Next Issue
Volume 9, June
Previous Issue
Volume 9, February
 
 

Inventions, Volume 9, Issue 2 (April 2024) – 22 articles

Cover Story (view full-size image): Tractors have a significant risk of rollover accidents, especially when used in rough terrains, thus contributing to a large number of agricultural machinery accidents around the world. Despite the utilization of safety tools such as Rollover Protective Structures and seat belts, rollover accidents persist. Traditional safety devices mitigate harm but do not prevent rollovers. This study proposes innovative solutions such as the implementation of active suspension systems. These advancements aim to control the tractor's attitude and improve stability, thereby reducing the likelihood of rollover accidents. By adjusting the height of individual wheel actuators, these systems can enhance tractor stability and decrease the risk of rollovers. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 7211 KiB  
Article
A Novel Hybrid Ultrasound Abrasive-Driven Electrochemical Surface Finishing Technique for Additively Manufactured Ti6Al4V Parts
by Manyou Sun and Ehsan Toyserkani
Inventions 2024, 9(2), 45; https://doi.org/10.3390/inventions9020045 - 19 Apr 2024
Viewed by 1442
Abstract
Poor surface quality is one of the drawbacks of metal parts made by additive manufacturing (AM)—they normally possess relatively high surface roughness and different types of surface irregularities. Post-processing operations are usually needed to reduce the surface roughness to have ready-to-use parts. Among [...] Read more.
Poor surface quality is one of the drawbacks of metal parts made by additive manufacturing (AM)—they normally possess relatively high surface roughness and different types of surface irregularities. Post-processing operations are usually needed to reduce the surface roughness to have ready-to-use parts. Among all the surface treatment techniques, electrochemical polishing has the highest finishing efficiency and flexibility. However, although the average surface roughness can be reduced effectively (more than 80% roughness reduction), large-scale surface waviness still remains an issue when finishing metal AM parts. To maintain the finishing efficiency while reducing the surface waviness, a novel hybrid surface finishing technique is designed, which involves the combination of electropolishing, ultrasonic vibration, and abrasion. Preliminary experiments to prove the feasibility of novel hybrid finishing methods were conducted on Ti6Al4V coupons manufactured via laser powder bed fusion (LPBF). Electropolishing, a combination of ultrasound and abrasion, and hybrid finishing were conducted for process optimization and comparison purposes. The effects of the voltage, inter-electrode gap, temperature, ultrasonic amplitude, abrasive concentration, and processing time were studied and optimized. When similar optimal arithmetic mean height values (Sa ≈ 1 μm) are achieved for both processes, the arithmetic mean waviness values (Wa) obtained from hybrid finishing are much less than those from sole electropolishing after the same processing time, with the amount being 61.7% less after 30 min and 40.0% after 45 min. Full article
Show Figures

Figure 1

23 pages, 10856 KiB  
Article
A Modified Reduced-Order Generalized Integrator–Frequency-Locked Loop-Based Sensorless Vector Control Scheme Including the Maximum Power Point Tracking Algorithm for Grid-Connected Squirrel-Cage Induction Generator Wind Turbine Systems
by Tuynh Van Pham and Anh Tan Nguyen
Inventions 2024, 9(2), 44; https://doi.org/10.3390/inventions9020044 - 18 Apr 2024
Viewed by 1296
Abstract
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The [...] Read more.
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The rotor flux linkages are estimated by the modified ROGI-FLL-based observer, of which the inputs are d-q axis rotor EMFs, and hence the position of rotor flux linkage can be obtained directly based on these estimated flux linkages using the arc tangent function. The DC offset in the estimated rotor flux linkages, which can cause oscillations in estimated rotor speed, leading to oscillations in SCIG stator active power due to power signal feedback (PSF)-MPPT algorithm, can be significantly reduced using the DC offset compensators included in modified ROGI-FLL structure. Moreover, the negative effects of high-frequency components on the performance of the rotor flux linkage estimation can be remarkably mitigated owing to the excellent high-frequency component rejection capability of ROGI. The dynamic response analysis of the modified ROGI-FLL with DC offset compensators is provided as well. The feasibility of the proposed method has been demonstrated in comparison with dual SOGI-FLL with DC offset compensator-based existing method. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

4 pages, 172 KiB  
Editorial
From Sensing Technology towards Digital Twin in Applications
by Jianxiong Zhu, Bairong Sun, Luyu Jia and Haibing Hu
Inventions 2024, 9(2), 43; https://doi.org/10.3390/inventions9020043 - 17 Apr 2024
Viewed by 1163
Abstract
Sensing technology drives innovation in digital technology, especially in data acquisition [...] Full article
(This article belongs to the Special Issue From Sensing Technology towards Digital Twin in Applications)
17 pages, 2653 KiB  
Article
Enhanced Heat Transfer in Thermoelectric Generator Heat Exchanger for Sustainable Cold Chain Logistics: Entropy and Exergy Analysis
by Yunchi Fu and Yanzhe Li
Inventions 2024, 9(2), 42; https://doi.org/10.3390/inventions9020042 - 15 Apr 2024
Viewed by 1473
Abstract
This study investigates the application of thermoelectric power generation devices in conjunction with cold chain logistics transport vehicles, focusing on their efficiency and performance. Our experimental results highlight the impact of thermoelectric module characteristics, such as thermal conductivity and the filling thickness of [...] Read more.
This study investigates the application of thermoelectric power generation devices in conjunction with cold chain logistics transport vehicles, focusing on their efficiency and performance. Our experimental results highlight the impact of thermoelectric module characteristics, such as thermal conductivity and the filling thickness of copper foam, on the energy utilization efficiency of the system. The specific experimental setup involved a simulated logistics cold chain transport vehicle exhaust waste heat recovery thermoelectric power generation system, consisting of a high-temperature exhaust heat exchanger channel and two side cooling water tanks. Thermoelectric modules (TEMs) were installed between the heat exchanger and the water tanks to use the temperature difference and convert heat energy into electrical energy. The analysis demonstrates that using high-performance thermoelectric modules with a lower thermal conductivity results in better utilization of the temperature difference for power generation. Additionally, the insertion of porous metal copper foam within the heat exchanger channel enhances convective heat transfer, leading to an improved performance. Furthermore, the study examines the concepts of exergy and entropy generation, providing insights into the system energy conversion processes and efficiency. Overall, this research offers valuable insights for optimizing the design and operation of thermoelectric generators in cold chain logistics transport vehicles to enhance energy utilization and sustainability. Full article
(This article belongs to the Special Issue Innovations in Heat Exchangers)
Show Figures

Figure 1

27 pages, 7550 KiB  
Article
The Expected Dynamics for the Extreme Wind and Wave Conditions at the Mouths of the Danube River in Connection with the Navigation Hazards
by Alina Beatrice Răileanu, Liliana Rusu, Andra Marcu and Eugen Rusu
Inventions 2024, 9(2), 41; https://doi.org/10.3390/inventions9020041 - 12 Apr 2024
Viewed by 2050
Abstract
The entrance in the Sulina channel in the Black Sea is the target area of this study. This represents the southern gate of the seventh Pan-European transport corridor, and it is usually subjected to high navigation traffic. The main objective of the work [...] Read more.
The entrance in the Sulina channel in the Black Sea is the target area of this study. This represents the southern gate of the seventh Pan-European transport corridor, and it is usually subjected to high navigation traffic. The main objective of the work is to provide a more comprehensive picture concerning the past and future expected dynamics of the environmental matrix in this coastal area, including especially the extreme wind and wave conditions in connection with the possible navigation risks. The methodology considered assumes analyses performed at three different levels. First, an analysis of some in situ measurements at the zero-kilometer point of the Danube is carried out for the 15-year period of 2009–2023. Together with the maximum wind speed and the maximum value of the wind gusts, the water level variation was analyzed at this point. As a second step, the analysis is based on wind speed data provided by regional climate models. Two periods, each spanning 30 years, are considered. These are the recent past (1976–2005), when comparisons with ERA5 reanalysis data were also performed, and the near future (2041–2070), when two different models and three climate scenarios were considered. The focus was on the extreme wind speed values, performing comparisons between the past and future expected extreme winds. Finally, the third analysis is related to the wave conditions. Thus, using as a forcing factor each of the wind fields that was previously analyzed, simulations employing a spectral wave model were carried out. The wave modeling system was focused using three different computational domains with increasing resolution towards the target area, and the nearshore wave conditions were evaluated. The results show that both the extreme wind and wave conditions are expected to slightly increase in the future. Especially in the wintertime, strong wind fields are often expected in this area, with wind gusts exceeding more than 70% of the hourly average wind velocity. With regard to the waves, due to the complex nearshore phenomena, considerable enhancements in terms of significant wave heights are induced, and there is also an elevated risk of the occurrence of rogue waves. This work is still ongoing, and taking into account the high navigation risks highlighted, the next step would be to elaborate the risk assessment of severe shipping conditions, particularly related to the likelihood or probability of adverse conditions with the potential of generating hazardous situations in this coastal environment. Full article
Show Figures

Figure 1

23 pages, 9270 KiB  
Article
Design, Construction and Programming of a Low-Cost Pulsed High-Voltage Direct Current Power Supply for the Electrophoretic Deposition of Silicon Carbide Mixed with Graphite and/or Alumina for Thermoelectric Applications
by Juan Jesús Reyes Valdez, Edna Carina De la Cruz Terrazas and Eugenio Rodríguez González
Inventions 2024, 9(2), 40; https://doi.org/10.3390/inventions9020040 - 12 Apr 2024
Viewed by 1656
Abstract
This document describes a proprietary design, construction, programming and testing of a low-cost pulsed high-voltage direct current (HVDC) power supply with an output of 430 V and power of 25 W. The design obtained allows costs to be reduced compared to commercial ones, [...] Read more.
This document describes a proprietary design, construction, programming and testing of a low-cost pulsed high-voltage direct current (HVDC) power supply with an output of 430 V and power of 25 W. The design obtained allows costs to be reduced compared to commercial ones, highlighting that the manufacturing of this HVDC is easy to replicate. To demonstrate the operation of the pulsed power supply prototype, coatings of silicon carbide (SiC) and SiC mixed with graphite (C) and/or alumina (Al2O3) were made using the electrophoretic deposition (EPD) method. After processing, samples underwent a heat treatment at 500 °C to evaluate their thermoelectric (TE) efficiency. The samples were analysed via X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Seebeck coefficient, electrical conductivity and thermal conductivity. The Seebeck coefficient, electrical conductivity and thermal conductivity were measured in a temperature range of 100–500 °C in a nitrogen (N2) atmosphere. The electrical conductivity of the SiC 6C-4Al sample was 0.65 S/cm at 500 °C, while the maximum Seebeck coefficient was 2500 μV/K of the SiC 6C-4Al sample at 200 °C. The thermal conductivity of SiC 6C-4Al was in the range of 0.35–0.37 W/m·K, which was much lower than the SiC sample free of alumina and graphite in the same measured temperature range. In conclusion, the SiC 6C-4Al sample presented the highest figure of merit with a ZT ≈ 0.01. Full article
(This article belongs to the Section Inventions and Innovation in Applied Chemistry and Physics)
Show Figures

Figure 1

25 pages, 16209 KiB  
Article
Innovative Hybrid UAV Design, Development, and Manufacture for Forest Preservation and Acoustic Surveillance
by Gabriel Petre Badea, Tiberius Florian Frigioescu, Madalin Dombrovschi, Grigore Cican, Marius Dima, Victoras Anghel and Daniel Eugeniu Crunteanu
Inventions 2024, 9(2), 39; https://doi.org/10.3390/inventions9020039 - 10 Apr 2024
Cited by 1 | Viewed by 2209
Abstract
The research described in this paper focuses on the development of an innovative unmanned aerial vehicle (UAV) tailored for a specific mission: detecting the acoustic signature emitted by chainsaws, identifying deforestation, and reporting its location for legality assessment. Various calculations were conducted to [...] Read more.
The research described in this paper focuses on the development of an innovative unmanned aerial vehicle (UAV) tailored for a specific mission: detecting the acoustic signature emitted by chainsaws, identifying deforestation, and reporting its location for legality assessment. Various calculations were conducted to determine the optimal solution, resulting in the choice of a fixed-wing UAV. A comparative analysis between tri-rotor and quadcopter systems was performed, leading to the selection of the tri-rotor configuration. The primary objective of this study is to design an innovative hybrid UAV concept with key features including a fixed-wing design and integrated VTOL (vertical takeoff and landing) capability in the experimental model. The aircraft has been constructed using advanced materials such as fiber-reinforced polymer composites, manufactured using both conventional and advanced techniques like continuous fiber additive manufacturing and the use of a polymer matrix. Additionally, the aerodynamic configuration is optimized to achieve a cruise speed of approximately 50 km/h and a flight autonomy exceeding 3 h. The UAV has been equipped with payloads for mounting sensors to collect meteorological data, and crucially, the VTOL system has been optimized to vectorize thrust for improved performance during the transition from hover to cruise flight. This paper details the entire manufacturing and assembly process of the drone, covering both the structural framework and associated electrical installations. A dedicated sound detection system is incorporated into the drone to identify chainsaw noise, with the aim of preventing deforestation. Full article
(This article belongs to the Special Issue Quadrotor UAV with Advanced Applications)
Show Figures

Figure 1

21 pages, 473 KiB  
Article
The Basic k-ϵ Model and a New Model Based on General Statistical Descriptions of Anisotropic Inhomogeneous Turbulence Compared with DNS of Channel Flow at High Reynolds Number
by J. J. H. Brouwers
Inventions 2024, 9(2), 38; https://doi.org/10.3390/inventions9020038 - 8 Apr 2024
Viewed by 1211
Abstract
Predictions are presented of mean values of statistical variables of large-scale turbulent flow of the widely used basic k-ϵ model, and of a new model, which is based on general statistical descriptions of turbulence. The predictions are verified against published results [...] Read more.
Predictions are presented of mean values of statistical variables of large-scale turbulent flow of the widely used basic k-ϵ model, and of a new model, which is based on general statistical descriptions of turbulence. The predictions are verified against published results of direct numerical simulations (DNSs) of Navier–Stokes equations. The verification concerns turbulent channel flow at shear Reynolds numbers of 950, 2000, and 104. The basic k-ϵ model is largely based on empirical formulations accompanied by calibration constants. This contrasts with the new model, where descriptions of leading statistical quantities are based on the general principles of statistical turbulence at a large Reynolds number and stochastic theory. Predicted values of major output variables such as turbulent viscosity, diffusivity of passive admixture, temperature, and fluid velocities compare well with DNS for the new model. Significant differences are seen for the basic k-ϵ model. Full article
Show Figures

Figure 1

15 pages, 5148 KiB  
Article
Modeling and Experimental Validation of Broad Input-Output Range Three-Voltage-Level Rectifier
by Yarden Oren, Eliav Dahan, Aaron Shmaryahu, Yishai Kellerman, Moshe Sitbon, Shlomo Yaakov Gadelovits, Dmitry Baimel and Ilan Aharon
Inventions 2024, 9(2), 37; https://doi.org/10.3390/inventions9020037 - 29 Mar 2024
Cited by 1 | Viewed by 1151
Abstract
A new type of single–conversion–step wide–input–range versatile step–up/down three–voltage–level power–factor correction stage is presented in this manuscript. The rectifier can operate both in continuous–conduction mode and discontinuous–conduction mode. First, the rectifier’s principle of operation is described, and then the innovative rectifier is analyzed [...] Read more.
A new type of single–conversion–step wide–input–range versatile step–up/down three–voltage–level power–factor correction stage is presented in this manuscript. The rectifier can operate both in continuous–conduction mode and discontinuous–conduction mode. First, the rectifier’s principle of operation is described, and then the innovative rectifier is analyzed in continuous and discontinuous–conduction modes. After, an average model for the innovative rectifier is developed. Lastly, the proposed theory is experimentally validated using a multiplier–less dual–control–loop mode at discontinuous–conduction modes. It is shown that although no multiplier is used in the control circuitry, the power factor is near unity. It is revealed that the rectifier can swing the output voltage from 50 V to 900 V while the input voltage is 230 Vrms. Although the rectifier output has a split DC bus with three voltage levels, the required control effort is low, and the output voltage is balanced. The innovative topology suits any standard power–factor correction rectifier application, dual–stage low–voltage power supply, and three–level voltage supplement for low–harmonic inverters. Since the rectifier’s output–voltage swing is extremely wide, energy storage systems and electric vehicle batteries are suitable applications. Full article
(This article belongs to the Special Issue Inventions in Power Trains for Electrical Vehicles)
Show Figures

Figure 1

15 pages, 3111 KiB  
Article
Characterization of Pig Vertebrae under Axial Compression Integrating Radiomic Techniques and Finite Element Analysis
by Cristian A. Hernández-Salazar, Camilo E. Chamorro and Octavio A. González-Estrada
Inventions 2024, 9(2), 36; https://doi.org/10.3390/inventions9020036 - 28 Mar 2024
Cited by 1 | Viewed by 1767
Abstract
The study of pig bones, due to their similarity with human tissues, has facilitated the development of technological tools that help in the diagnosis of diseases and injuries affecting the skeletal system. Radiomic techniques involving medical image segmentation, along with finite element analysis, [...] Read more.
The study of pig bones, due to their similarity with human tissues, has facilitated the development of technological tools that help in the diagnosis of diseases and injuries affecting the skeletal system. Radiomic techniques involving medical image segmentation, along with finite element analysis, enable the detailed study of bone damage, loss of density, and mechanical functionality, which is a significant advancement in personalized medicine. This study involves conducting experimental tests on L3–L6 pig vertebrae under axial loading conditions. The mechanical properties of these vertebrae are analyzed, and the maximum loads they can sustain within the elastic range are determined. Additionally, three-dimensional models are generated by segmenting computerized axial tomography (CAT) scans of the vertebrae. Digital shadows of the vertebrae are constructed by assigning an anisotropic material model to the segmented geometries. Then, finite element analysis is performed to evaluate the elastic characteristics, stress, and displacement. The findings from the experimental data are then compared to the numerical model, revealing a strong correlation with differences of less than 0.8% in elastic modulus and 1.53% in displacement. The proposed methodology offers valuable support in achieving more accurate medical outcomes, employing models that serve as a diagnostic reference. Moreover, accurate bone modeling using finite element analysis provides valuable information to understand how implants interact with the surrounding bone tissue. This information is useful in guiding the design and optimization of implants, enabling the creation of safer, more durable, and biocompatible medical devices that promote optimal osseointegration and healing in the patient. Full article
Show Figures

Figure 1

23 pages, 2534 KiB  
Article
Coordinated, Centralized, and Simultaneous Control of Fast Charging Stations and Distributed Energy Resources
by Dener A. de L. Brandao, João M. S. Callegari, Danilo I. Brandao and Igor A. Pires
Inventions 2024, 9(2), 35; https://doi.org/10.3390/inventions9020035 - 25 Mar 2024
Viewed by 1381
Abstract
The growing penetration of fast charging stations (FCSs) to electric vehicles (EVs) and distributed energy resources (DERs) in the electrical power system brings technical issue changes in the voltage profile throughout grid nodes and feeder current overload. The provision of ancillary services by [...] Read more.
The growing penetration of fast charging stations (FCSs) to electric vehicles (EVs) and distributed energy resources (DERs) in the electrical power system brings technical issue changes in the voltage profile throughout grid nodes and feeder current overload. The provision of ancillary services by DERs and FCSs arises as an appealing solution to reduce these adverse effects, enhancing the grid hosting capacity. The control of microgrids is essential for the coordinated implementation of these services. Although microgrid control is widely applied to DERs, few studies address the coordinated control of DERs and FCSs to obtain benefits for the electrical power system. This paper proposes a coordinated and simultaneous control of DERs and FCSs based on the power-based control (PBC) strategy, efficiently exploiting FCSs in a microgrid model previously unaddressed in the literature. The results show that, with the coordinated control of DERs and FCSs, the control of the power flow in a minigrid (MG) is achieved both in moments of high generation and in moments of high load, even with the maximum operation of DERs. This method allows for the maintenance of voltage levels within values considered acceptable by technical standards (above 0.93 pu). The maintenance of voltage levels is derived from reducing the overload on the point of common coupling (PCC) of the minigrid by 28%, performing the peak shaving ancillary service. Furthermore, the method allows for the control of zero power flow in the PCC of the minigrid with the upstream electric grid in periods of high generation, performing the ancillary service of valley filling. The method performs this control without compromising vehicle recharging and power dispatch by DERs. Full article
(This article belongs to the Special Issue Recent Advances and Challenges in Emerging Power Systems)
Show Figures

Figure 1

19 pages, 30801 KiB  
Article
Numerical Study of the Gas–Solid Separation Performance of Axial Flow Cyclone Separators
by Yanqin Mao, Roman Chertovskih and Liang Cai
Inventions 2024, 9(2), 34; https://doi.org/10.3390/inventions9020034 - 22 Mar 2024
Cited by 1 | Viewed by 1559
Abstract
Cyclone separators, which have a high separation performance, play a crucial role in mitigating the occurrence of dust explosion incidents. This study aims to improve the performance of an axial cyclone separator using the results of simulations employing the [...] Read more.
Cyclone separators, which have a high separation performance, play a crucial role in mitigating the occurrence of dust explosion incidents. This study aims to improve the performance of an axial cyclone separator using the results of simulations employing the RNG k-ε model together with a user-defined function to simulate the wall collision process. The effectiveness of various structural modifications to the vortex tube has been addressed. Specifically, we found that increasing the number of blades, reducing the blade exit angle, and adopting L-shaped blades increase separation efficiency. Additionally, enlarging the guide vane and exhaust pipe diameters, as well as increasing the exhaust pipe inclination angle, contribute to an improved separation performance due to the developed tangential velocity and vortex cores. However, it also increases the pressure drop losses due to the increase in the turbulence pulsation entropy and the wall entropy, while the time-averaged entropy is found to be less significant. As a result, our study sheds light on the flow characteristics, the gas–solid separation process, and the energy loss mechanism in the cyclone separator. Full article
Show Figures

Figure 1

14 pages, 3960 KiB  
Article
Experimental Investigation into the Performance of PEMFCs with Three Different Hydrogen Recirculation Schemes
by Kejing Li, Chen Wang, Jingjing Li, Lei Wang, Zongji Li and Chuanlong Zhang
Inventions 2024, 9(2), 33; https://doi.org/10.3390/inventions9020033 - 13 Mar 2024
Cited by 1 | Viewed by 1611
Abstract
Hydrogen recirculation systems (HRSs) are vital components of proton exchange membrane fuel cells (PEMFCs), and it is necessary to investigate different HRS schemes to meet the needs of high-power PEMFCs. PEMFCs are developing in the direction of low cost, high power, wide working [...] Read more.
Hydrogen recirculation systems (HRSs) are vital components of proton exchange membrane fuel cells (PEMFCs), and it is necessary to investigate different HRS schemes to meet the needs of high-power PEMFCs. PEMFCs are developing in the direction of low cost, high power, wide working conditions, low noise, compact structure, etc. Currently, it is difficult for hydrogen recirculation pumps (HRPs) to meet the flow requirements of high-power PEMFCs. HRPs inevitably have high parasitic energy consumption, loud noise output, high cost, easy leakage, and high failure rates. Therefore, it is necessary to study different HRS schemes to develop a better solution for high-power PEMFCs. In this study, the functional prototype of a piping and instrumentation diagram (P&ID) based on three HRSs of HRPs was designed, and a functional prototype was built. Working according to the analysis and comparison of PEMFC performance test data, we find that the net power trend of PEMFC systems using three different HRS technology schemes is consistent. The ejector scheme and the combination scheme do not reduce the performance of PEMFCs and have advantages in different power ranges, such as 24 A, 48 A, and other small current points. The PEFMC system net power order is as follows: ejector scheme > HRP scheme > combination scheme. At about 120 A, the net power outputs of the three HRS schemes in the PEMFC system coincide. From around 180 A onwards, the PEMFC system power of the combined HRS scheme gradually dominates. At 320 A, the PEFMC system net power order is as follows: combined HRS scheme > HRP scheme > ejector scheme. Full article
Show Figures

Figure 1

13 pages, 5567 KiB  
Article
A Novel Safety Holder Device Designed for Securing the Endotracheal Tube in Neonates with Severe Respiratory Conditions
by Nittalin Phunapai, Parkpoom Sriromreun, Paranee Sriromreun, Jantana Panburana, Sudaruch Rearkyai, Sittinun Tawkaew and Teerapath Limboonruang
Inventions 2024, 9(2), 32; https://doi.org/10.3390/inventions9020032 - 12 Mar 2024
Cited by 1 | Viewed by 1732
Abstract
This article introduces an inventive holder for endotracheal tubes designed specifically to support neonates with severe respiratory conditions during ventilation. Its primary goal is to minimize the risk of slippage of ventilator tubes in newborns, a critical concern that can lead to complications [...] Read more.
This article introduces an inventive holder for endotracheal tubes designed specifically to support neonates with severe respiratory conditions during ventilation. Its primary goal is to minimize the risk of slippage of ventilator tubes in newborns, a critical concern that can lead to complications in their respiratory health. The innovation accommodates endotracheal tube equipment by offering adjustable sizing to match different dimensions. The development process employs computer-aided design (CAD) principles, while prototypes are crafted using three-dimensional (3D) printing technology. Comprising four main components—a support for the endotracheal tube header, a support for the tube unit itself, a flexible structure for tube positioning, and a stabilizing base—the innovation demonstrates structural strength and suitability within predefined parameters. It effectively supports the endotracheal tube apparatus while providing flexibility in positioning and distance adjustments. Importantly, its height can be tailored to suit the newborn’s head, offering adaptability for optimal usage. This research supports Sustainable Development Goals (SDGs) 3 and 9 relating to “Good health and well-being” and “Industry, innovation and infrastructure”. Full article
Show Figures

Figure 1

14 pages, 1243 KiB  
Article
Static Robust Design Optimization Using the Stochastic Frontier Method: A Case Study of Pulsed EPD Process on TiO2 Films
by Mohamed Ali Rezgui, Ali Trabelsi, Nesrine Barbana, Adel Ben Youssef and Mohammad Al-Addous
Inventions 2024, 9(2), 31; https://doi.org/10.3390/inventions9020031 - 8 Mar 2024
Viewed by 1349
Abstract
This paper aims to optimize a pulsed electrophoretic deposition (EPD) process for TiO2 films. This is accomplished by determining the optimal configuration of the coating parameters from a robust optimization perspective. The experimental study uses a composite central design (CCD) with four [...] Read more.
This paper aims to optimize a pulsed electrophoretic deposition (EPD) process for TiO2 films. This is accomplished by determining the optimal configuration of the coating parameters from a robust optimization perspective. The experimental study uses a composite central design (CCD) with four control factors, i.e., the initial concentration (x1 in g/L), the deposition time (x2 in s), the duty cycle (x3 in %), and the voltage (x4 in V). The process responses that should all be maximized are the photocatalytic efficiency of the thin film (De) and three critical charges, which characterize the adhesion failure, i.e., LC1: the load at which the first cracks occurred; LC2: the load at which the film starts to delaminate at the edge level of the scratch track; and LC3: the load when the damage of the film exceeds 50%. This paper compares the robust optimization design of the EPD process using two methods: the robust design of processes and products using the stochastic frontier (RDPP-SF) and the surface response and desirability function methods. The findings show that the RDPP-SF method is superior to the response surface–desirability method for the process responses De and LC2 because of non-natural sources of variation; however, both methods perform comparably well while analyzing the LC1 and LC3 responses, which are subjected to pure random variability. The parameters setting for the process robust optimization are met in run 25 (x1 = 14 g/L, x2 = 150 s, x3 = 50%, and x4 40 V). Full article
Show Figures

Figure 1

20 pages, 5496 KiB  
Article
Modeling and Optimization of Interior Ballistics within Pneumatic Underwater Launchers
by Haixia Gong, Zhuoran Ping, Fance Meng and Shuping Hou
Inventions 2024, 9(2), 30; https://doi.org/10.3390/inventions9020030 - 8 Mar 2024
Viewed by 1277
Abstract
A new area of underwater equipment research focus is the use of underwater unmanned vehicles (UUVs) with launch mechanisms to deploy lightweight and small-sized robots for functions including communication, exploration, and detection. The internal ballistic mathematical model of the underwater launch system for [...] Read more.
A new area of underwater equipment research focus is the use of underwater unmanned vehicles (UUVs) with launch mechanisms to deploy lightweight and small-sized robots for functions including communication, exploration, and detection. The internal ballistic mathematical model of the underwater launch system for small robots is established in this paper. The internal ballistic parameters and the robot displacement and velocity change rule over time are obtained. The optimization calculation of the crucial parameters to be determined by the particle swarm algorithm is completed. Following optimization, the gas cylinder’s initial pressure is 2 MPa, its capacity is 30 L, its opening area is 9.683 × 10−5 m2, and its opening time is 0.02 s. A numerical simulation is performed for the small robot’s underwater launch process, based on the mathematical and physical model supplied by Fluent 2020 software. The results yield the robot’s motion law and the properties of the flow field during the launch process. The purpose of the underwater launcher experiment is to determine the robot’s motion characteristics. The accuracy of the theoretical model is confirmed by comparing and analyzing the numerical simulation results with the actual data. Full article
Show Figures

Figure 1

16 pages, 4592 KiB  
Article
Enhancing Tractor Stability and Safety through Individual Actuators in Active Suspension
by Jinho Son, Yeongsu Kim, Seokho Kang and Yushin Ha
Inventions 2024, 9(2), 29; https://doi.org/10.3390/inventions9020029 - 6 Mar 2024
Viewed by 1543
Abstract
Tractor overturning accidents are a prominent safety concern in the field of agriculture. Many studies have been conducted to prevent tractor overturning accidents. Rollover protective structures and seat belts currently installed on tractors cannot prevent them from overturning. The posture of a tractor [...] Read more.
Tractor overturning accidents are a prominent safety concern in the field of agriculture. Many studies have been conducted to prevent tractor overturning accidents. Rollover protective structures and seat belts currently installed on tractors cannot prevent them from overturning. The posture of a tractor was controlled by installing individual actuators. The overturning angles of the tractor equipped with an actuator were compared with those of a tractor with no actuator. For the overturning angles in all directions of the tractor, it rotated 15° from 0° to 345°, and the actuator height suitable for the tractor posture was controlled by establishing an equation according to the tractor posture. Consequently, posture control using actuators was noticeably improved. This study proposes that tractors operating on irregular and sloping terrain be equipped with individual actuators. These results prevent tractor rollover accidents and improve safety and driving stability. Full article
Show Figures

Figure 1

21 pages, 10382 KiB  
Article
Effects of Perforated Plates on Shock Structure Alteration for NACA0012 Airfoils
by Mihnea Gall, Oana Dumitrescu, Valeriu Drăgan and Daniel Eugeniu Crunțeanu
Inventions 2024, 9(2), 28; https://doi.org/10.3390/inventions9020028 - 5 Mar 2024
Cited by 1 | Viewed by 1557
Abstract
This research investigated a passive flow control technique to mitigate the adverse effects of shock wave–boundary layer interaction on a NACA 0012 airfoil. A perforated plate with a strategically positioned cavity beneath the shock wave anchoring spot was employed. Airfoils with perforated plates [...] Read more.
This research investigated a passive flow control technique to mitigate the adverse effects of shock wave–boundary layer interaction on a NACA 0012 airfoil. A perforated plate with a strategically positioned cavity beneath the shock wave anchoring spot was employed. Airfoils with perforated plates of varying orifice sizes (ranging from 0.5 to 1.2 mm) were constructed using various manufacturing techniques. Experimental analysis utilized an “Eiffel”-type open wind tunnel and a Z-type Schlieren system for flow visualization, along with static pressure measurements obtained from the bottom wall. Empirical observations were compared with steady 3D density-based numerical simulations conducted in Ansys FLUENT for comprehensive analysis and validation. The implementation of the perforated plate induced a significant alteration in shock structure, transforming it from a strong normal shock wave into a large lambda-type shock. The passive control case exhibited a 0.2% improvement in total pressure loss and attributed to the perforated plate’s capability to diminish the intensity of the shock wave anchored above. Significant fluctuations in shear stress were introduced by the perforated plate, with lower stress observed in the plate area due to flow detachment from cavity blowing. Balancing shock and viscous losses proved crucial for achieving a favorable outcome with this passive flow control method. Full article
(This article belongs to the Special Issue New Sights in Fluid Mechanics and Transport Phenomena)
Show Figures

Figure 1

16 pages, 7857 KiB  
Article
From Sparse to Dense Representations in Open Channel Flow Images with Convolutional Neural Networks
by Filippos Sofos, George Sofiadis, Efstathios Chatzoglou, Apostolos Palasis, Theodoros E. Karakasidis and Antonios Liakopoulos
Inventions 2024, 9(2), 27; https://doi.org/10.3390/inventions9020027 - 4 Mar 2024
Viewed by 1606
Abstract
Convolutional neural networks (CNN) have been widely adopted in fluid dynamics investigations over the past few years due to their ability to extract and process fluid flow field characteristics. Both in sparse-grid simulations and sensor-based experimental data, the establishment of a dense flow [...] Read more.
Convolutional neural networks (CNN) have been widely adopted in fluid dynamics investigations over the past few years due to their ability to extract and process fluid flow field characteristics. Both in sparse-grid simulations and sensor-based experimental data, the establishment of a dense flow field that embeds all spatial and temporal flow information is an open question, especially in the case of turbulent flows. In this paper, a deep learning (DL) method based on computational CNN layers is presented, focusing on reconstructing turbulent open channel flow fields of various resolutions. Starting from couples of images with low/high resolution, we train our DL model to efficiently reconstruct the velocity field of consecutive low-resolution data, which comes from a sparse-grid Direct Numerical Simulation (DNS), and focus on obtaining the accuracy of a respective dense-grid DNS. The reconstruction is assessed on the peak signal-to-noise ratio (PSNR), which is found to be high even in cases where the ground truth input is scaled down to 25 times. Full article
Show Figures

Figure 1

24 pages, 15722 KiB  
Article
Experimental Research into an Innovative Green Propellant Based on Paraffin–Stearic Acid and Coal for Hybrid Rocket Engines
by Grigore Cican, Alexandru Paraschiv, Adrian Nicolae Buturache, Andrei Iaroslav Hapenciuc, Alexandru Mitrache and Tiberius-Florian Frigioescu
Inventions 2024, 9(2), 26; https://doi.org/10.3390/inventions9020026 - 29 Feb 2024
Viewed by 1766
Abstract
This study focuses on an innovative green propellant based on paraffin, stearic acid, and coal, used in hybrid rocket engines. Additionally, lab-scale firing tests were conducted using a hybrid rocket motor with gaseous oxygen as the oxidizer, utilizing paraffin-based fuels containing stearic acid [...] Read more.
This study focuses on an innovative green propellant based on paraffin, stearic acid, and coal, used in hybrid rocket engines. Additionally, lab-scale firing tests were conducted using a hybrid rocket motor with gaseous oxygen as the oxidizer, utilizing paraffin-based fuels containing stearic acid and coal. The mechanical performance results revealed that the addition of stearic acid and coal improved the mechanical properties of paraffin-based fuel, including tensile, compression, and flexural strength, under both ambient and sub-zero temperatures (−21 °C). Macrostructural and microstructural examinations, conducted through optical and scanning electron microscopy (SEM), highlighted its resilience, despite minimal imperfections such as impurities and micro-voids. These characteristics could be attributed to factors such as raw material composition and the manufacturing process. Following the mechanical tests, the second stage involved conducting a firing test on a hybrid rocket motor using the new propellant and gaseous oxygen. A numerical simulation was carried out using ProPEP software to identify the optimal oxidant-to-fuel ratio for the maximum specific impulse. Following simulations, it was observed that the specific impulse for the paraffin and for the new propellant differs very little at each oxidant-to-fuel (O/F) ratio. It is noticeable that the maximum specific impulse is achieved for both propellants around the O/F value of 2.2. It was observed that no hazardous substances were present, unlike in traditional solid propellants based on ammonium perchlorate or aluminum. Consequently, there are no traces of chlorine, ammonia, or aluminum-based compounds after combustion. The resulting components for the simulated motor include H2, H2O, O2, CO2, CO, and other combinations in insignificant percentages. It is worth noting that the CO concentration decreases with an increase in the O/F ratio for both propellants, and the differences between concentrations are negligible. Additionally, the CO2 concentration peaks at an O/F ratio of around 4.7. The test proceeded under normal conditions, without compromising the integrity of the test stand and the motor. These findings position the developed propellant as a promising candidate for applications in low-temperature hybrid rocket technology and pave the way for future advancements. Full article
Show Figures

Figure 1

30 pages, 4949 KiB  
Article
Optimization of Laser-Based Method to Conduct Skin Ablation in Zebrafish and Development of Deep Learning-Based Method for Skin Wound-Size Measurement
by Petrus Siregar, Yi-Shan Liu, Franelyne P. Casuga, Ching-Yu Huang, Kelvin H.-C. Chen, Jong-Chin Huang, Chih-Hsin Hung, Yih-Kai Lin, Chung-Der Hsiao and Hung-Yu Lin
Inventions 2024, 9(2), 25; https://doi.org/10.3390/inventions9020025 - 27 Feb 2024
Viewed by 2564
Abstract
Skin plays an important role as a defense mechanism against environmental pathogens in organisms such as humans or animals. Once the skin integrity is disturbed by a wound, pathogens can penetrate easily into a deeper part of the body to induce disease. By [...] Read more.
Skin plays an important role as a defense mechanism against environmental pathogens in organisms such as humans or animals. Once the skin integrity is disturbed by a wound, pathogens can penetrate easily into a deeper part of the body to induce disease. By this means, it is important for the skin to regenerate quickly upon injury to regain its protective barrier function. Traditionally, scientists use rodents or mammals as experimental animals to study skin wound healing. However, due to concerns about animal welfare and increasing costs of laboratory animals, such as rodents, scientists have considered alternative methods of implementing replace, reduce, and refine (3Rs) in experimentation. Moreover, several previous studies on skin wound healing in fish used relatively expensive medical-grade lasers with a low calculation efficiency of the wound area, which led to human judgment errors. Thus, this study aimed to develop a new alternative model for skin wound healing by utilizing zebrafish together with a new rapid and efficient method as an alternative in investigating skin wound healing. First, in order to fulfill the 3Rs concept, the pain in the tested zebrafish was evaluated by using a 3D locomotion assay. Afterward, the obtained behavior data were analyzed using the Kruskal–Wallis test, followed by Dunn’s multiple comparisons tests; later, 3 watts was chosen as the power for the laser, since the wound caused by the laser at this power did not significantly alter zebrafish swimming behaviors. Furthermore, we also optimized the experimental conditions of zebrafish skin wound healing using a laser engraving machine, which can create skin wounds with a high reproducibility in size and depth. The wound closure of the tested zebrafish was then analyzed by using a two-way ANOVA, and presented in 25%, 50%, and 75% of wound-closure percentages. After imparting wounds to the skin of the zebrafish, wound images were collected and used for deep-learning training by convolutional neural networks (CNNs), either the Mask-RCNN or U-Net, so that the computer could calculate the area of the skin wounds in an automatic manner. Using ImageJ manual counting as a gold standard, we found that the U-Net performance was better than the Mask RCNN for zebrafish skin wound judgment. For proof-of-concept validation, a U-Net trained model was applied to study and determine the effect of different temperatures and the administration of antioxidants on the skin wound-healing kinetics. Results showed a significant positive correlation between the speed of wound closure and the exposure to different temperatures and administration of antioxidants. Taken together, the laser-based skin ablation and deep learning-based wound-size measurement methods reported in this study provide a faster, reliable, and reduced suffering protocol to conduct skin wound healing in zebrafish for the first time. Full article
(This article belongs to the Collection Feature Innovation Papers)
Show Figures

Figure 1

36 pages, 2702 KiB  
Review
A Review of Perspectives on Developing Floating Wind Farms
by Mohamed Maktabi and Eugen Rusu
Inventions 2024, 9(2), 24; https://doi.org/10.3390/inventions9020024 - 21 Feb 2024
Cited by 2 | Viewed by 2592
Abstract
Floating wind is becoming an essential part of renewable energy, and so highlighting perspectives of developing floating wind platforms is very important. In this paper, we focus on floating wind concepts and projects around the world, which will show the reader what is [...] Read more.
Floating wind is becoming an essential part of renewable energy, and so highlighting perspectives of developing floating wind platforms is very important. In this paper, we focus on floating wind concepts and projects around the world, which will show the reader what is going on with the projects globally, and will also provide insight into the concepts and their corresponding related aspects. The main aim of this work is to classify floating wind concepts in terms of their number and manufacturing material, and to classify the floating wind projects in terms of their power capacity, their number, character (if they are installed or planned) and the corresponding continents and countries where they are based. We will classify the corresponding additional available data that corresponds to some of these projects, with reference to their costs, wind speeds, water depths, and distances to shore. In addition, the floating wind global situation and its corresponding aspects of relevance will be also covered in detail throughout the paper. Full article
(This article belongs to the Special Issue Recent Advances and Challenges in Emerging Power Systems)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop