Quantitative Risk Analysis Framework for Cost and Time Estimation in Road Infrastructure Projects
Abstract
1. Introduction
2. Literature Review
2.1. Cost and Time Estimation Issues in Road Infrastructure Projects
2.2. Integration of Quantitative Techniques in Cost and Schedule Estimation
2.3. Barriers to the Use of Quantitative Methods in Developing Countries
2.4. Contribution of the Proposed Framework
2.5. Quantitative Risk Analysis Techniques Methodology
2.6. Probability Distribution Functions in Cost and Time Modeling
2.7. Barriers to the Implementation of Advanced Quantitative Techniques
3. Materials and Methods
3.1. Methodological Scheme
3.2. Theoretical Framework
3.2.1. Probability Distribution Function
3.2.2. Monte Carlo Simulation
3.2.3. Schedule Risk Analysis
3.3. Research Methodology
3.3.1. Research Hypotheses and Statistical Validation
3.3.2. Population and Sampling Strategy
3.4. Technical Methodology
3.4.1. Quantitative Risk Analysis Techniques
3.4.2. Probability Distribution Function (PDF)
3.5. Case Study
4. Results
4.1. Estimation of Cost for Project I
4.2. Estimation of Time for Project I
4.3. Estimation of Cost for Project II
4.4. Estimation of Time for Project II
4.5. Estimation of Cost for Project III
4.6. Estimation of Time for Project III
4.7. Statistical Validation of the Hypotheses
5. Discussion
5.1. Research Gaps and Contributions
- (a)
- A combined risk assessment methodology for cost and schedule estimation;
- (b)
- An evidence-based selection of probability functions tailored to contextual constraints;
- (c)
- Empirical validation across three real-world road infrastructure projects with measurable gains in estimation accuracy.
5.2. Optimizing Cost and Time Through Quantitative Risk Analysis
5.3. Study Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Database | Boolean Equation |
---|---|
Scopus | TITLE-ABS-KEY (“construction*” OR “building*” OR “project*”) AND TITLE-ABS-KEY (“cost*” OR “time*” OR “optimization*” OR “budget*”) AND TITLE-ABS-KEY (“risk*” OR “hazard*” OR “danger*”) AND TITLE-ABS-KEY (“analysis*” OR “assessment*” OR “evaluation*” OR “measurement*” OR “prediction*” OR “optimization*”) AND TITLE-ABS-KEY (“quantitative*” OR “statistical*” OR “mathematical*” OR “simulation*” OR “artificial intelligence*”) AND TITLE-ABS-KEY (“method*” OR “model*” OR “technique*” OR “tool*”) |
Web of Science | TS = (“construction*” OR “building*” OR “project*”) AND TITLE-ABS-KEY (“cost*” OR “time*” OR “optimization*” OR “budget*”) AND TS = (“risk*” OR “hazard*” OR “danger*”) AND TS=(“analysis*” OR “assessment*” OR “evaluation*” OR “measurement*” OR “prediction*” OR “optimization*”) AND TS = (“quantitative*” OR “statistical*” OR “mathematical*” OR “simulation*” OR “artificial intelligence*”) AND TS = (“method*” OR “model*” OR “technique*” OR “tool*”) |
ProQuest | AB(“construction*” OR “building*” OR “project*”) AND TITLE-ABS-KEY (“cost*” OR “time*” OR “optimization*” OR “budget*”) AND (“risk*” OR “hazard*” OR “danger*”) AND (“analysis*” OR “assessment*” OR “evaluation*” OR “measurement*” OR “prediction*” OR “optimization*”) AND (“quantitative*” OR “statistical*” OR “mathematical*” OR “simulation*” OR “artificial intelligence*”) AND (“method*” OR “model*” OR “technique*” OR “tool*”) |
Appendix A.2
Number | Road Project | Start (Day/Month/Year) | Initial Cost (PEN) (PEN) | Final Cost (PEN) | Cost Overrun |
---|---|---|---|---|---|
1 | La Unión—Collonce (Amazonas) | 22/01/13 | 2,899,600 | 3,385,276 | 16.75% |
2 | San Cristóbal—MO 104 (Moquegua) | 18/03/09 | 16,943,089 | 20,711,166 | 22.24% |
3 | Moya—Qui Iri (Huancavelica) | 01/10/12 | 688,411 | 688,999 | 0.09% |
4 | Tahuada—Sisco (Áncash) | 20/10/12 | 6,734,357 | 7,900,510 | 17.32% |
5 | Chirumpiari—Villa Virgen (Cusco) | 04/03/13 | 4,693,446 | 5,071,414 | 8.05% |
6 | Paccayura—Huayllati (Apurímac) | 17/09/12 | 3,567,482 | 3,793,918 | 6.35% |
7 | Cocabambilla—Tancayoc (Cusco) | 01/02/12 | 3,386,661 | 4,053,840 | 19.70% |
8 | Red. de Velocidad Km 213—214 (Huánuco) | 20/04/14 | 35,000 | 40,000 | 14.29% |
9 | Boca Mantalo—Alto Mantalo (Cusco) | 03/11/10 | 6,214,756 | 7,047,455 | 13.40% |
10 | Ángel Cruz Mellizo (Áncash) | 03/02/14 | 920,000 | 920,000 | 0.00% |
11 | Alto Confortayoc—Fundo Paraíso (Cusco) | 16/01/14 | 3,563,269 | 4,413,624 | 23.86% |
12 | Batangrande—Mayascong (Lambayeque) | 02/06/14 | 15,122,747 | 15,122,747 | 0.00% |
13 | Patay—Jatun Patay (Huánuco) | 20/04/15 | 2,579,296 | 2,674,624 | 3.70% |
14 | Reductores de Velocidad Cusco—Sicuani | 13/04/15 | 46,790 | 53,960 | 15.32% |
15 | Playa Hermosa—La Chamana (Cajamarca) | 21/09/15 | 2,746,350 | 2,746,350 | 0.00% |
16 | San Lorenzo—Monzante—Miraflores | 14/04/14 | 3,020,745 | 3,042,116 | 0.71% |
17 | Rudacancha—Saulama (Ayacucho) | 05/10/15 | 382,957 | 384,057 | 0.29% |
18 | Oyolo—Ushua—Corculla | 05/12/10 | 14,594,018 | 16,774,726 | 14.94% |
19 | Variante San Pedro—Changa (Áncash) | 01/11/16 | 229,663 | 229,663 | 0.00% |
20 | Huachón—Huancabamba (Pasco) | 14/10/16 | 3,227,766 | 3,419,069 | 5.93% |
21 | Yanashalla—Pachana (Áncash) | 19/06/17 | 274,653 | 312,946 | 13.94% |
22 | Rosaspampa—Callejón (Ayacucho) | 02/01/18 | 12,847,449 | 13,264,339 | 3.24% |
23 | Coshto—Irhua—Huaraz (Áncash) | 01/02/18 | 757,336 | 934,605 | 23.41% |
24 | Huaros—Huacos (Canta) | 03/12/18 | 4,319,080 | 4,769,512 | 10.43% |
25 | Pampallacta—Ancobamba (Apurímac) | 13/09/18 | 7,284,635 | 9,144,749 | 25.53% |
26 | Quichipata—Gopa (Áncash) | 10/12/18 | 334,026 | 334,026 | 0.00% |
27 | Puente y vía Chuspin—Huaripata (Áncash) | 09/09/19 | 427,787 | 431,017 | 0.76% |
28 | Muro de Contención Chaquecyaco (Áncash) | 01/10/19 | 81,436 | 107,734 | 32.29% |
29 | Pistas y Veredas en Cura Mori (Piura) | 17/12/19 | 998,141 | 1,034,743 | 3.67% |
30 | Cajamarquilla—Kanin—Cullash (Áncash) | 24/05/07 | 357,683 | 357,683 | 0.00% |
31 | Accesos al Circuito Turístico de Playas (Chimbote) | 20/01/20 | 7,682,717 | 8,166,889 | 6.30% |
32 | Las Aradas—Rinconada (Piura) | 07/09/20 | 90,228 | 108,352 | 20.09% |
33 | Arcuella—Miraflores (Huancavelica) | 02/10/20 | 30,210 | 30,210 | 0.00% |
34 | Trocha Ramírez—Trancucho (Cajamarca) | 14/01/21 | 1,252,918 | 1,284,526 | 2.52% |
35 | Movilidad Urbana—Los Pescadores (Lima) | 30/05/22 | 614,252 | 619,132 | 0.79% |
References
- Aljohani, A. Construction Projects Cost Overrun: What Does the Literature Tell Us? Int. J. Innov. Manag. Technol. 2017, 8, 137–143. [Google Scholar] [CrossRef]
- Abdelalim, A.M.; Salem, M.; Salem, M.; Al-Adwani, M.; Tantawy, M. An Analysis of Factors Contributing to Cost Overruns in the Global Construction Industry. Buildings 2024, 15, 18. [Google Scholar] [CrossRef]
- Schwab, K. The Global Competitiveness Report; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
- International Institute for Management Development. IMD World Competitiveness Booklet 2022; IMD: Lausanne, Switzerland, 2022; Available online: https://imd.cld.bz/IMD-World-Competitiveness-Booklet-2022 (accessed on 20 September 2022).
- IMD World Competitiveness Center. IMD World Competitiveness Booklet 2023; IMD: Lausanne, Switzerland, 2023; Available online: https://worldcompetitiveness.imd.org/ (accessed on 21 September 2024).
- Ministerio de Economía y Finanzas (MEF). Plan Nacional de Infraestructura para la Competitividad; MEF: Lima, Peru, 2019. [Google Scholar]
- Contraloría General de la República. Reporte de Obras Paralizadas; Contraloría General de la República: Lima, Peru, 2024. [Google Scholar]
- OSCE. In Guía Práctica No 6: ¿Cómo se Implementa la Gestión de Riesgos en la Planificación de la Ejecución de Obras? OSCE: Lima, Peru, 2017.
- Ariza Flores, V.A.; Portocarrero, E. Integrating Resilience in Construction Risk Management: A Case Study on Peruvian Road Infrastructure. E3S Web Conf. 2024, 497, 02019. [Google Scholar] [CrossRef]
- Project Management Institute (PMI). The Standard for Risk Management in Portfolios, Programs, and Projects; PMI: Newtown Square, PA, USA, 2019. [Google Scholar]
- Project Management Institute (PMI). Guía de los Fundamentos para la Dirección de Proyectos—Guía del PMBOK, 6th ed.; PMI: Newtown Square, PA, USA, 2017. [Google Scholar]
- SmartPM. Construction Cost Overruns: An Industry in Crisis. Available online: https://smartpm.com/blog/construction-cost-overruns/ (accessed on 8 February 2025).
- Flyvbjerg, B.; Skamris Holm, M.; Buh, S. Underestimating Costs in Public Works Projects: Error or Lie? J. Am. Plan. Assoc. 2002, 68, 279–295. [Google Scholar]
- Flyvbjerg, B.; Skamris Holm, M.; Buhl, S. Five Things You Should Know about Cost Overrun. Transp. Res. Part A Policy Pract. 2018, 118, 174–190. [Google Scholar] [CrossRef]
- Abed, Y.G.; Hasan, T.M.; Zehawi, R.N. Cost Prediction for Roads Construction Using Machine Learning Models. Int. J. Electr. Comput. Eng. Syst. 2022, 13, 927–936. [Google Scholar] [CrossRef]
- Abd, A.M.; Kareem, Y.A.; Zehawi, R.N. Prediction and Estimation of Highway Construction Cost Using Machine Learning. Eng. Technol. Appl. Sci. Res. 2024, 14, 17222–17231. [Google Scholar] [CrossRef]
- Yun, S. Performance Analysis of Construction Cost Prediction Using Neural Network for Multioutput Regression. Appl. Sci. 2022, 12, 9592. [Google Scholar] [CrossRef]
- Washington Post. It’s Official: Boston’s Big Dig Will Be Done. Available online: https://www.washingtonpost.com/wp-dyn/content/article/2007/12/25/AR2007122500600.html (accessed on 1 March 2025).
- Alstom. Alstom to Supply Driverless Trains and Digital Signalling System for Sydney Metro Extension. Available online: https://www.alstom.com/press-releases-news/2019/11/alstom-supply-driverless-trains-and-digital-signalling-system-sydney (accessed on 1 March 2025).
- The Economic Times. Mumbai Metro-3 Opens Today: Stations, Timings, Fares, and Key Details about City’s First Underground Line. Available online: https://economictimes.indiatimes.com/news/india/mumbai-metro-3-opens-today-stations-timings-fares-and-key-details-about-citys-first-underground-line/articleshow/113997417.cms (accessed on 1 March 2025).
- El Espectador. Por fin Concluyó Doble Calzada Bogotá-Girardot. Available online: https://www.elespectador.com/bogota/por-fin-concluyo-doble-calzada-bogota-girardot-article-486296/ (accessed on 1 March 2025).
- Invierte.pe. Banco de Inversiones. Consulta de Inversiones. Available online: https://ofi5.mef.gob.pe/invierte/consultapublica/consultainversiones (accessed on 1 March 2025).
- AACE International. 42R-08: Risk Analysis and Contingency Determination Using Parametric Estimating; AACE International: Morgantown, WV, USA, 2021. [Google Scholar]
- AACE International. 57R-09: Integrated Cost and Schedule Risk Analysis Using Risk Drivers and Monte Carlo Simulation of a CPM Model; AACE International: Morgantown, WV, USA, 2019. [Google Scholar]
- Ariza Flores, V.A.; Salvador, R. Adaptive Risk Management in Road Construction: Oyon-Ambo Highway Insights, El Niño 2019 Case Study. E3S Web Conf. 2024, 497, 02020. [Google Scholar] [CrossRef]
- Garrido Martins, C.; Bogus, S.M.; Valentin, V. Quantitative Risk Assessment Model and Optimization in Infrastructure Fast-Track Construction Projects. Infrastructures 2023, 8, 78. [Google Scholar] [CrossRef]
- Olarte, W. An Integrated Approach to Project Planning: Reducing Uncertainty to Improve Safety and Cost. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2021. [Google Scholar]
- Chau Hai, L. Novel Data-Driven Approaches for Enhanced Project Duration and Cost-Related Decision Making. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2021. [Google Scholar]
- Jeong, J.; Jeong, J. Quantitative Risk Evaluation of Fatal Incidents in Construction Based on Frequency and Probability Analysis. J. Manag. Eng. 2022, 38, 04021089. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, J.; Soh, J.; Jeong, J. Quantitative Analysis of the Accident Prevention Costs in Korean Construction Projects. Buildings 2022, 12, 1536. [Google Scholar] [CrossRef]
- Jeong, J.; Jeong, J. Novel Approach of the Integrated Work & Risk Breakdown Structure for Identifying the Hierarchy of Fatal Incident in Construction Industry. J. Build. Eng. 2021, 41, 102406. [Google Scholar] [CrossRef]
- Selleck, R.; Cattani, M.; Hassall, M. Proposal for and Validation of Novel Risk-Based Process to Reduce the Risk of Construction Site Fatalities (Major Accident Prevention (MAP) Program). Saf. Sci. 2023, 158, 105986. [Google Scholar] [CrossRef]
- Lu, Y.; Gong, P.; Tang, Y.; Sun, S.; Li, Q. BIM-Integrated Construction Safety Risk Assessment at the Design Stage of Building Projects. Autom. Constr. 2021, 124, 103553. [Google Scholar] [CrossRef]
- Oguz Erkal, E.D.; Hallowell, M.R.; Bhandari, S. Practical Assessment of Potential Predictors of Serious Injuries and Fatalities in Construction. J. Constr. Eng. Manag. 2021, 147, 04021129. [Google Scholar] [CrossRef]
- Hwang, J.-M.; Won, J.-H.; Jeong, H.-J.; Shin, S.-H. Identifying Critical Factors and Trends Leading to Fatal Accidents in Small-Scale Construction Sites in Korea. Buildings 2023, 13, 2472. [Google Scholar] [CrossRef]
- Xu, X.; Zou, P.X.W. Discovery of New Safety Knowledge from Mining Large Injury Dataset in Construction. Saf. Sci. 2021, 144, 105481. [Google Scholar] [CrossRef]
- Santiago Oliveira, S.; de Albuquerque Soares, W.; Vasconcelos, B.M. Fatal Fall-from-Height Accidents: Statistical Treatment Using the Human Factors Analysis and Classification System—HFACS. J. Saf. Res. 2023, 86, 118–126. [Google Scholar] [CrossRef]
- Zermane, A.; Tohir, M.Z.M.; Baharudin, M.R.; Yusoff, H.M. Investigating Patterns of Workplace Fatal Fall Injuries: Case Study of Malaysia. J. Saf. Res. 2023, 85, 492–506. [Google Scholar] [CrossRef]
- Chen, W.; Deng, J.; Niu, L. Identification of Core Risk Factors and Risk Diffusion Effect of Urban Underground Engineering in China: A Social Network Analysis. Saf. Sci. 2022, 147, 105591. [Google Scholar] [CrossRef]
- Won, J.W.; Jung, W.; Baek, S.; Han, S.H. Probability and Impact Perspectives on Cost and Schedule Risks in International Construction Projects: An Empirical Investigation. KSCE J. Civ. Eng. 2024, 28, 2600–2612. [Google Scholar] [CrossRef]
- Małysa, T. Relative Risk (RR) Analysis and Prediction as Part of Assessing Occupational Safety and Determining Priorities for Action in Occupational Health and Safety in the Construction Industry in Poland. Buildings 2023, 13, 1304. [Google Scholar] [CrossRef]
- Kang, S.; Kang, Y.; Kim, S. Long-term Trends in Construction Engineering and Management Research in Korea. KSCE J. Civ. Eng. 2023, 27, 1883–1897. [Google Scholar] [CrossRef]
- Gleißner, W.; Wolfrum, M. Risikoaggregation und Monte-Carlo-Simulation Schlüsseltechnologie für Risikomanagement und Controlling, 1st ed.; Springer: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Bukaçi, E.; Korini, T.; Periku, E.; Allkja, S.; Sheperi, P. Number of Iterations Needed in Monte Carlo Simulation Using Reliability Analysis for Tunnel Supports. Int. J. Eng. Res. Appl. 2016, 6, 60–64. [Google Scholar]
- Koulinas, G.K.; Demesouka, O.E.; Sidas, K.A.; Koulouriotis, D.E. A TOPSIS—Risk Matrix and Monte Carlo Expert System for Risk Assessment in Engineering Projects. Sustainability 2021, 13, 11277. [Google Scholar] [CrossRef]
- Montufar Benítez, M.A.; Mora Vargas, J.; Castro Esparza, J.R.; Rivera Gómez, H.; Montaño Arango, O. Comparative Study of Monte Carlo Simulation and the Deterministic Model to Analyze Thermal Insulation Costs. Appl. Math. 2024, 4, 305–319. [Google Scholar] [CrossRef]
- Kostrzewa-Demczuk, P.; Rogalska, M. Planning of Construction Projects Taking into Account the Design Risk. Arch. Civ. Eng. 2023, 69, 613–626. [Google Scholar] [CrossRef]
- Ökmen, Ö.; Öztaş, A. Construction Project Network Evaluation with Correlated Schedule Risk Analysis Model. J. Constr. Eng. Manag. 2008, 134, 49–63. [Google Scholar] [CrossRef]
- Sackey, S.; Kim, B.-S. Schedule Risk Analysis Using a Proposed Modified Variance and Mean of the Original Program Evaluation and Review Technique Model. KSCE J. Civ. Eng. 2019, 23, 1484–1492. [Google Scholar] [CrossRef]
- Fitzsimmons, J.P.; Lu, R.; Hong, Y.; Brilakis, I. Construction Schedule Risk Analysis—A Hybrid Machine Learning Approach. J. Inf. Technol. Constr. 2022, 27, 70–93. [Google Scholar] [CrossRef]
- Jin, L.; Yin, Y.; Du, F.; Yuan, H.; Zheng, C. Impact of Engineering Changes on Value Movement in Fund Flow: Monte Carlo-System Dynamics Modeling Approach. Buildings 2023, 13, 2218. [Google Scholar] [CrossRef]
- Jang, J.; Jeong, E.; Cho, J.; Kim, T.W. Exploring Simultaneous Effects of Delay Factors in Precast Concrete Installation. Buildings 2024, 14, 3894. [Google Scholar] [CrossRef]
- Zaneldin, E.; Ahmed, W. A Generic Framework for Managing Schedule and Cost Risks of Construction Activities Using PERT and the EV Technique. Buildings 2024, 14, 1918. [Google Scholar] [CrossRef]
- He, X.; Yao, Y.; Xia, H.W.; Su, Y.W.; Liu, G. Cost Estimation of Construction Project Using Fuzzy Neural Network Model Embedded with Modified Particle Optimizer. Adv. Mater. Res. 2011, 243–249, 6296–6301. [Google Scholar] [CrossRef]
- Jiang, Q. Estimation of Construction Project Building Cost by Back-Propagation Neural Network. J. Eng. Des. Technol. 2019, 18, 601–609. [Google Scholar] [CrossRef]
- Elfaki, A.O.; Alatawi, S.; Abushandi, E. Using Intelligent Techniques in Construction Project Cost Estimation: 10-Year Survey. Adv. Civ. Eng. 2014, 2014, 107926. [Google Scholar] [CrossRef]
- Pham, T.Q.D.; Le-Hong, T.; Tran, X.V. Efficient Estimation and Optimization of Building Costs Using Machine Learning. Int. J. Constr. Manag. 2023, 23, 909–921. [Google Scholar] [CrossRef]
- Tayefeh Hashemi, S.; Ebadati, O.M.; Kaur, H. Cost Estimation and Prediction in Construction Projects: A Systematic Review on Machine Learning Techniques. SN Appl. Sci. 2020, 2, 1703. [Google Scholar] [CrossRef]
- Yuan, J.; Yin, C. Cost Estimation of Expressway Construction and Installation Engineering Based on Convolutional Neural Networks. J. Eng. Stud. 2023, 15, 446–455. [Google Scholar] [CrossRef]
- Hamdy, K.; AbdelRasheed, I.; Essawy, Y.A.S.; ElDeen, A.G. Automated Risk Analysis for Construction Contracts Using Neural Networks. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2024, 16, 04524023. [Google Scholar] [CrossRef]
- Turkyilmaz, A.H.; Polat, G. Risk-Based Completion Cost Overrun Ratio Estimation in Construction Projects Using Machine Learning Classification Algorithms: A Case Study. Buildings 2024, 14, 3541. [Google Scholar] [CrossRef]
- Moussa, A.; Ezzeldin, M.; El-Dakhakhni, W. Predicting and Managing Risk Interactions and Systemic Risks in Infrastructure Projects Using Machine Learning. Autom. Constr. 2024, 168, 105836. [Google Scholar] [CrossRef]
- Salama, A. Evaluating the Impact of Construction Delays on Project Duration Using Machine Learning and Multi-Criteria Decision Analysis. Asian J. Civ. Eng. 2025, 26, 389–399. [Google Scholar] [CrossRef]
- Anjum, A.; Hrairi, M.; Shaikh, A.A.; Yatim, N.; Ali, M. Integrating AI and Statistical Methods for Enhancing Civil Structural Practices: Current Trends, Practical Issues, and Future Direction. Frat. Integrità Strutt. 2024, 19, 164–181. [Google Scholar] [CrossRef]
- Amicosante, A.; Avenali, A.; D’Alfonso, T.; Giagnorio, M.; Manno, A.; Matteucci, G. Predicting Costs of Local Public Bus Transport Services through Machine Learning Methods. Expert Syst. Appl. 2025, 260, 125396. [Google Scholar] [CrossRef]
- Ruiz, J.G.; Díaz, H.; Crespo, R.G. The Application of Artificial Intelligence Planning and Scheduling in Photovoltaic Plant Construction Projects. Expert Syst. 2025, 42, e13798. [Google Scholar] [CrossRef]
- Helaly, H.; El-Rayes, K.; Ignacio, E.J.; Joan, H.J. Comparison of Machine-Learning Algorithms for Estimating Cost of Conventional and Accelerated Bridge Construction Methods during Early Design Phase. J. Constr. Eng. Manag. 2025, 151, 04025004. [Google Scholar] [CrossRef]
- Koc, K. Role of National Conditions in Occupational Fatal Accidents in the Construction Industry Using Interpretable Machine Learning Approach. J. Manag. Eng. 2023, 39, 04023037. [Google Scholar] [CrossRef]
- Oliveira de Sousa, F.; Ariza Flores, V.A.; Cunha, C.S.; Oda, S.; Xavier Ratton Neto, H. Multi-Criteria Assessment of Flood Risk on Railroads Using a Machine Learning Approach: A Case Study of Railroads in Minas Gerais. Infrastructures 2025, 10, 12. [Google Scholar] [CrossRef]
- Hofstadler, C.; Kummer, M. Chancen- und Risikomanagement in der Bauwirtschaft; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Damnjanovic, I.; Reinschmidt, K. Data Analytics for Engineering and Construction Project Risk Management. In Risk, Systems and Decisions; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Palisade Corporation. @Risk User Guide; Palisade Corporation: Ithaca, NY, USA, 2020. [Google Scholar]
- Oracle. Oracle Primavera Cloud Risk Management User Guide; Oracle: New York, NY, USA, 2025. [Google Scholar]
- Safran. Safran Risk User Guide; Safran: Stavanger, Norway, 2024. [Google Scholar]
- Senić, A.; Dobrodolac, M.; Stojadinović, Z. Predicting Extension of Time and Increasing Contract Price in Road Infrastructure Projects Using a Sugeno Fuzzy Logic Model. Mathematics 2024, 12, 2852. [Google Scholar] [CrossRef]
- Palisade Corporation. @RISK, version 8.4; Palisade Corporation: Ithaca, NY, USA, 2024. [Google Scholar]
- Espinoza Jaco, J.C.; Lopez Galarza, C.M.; Venero, R.M.; Quispe, J.A.D. Monte Carlo Simulation in a Peruvian Highway. Civ. Eng. Archit. 2021, 9, 1727–1734. [Google Scholar] [CrossRef]
- Cochran, W. Sampling Techniques; Wiley: Hoboken, NJ, USA, 1953. [Google Scholar] [CrossRef]
- Li, C. Unveiling Different Probability Distribution Functions and Their Applications. Sci. Technol. Eng. Chem. Environ. Prot. 2024, 1, 10. [Google Scholar] [CrossRef]
- Keefer, D.L. Certainty Equivalents for Three-Point Discrete-Distribution Approximations. Manag. Sci. 1994, 40, 760–773. [Google Scholar] [CrossRef]
- Keefer, D.L.; Bodily, S.E. Three-point Approximations for Continuous Random Variables. Manag. Sci. 1983, 29, 595–609. [Google Scholar] [CrossRef]
- Putcha, C.; Dutta, S.; Gupta, S.K. Probability and Density Functions. In Mathematical Modeling and Analysis; Springer: Cham, Switzerland, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Hamedani, G.G.; Goual, H.; Emam, W.; Tashkandy, Y.; Ahmad Bhatti, F.; Ibrahim, M.; Yousof, H.M. A New Right-Skewed One-Parameter Distribution with Mathematical Characterizations, Distributional Validation, and Actuarial Risk Analysis, with Applications. Symmetry 2023, 15, 1297. [Google Scholar] [CrossRef]
- Mohd Fauzi, N.F.; Rusyda Roslan, N.N.; Muhammad Ridzuan, M.I. Reliability Performance of Distribution Network by Various Probability Distribution Functions. Int. J. Electr. Comput. Eng. 2023, 13, 2316–2325. [Google Scholar] [CrossRef]
- Bosch-Badia, M.-T.; Montllor-Serrats, J.; Tarrazon-Rodon, M.-A. Risk Analysis through the Half-Normal Distribution. Mathematics 2020, 8, 2080. [Google Scholar] [CrossRef]
- Nuñez, E. Propuesta para Mejorar la Seguridad Vial en la Empresa TRANSPORTE LLAMOSAS S.R.LTDA Mediante un Sistema de Gestión de Riesgos Implicados en la Conducción Vehicular. Ph.D. Thesis, Universidad Nacional de San Agustín, Arequipa, Peru, 2020. Available online: https://repositorio.unsa.edu.pe/server/api/core/bitstreams/9025f087-0bff-4522-ab27-0a160d722283/content (accessed on 21 September 2024).
- Aroquipa, H. Resiliencia de los Sistemas Estructurales ante Eventos Sísmicos Evaluados Mediante las PML y PAE. Ph.D. Thesis, Universidad Nacional Federico Villarreal, Lima, Peru, 2022. [Google Scholar]
- Tarazona, C. Modelo Matemático de Regresión Lineal Múltiple para Determinar los Desplazamientos en Laderas Inestables Generadoras de Impactos Ambientales en Obras de Servicio Carrozable—Huaraz. Ph.D. Thesis, Universidad Nacional Federico Villarreal, Lima, Peru, 2019. [Google Scholar]
- Ariza Flores, V.; Oliveira de Sousa, F.; Oda, S. Enhancing Risk Management in Road Infrastructure Facing Flash Floods through Epistemological Approaches. Buildings 2024, 14, 1931. [Google Scholar] [CrossRef]
- Contraloría General de la República de Perú. Sistema de Información de Obras Públicas. Available online: https://infobras.contraloria.gob.pe/InfobrasWeb/DataSets (accessed on 22 February 2025).
Project | Country | Initial Cost | Final Cost | Estimated Duration | Final Duration | Source |
---|---|---|---|---|---|---|
(Million USD) | (Million USD) | |||||
Big Dig | USA | 2800 | 8080 | 7 years | 15 years | [18] |
Sydney Metro Northwest | Australia | 8300 | 9300 | 4 years | 5 years | [19] |
Mumbai Metro Line 3 | India | 3500 | 4500 | 5 years | 9 years | [20] |
Bogota–Girardot | Colombia | 647 | 2600 | 5 years | 10 years | [21] |
Puente Nanay | Peru | 162.77 | 177.10 | 3 years | 5 years | [22] |
Category | Quantitative Risk Analysis Techniques | Number of Articles | Source |
---|---|---|---|
Statistical Analysis | Contingency Reserve Estimation | 12 | [29,30,31,32,33,34,35,36,37,38,39,40] |
Correlation Analysis | |||
Mathematical Modelling | Decision Tree Analysis | [38,40,41] | |
Expected Monetary Value | 4 | ||
Fault Tree Analysis | |||
Simulation | Monte Carlo Simulation | [42,43,44,45,46,47,48,49,50,51,52,53] | |
PERT Review Technique | 12 | ||
Discrete Event Simulation | |||
Schedule Risk Analysis | |||
Artificial Intelligence | Machine Learning | 19 | [15,16,17,42,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] |
Optimization Algorithms | |||
Deep Learning |
Probability Distribution Function | Use | Number of Articles | Source |
---|---|---|---|
Normal | To model variables concentrated around a mean value | 8 | Manual: [23,24]; Books: [70,71]; Guide: [72] |
Triangular | When the minimum, maximum, and most likely values are known, but there is limited historical data | 8 | Manual: [10,23,24]; Books: [70,71]; Guide: [72,73,74] |
Beta PERT | Similar to the Triangular distribution, but with smoother behavior at the extremes. | 8 | Manual: PMI; Books: [70,71]; Guide: [72,73,74] |
Uniform | Used when risks have limited available information. | 6 | Manual: [23,24]; Books: [70]; Guide: [72,73] |
Log-Normal | For variables that cannot take negative values (costs and time) | 5 | Manual: [23,24]; Books: [70]; Guide: [74] |
Poisson | For discrete events such as the occurrence of accidents or interruptions. | 5 | Manual: [23,24]; Books: [71]; Guide: [72,74] |
Fitting | When there is a considerable amount of data and traditional distributions may not provide a good fit. | 3 | Manual: [23,24]; Books: [70]; Guide: [72] |
Project | Project | Phase | Initial Cost | Initial Time |
---|---|---|---|---|
Project I | Nueva Carretera Central | Design | PEN 24,000 million | 1800 days |
Project II | Carretera Oyon-Ambo | Construction | USD 83,363,610 | 720 days |
Project III | Carretera Vecinal Combapata | Construction | USD 6,682,378 | 360 days |
Number of Simulations | Min | 95th Percentile P95 | Max | Kurtosis |
---|---|---|---|---|
5000 simulations | 26,533,279,357.01 | 27,115,168,952.00 | 27,270,668,140.76 | 3.188 |
10,000 simulations | 26,526,642,932.16 | 27,113,731,500.00 | 27,352,760,178.79 | 3.118 |
50,000 simulations | 26,504,497,848.49 | 27,113,706,915.56 | 27,335,243,146.82 | 3.233 |
100,000 simulations | 26,438,506,279.43 | 27,112,407,226.30 | 27,345,584,841.16 | 3.226 |
Schedule Performance | PPC (%) | Three-Point Estimate Concept | Simulation Monte Carlo (1/ PPC) |
---|---|---|---|
Minimum | 70% | Pessimistic | 142% |
Historical Average | 85% | Most Likely | 117% |
Maximum | 100% | Optimistic | 100% |
Results for n Simulations | Min | Mean (50%) | Max | 95% Percentile | Time Contingency |
---|---|---|---|---|---|
5000 simulations | 802.93 | 992.86 | 1313.21 | 1112.89 | 54.57% |
10,000 simulations | 779.98 | 993.99 | 1322.26 | 1119 | 55.42% |
50,000 simulations | 772.15 | 993.12 | 1340.74 | 1113.7 | 54.68% |
Results for n Simulations | Min | Mean (50%) | Max | 95% Percentile | Cost Contingency (USD) | Cost Contingency (%) |
---|---|---|---|---|---|---|
5000 sim | 6,501,136.11 | 6,682,315.06 | 6,880,812.72 | 6,772,148.97 | 89,770.65 | 1.34% |
10,000 sim | 6,487,497.82 | 6,682,120.69 | 6,875,369.76 | 6,772,892.79 | 90,514.47 | 1.35% |
50,000 sim | 6,472,831.81 | 6,682,409.94 | 6,882,386.70 | 6,773,712.43 | 91,334.11 | 1.37% |
Results for n Simulations | Min | Mean (50%) | Max | 95% Percentile | Time Contingency |
---|---|---|---|---|---|
5000 simulations | 539.34 | 610.52 | 698.76 | 651.48 | 28.75% |
10,000 simulations | 532.48 | 610.48 | 689.15 | 651.92 | 28.84% |
50,000 simulations | 535.49 | 610.56 | 703.87 | 651.29 | 28.71% |
Project | n (Simulations) | Variable | Deterministic Estimate | Probabilistic Estimate (P95) | t-Value | p-Value |
---|---|---|---|---|---|---|
Project I | 5000 | Cost | 24,065,320.52 | 27,115,168,952.00 | 1412.96 | <0.0001 |
Project I | 10,000 | Cost | 24,065,320.52 | 27,113,731,500.00 | 1998.22 | <0.0001 |
Project I | 50,000 | Cost | 24,065,320.52 | 27,113,706,915.56 | 4468.17 | <0.0001 |
Project I | 100,000 | Cost | 24,065,320.52 | 27,112,407,226.30 | 6318.94 | <0.0001 |
Project II | 5000 | Time | 720 | 992.86 | 388.66 | <0.0001 |
Project II | 10,000 | Time | 720 | 993.99 | 554.36 | <0.0001 |
Project II | 50,000 | Time | 720 | 993.12 | 1239.6 | <0.0001 |
Project II | 5000 | Cost | 6,682,378.06 | 6,772,148.97 | 60.7 | <0.0001 |
Project II | 10,000 | Cost | 6,682,378.06 | 6,772,892.79 | 85.87 | <0.0001 |
Project II | 50,000 | Cost | 6,682,378.06 | 6,773,712.43 | 191.84 | <0.0001 |
Project II | 10,000 | Time | 506 | 610.48 | 148.1 | <0.0001 |
Project II | 50,000 | Time | 506 | 610.56 | 330.91 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariza Flores, V.A.; Zavala Ascaño, G. Quantitative Risk Analysis Framework for Cost and Time Estimation in Road Infrastructure Projects. Infrastructures 2025, 10, 139. https://doi.org/10.3390/infrastructures10060139
Ariza Flores VA, Zavala Ascaño G. Quantitative Risk Analysis Framework for Cost and Time Estimation in Road Infrastructure Projects. Infrastructures. 2025; 10(6):139. https://doi.org/10.3390/infrastructures10060139
Chicago/Turabian StyleAriza Flores, Victor Andre, and Gerber Zavala Ascaño. 2025. "Quantitative Risk Analysis Framework for Cost and Time Estimation in Road Infrastructure Projects" Infrastructures 10, no. 6: 139. https://doi.org/10.3390/infrastructures10060139
APA StyleAriza Flores, V. A., & Zavala Ascaño, G. (2025). Quantitative Risk Analysis Framework for Cost and Time Estimation in Road Infrastructure Projects. Infrastructures, 10(6), 139. https://doi.org/10.3390/infrastructures10060139