. [Google Scholar]
- Yang, Y.; Han, L.; Zhu, L. Experimental performance of recycled aggregate concrete-filled circular steel tubular columns subjected to cyclic flexural loadings. Adv. Struct. Eng. 2009, 12, 183–194. [Google Scholar] [CrossRef]
- Omrane, M.; Rabehi, M. Effect of natural pozzolan and recycled concrete aggregates on thermal and physico-mechanical characteristics of self-compacting concrete. Constr. Build. Mater. 2020, 247, 118576. [Google Scholar]
- Beka, I.A.; Motta, R.; Bernucci, L.B. Application of recycled aggregates from construction and demolition waste with Portland cement and hydrated lime as pavement subbase in Brazil. Constr. Build. Mater. 2020, 258, 119520. [Google Scholar]
- Kanellopoulos, A.; Nicolaides, D.; Petrou, M.F. Mechanical and durability properties of concretes containing recycled lime powder and recycled aggregates. Constr. Build. Mater. 2014, 53, 253–259. [Google Scholar] [CrossRef]
- ASTM C-618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- INEN 246:2010. Cal Hidráulica Hidratada para Construcción; Requisitos Norma Técnica Ecuatoriana; Instituto Ecuatoriano de Normalización: Quito, Ecuador, 2008. [Google Scholar]
- ASTM C25. Standard Test Methods for Chemical Analysis of Limestone, Quicklime, and Hydrated Lime; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- ASTMC C33/C33M. Standard Specification for Concrete Aggregates US.; American Society of Testing Materials: West Conshohocken, PA, USA, 2008. [Google Scholar]
- UNE EN 9933:2 96. Methods of Test for Dense Shaped Refractory Products—Part 2; Determination of True Density, Spanish Standard, AENOR: Madrid, Spain, 1996. [Google Scholar]
- ASTM D448. Standard Classification for Sizes of Aggregate for Road and Bridge Construction US.; American Society of Testing Materials: West Conshohocken, PA, USA, 2001. [Google Scholar]
- INEN 1855. Hormigones. Hormigón Premezclado; Requisitos Norma Técnica Ecuatoriana; Instituto Ecuatoriano de Normalización: Quito, Ecuador, 2001. [Google Scholar]
- ASTM C39. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Standard Specification for Concrete Aggregates US; American Society of Testing Materials: West Conshohocken, PA, USA, 2008. [Google Scholar]
- López Gayarre, F. Influencia de la Variación de los Parámetros de Dosificación y Fabricación de Hormigón Reciclado Estructural Sobre sus Propiedades Físicas y Mecánicas. Ph.D. Thesis, Universidad de Oviedo, Gijón, España, 2008. [Google Scholar]
- de Juan, M.S.; Gutiérrez, P.A. Study on the influence of attached mortar contento n the properties of recycled aggregate. Constr. Build. Mater. 2009, 23, 872–877. [Google Scholar] [CrossRef]
- Sánchez De Juan, M. Estudio sobre la utilización de Árido Reciclado para la Fabricación de Hormigón Estructural. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2005. [Google Scholar]
- Garcia-Troncoso, N.; Crespo-León, K. Correlaciones Entre Ensayos no Destructivos y Destructivos para Hormigón de alta Resistencia Usando Agregados Calcáreos. Bachelor’s Thesis, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador, 2009. Available online: http://www.dspace.espol.edu.ec/handle/123456789/7961 (accessed on 20 May 2021).
- ASTM C78. Standard Test Method for Flexural Strength of Concrete US; American Society of Testing Materials: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Rodriguez, B.I.R. El Análisis de Ciclo de Vida y la Gestión Ambiental; Boletin IIE Tendencias tecnológicas Julio-Septiembre del 2003; Instituto Nacional de Electricidad y Energías Limpias: Cuernavaca, México, 2003; pp. 91–97. [Google Scholar]
- Curran, M.A. Life Cycle Assessment Handbook: A Guide for Environmentally Sustainable; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-1-118-09972-8. [Google Scholar]
- ISO/TC59/SC14. Committee, ISO 15686-5:2008: Buildings and Constructed Assets-Service-Life Planning-Part 5: Life-Cycle Costing; International Organisation for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- RSMeans, Construction and Cost Estimating Data. 2017. Available online: https://www.rsmeans.com/ (accessed on 15 December 2020).
- Val, D.V.; Stewart, M.G. Life-cycle cost analysis of reinforced concrete structures in marine environments. Struct. Saf. 2003, 25, 343–362. [Google Scholar]
- Ali, M.M.; Kyoung, S.M. Structural developments in Tall Buildings: Current trends and future prospects. Archit. Sci. Rev. 2007, 50. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Shen, Y.-H.; Tsai, W.-T. Reuse of the Materials Recycled from Renewable Resources in the Civil Engineering: Status, Achievements and Government’s Initiatives in Taiwan. Materials 2021, 14, 3730. [Google Scholar] [CrossRef]
- EC (European Commission). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Roadmap to a Resource Efficient Europe; COM (2011) 571 final; EC: Brussels, Belgium, 2011; 25p. [Google Scholar]
- Nazzari, A.; Sanjayan, J.G. Handbook of Low Carbon Concrete; Elsevier Science: Cambridge, MA, USA, 2016. [Google Scholar]
- WBCSD World Business Council for Sustanaible Development, International Energy Agency: ‘Cement Technology Roadmap 2009: Carbon Emissions Reductions up to 2050’, Geneva/Paris. 2009. Available online: https://cement.mineralproducts.org/documents/wbcsd-iea%20cement%20roadmap%202009.pdf (accessed on 23 October 2021).
- Flower, D.J.M.; Sanjayan, J.G. Green House Gas Emissions Due to Concrete Manufacture. Int. J. Life Cycle Assess 2007, 12, 282–288. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Wolf, C.D.; Chin, S.; Ochsendorf, J.; Hajiah, A.E.; Al-Mumin, A.; Buyukozturk, O. Impact of Embodies Energy on Materials/Buildingss with Partial Replacement of Ordinary Portland Cement (OPC) by Natural Pozzolanic Volcanic Ash. J. Clean. Prod. 2018, 177, 547–554. [Google Scholar]
- Xu, B.; Li, H.; Bompa, D.V.; Elghazouli, A.Y.; Chen, J. Performance of Polymer Cementitious Coatings for High-Voltage Electrical Infrastructure. Infrastructures 2021, 6, 125. [Google Scholar]
- Abdelmonim, A.; Bompa, D.V. Mechanical and Fresh Properties of Multi-Binder Geopolymer Mortars Incorporating Recycled Rubber Particles. Infrastructures 2021, 6, 146. [Google Scholar] [CrossRef]
- Jimenez, L.F.; Dominguez, J.A.; Vega-Azamar, R.E. Carbon Footprint of Recycled Aggregate Concrete. Adv. Civ. Eng. 2018, 2018, 7949741. [Google Scholar]
- Oliveira, L.S.; Pacca, S.A.; John, V.M. Variability in the Life Cycle of Concrete Block CO2 Emissions and Cumulative Energy Demand in the Brazilian Market. Constr. Build. Mater. 2016, 114, 588–594. [Google Scholar] [CrossRef]
Components | Weight (%) |
---|---|
Portland cement | 100 |
Calcium sulphate | 2–10 |
Calcium carbonate | 0–5 |
Calcium oxide | 0–5 |
Magnesium Oxide | 0–4 |
Silica crystals | 0–2 |
Properties | Detail |
---|---|
Physical state | Dust |
pH (in water) | 12–13 |
Compressive strength 28 days (MPa) | 30 |
Solubility in water | 0.1–1.0% |
Density (g/cm3) | 2.98 |
Magnesium Oxide | 2.95–3.10 |
Material | Origin | Illustration |
---|---|---|
Recycled Aggregates Concrete (RAC) | Campament Hidalgo & Hidalgo | |
Stone 67 | Guayco Limestone Guayas Province (Way to the Coast) | |
Sand | Guayas Province (Way to the Coast) | |
Volcanic Pozzolan | Holcim | |
Lime | Calmosacorp (Way to the Coast) |
Sample | Origin | A | B | C | Ds | Dsss | D | Po |
---|---|---|---|---|---|---|---|---|
Coarse Aggregate N° 78 | Huayco | 2966.3 | 3001.0 | 1852 | 2582 | 2612.0 | 2662 | 1.17 |
Coarse Aggregate N° 67 | Huayco | 2962.4 | 3000.5 | 1846 | 2566 | 2599.0 | 2654 | 1.29 |
Mix | Cement | Water | Sand | Stone | RAC | Lime | Volcanic Pozzolan |
---|---|---|---|---|---|---|---|
NC | 360 | 216 | 692 | 1013 | 0 | 0 | 0 |
RC10-0LV | 360 | 216 | 692 | 912 | 101 | 0 | 0 |
RC20-0LV | 360 | 216 | 692 | 810 | 203 | 0 | 0 |
RC50-0LV | 360 | 216 | 692 | 506.5 | 506.5 | 0 | 0 |
RC10-2LV | 360 | 216 | 692 | 891 | 101 | 10.5 | 10.5 |
RC10-5LV | 360 | 216 | 692 | 861 | 101 | 25.5 | 25.5 |
RC10-10LV | 360 | 216 | 692 | 810 | 101 | 51 | 51 |
Mixture | Slump (mm) |
---|---|
NC | 130 |
RC10-0LV | 130 |
RC20-0LV | 140 |
RC50-0LV | 140 |
RC10-5LV | 140 |
Description | Unit | Amount | Price (USD Dollars) |
---|---|---|---|
Sand | m3 | 1 | 8.78 |
Stone 67 | m3 | 1 | 12.6 |
Water | m3 | 1 | 1.0 |
Cement | 25 kg bag | 1 | 6.86 |
Recycled Aggregates Concrete | m3 | 1 | 9.98 |
Lime | 25 kg bag | 1 | 12 |
Volcanic Pozzolan | 25 kg bag | 1 | 0 |
Black steel bar | kg | 1 | 0.66 |
NC + Reinforcement | m3 | 1 | 209.87 |
RC50-0LV + Reinforcement | m3 | 1 | 209.36 |
RC10-10LV + Reinforcement | m3 | 1 | 233.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Troncoso, N.; Xu, B.; Probst-Pesantez, W. Development of Concrete Incorporating Recycled Aggregates, Hydrated Lime and Natural Volcanic Pozzolan. Infrastructures 2021, 6, 155. https://doi.org/10.3390/infrastructures6110155
Garcia-Troncoso N, Xu B, Probst-Pesantez W. Development of Concrete Incorporating Recycled Aggregates, Hydrated Lime and Natural Volcanic Pozzolan. Infrastructures. 2021; 6(11):155. https://doi.org/10.3390/infrastructures6110155
Chicago/Turabian StyleGarcia-Troncoso, Natividad, Bowen Xu, and Wilhenn Probst-Pesantez. 2021. "Development of Concrete Incorporating Recycled Aggregates, Hydrated Lime and Natural Volcanic Pozzolan" Infrastructures 6, no. 11: 155. https://doi.org/10.3390/infrastructures6110155
APA StyleGarcia-Troncoso, N., Xu, B., & Probst-Pesantez, W. (2021). Development of Concrete Incorporating Recycled Aggregates, Hydrated Lime and Natural Volcanic Pozzolan. Infrastructures, 6(11), 155. https://doi.org/10.3390/infrastructures6110155