Optimization of Laser-Based Method to Conduct Skin Ablation in Zebrafish and Development of Deep Learning-Based Method for Skin Wound-Size Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zebrafish Maintenance
2.2. Optimization of Fish Anesthetization and Recovery
2.3. Construction of a Laser Engraving Machine for Conducting Skin Ablation
2.4. Skin Wound-Healing Assay
2.5. Chemical Exposure
2.6. Three-Dimensional Locomotion and Fractal Dimension Test for Fish Pain Evaluation
2.7. Computer Hardware Requirement
2.8. Deep-Learning Training
2.9. Skin Histology
2.10. Statistical Calculation
3. Results
3.1. Optimization of Laser Power for Skin Ablation
3.2. Evaluation of Fish Pain after Laser Ablation
3.3. Skin Wound-Closure Measurement by Deep Learning
3.3.1. Image Collection and Preprocessing
3.3.2. Model Training
3.3.3. Test Results
3.4. Skin Wound-Closure Measurement Validation
3.4.1. Temperature Conditions and Their Effect on Wound-Healing Process
3.4.2. Antioxidants Test to Speed up Wound-Closure Process
4. Discussion
4.1. A Laser Engraving Machine-Based Method Has Been Established to Create Consistent Skin Wounds in Zebrafish
4.2. Three Important Endpoints Were Proposed to Exam the Early, Middle, and Late Skin Wound-Healing Event in Zebrafish
4.3. Functional Validation of Ambient Temperature on Skin Wound Healing in Zebrafish
4.4. Functional Validation of Antioxidants on Promoting Skin Wound Healing in Zebrafish
4.5. Automatic Wound-Size Measurement by Using a Deep-Learning Approach
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Animal Model | Method to Induce Skin Wounds | Wound Size | Method to Measure Wound Size | Limitation | Author |
---|---|---|---|---|---|
Zebrafish | Laser ablation by using a laser engraving machine | 2 mm in diameter | ImageJ and deep learning (Mask RCNN and U-Net) | AI methods still have some limitations in recognizing a smaller wound. | This study |
Zebrafish | Razorblade; treatment with silver nanoparticles | Amputated the dorsal fin (fin loss) | Image by microscope and measured by ImageJ | ImageJ calculations are quite tedious and subjective, so mistakes in area measurement could occur, especially if the images are not clear. | Pang et al., 2020 [31] |
Zebrafish | A laser beam from the dermal laser; treatment with silver nanoparticles | ± 4 mm in diameter | Stereo microscope and measured by ImageJ | Measurements using ImageJ are subjective and tedious, so there will be some discrepancies between the measurements. | Seo et al., 2017 [32] |
Zebrafish | A laser beam from the clinical dermal laser | 2 mm in diameter | Manual measurement of wound size | Manual measurements are tedious and the subjectivity of the measurer could become a huge problem. | Richardson et al., 2013 [11] |
Atlantic salmon | Biopsy punch at the abdomen | 5 mm in diameter (scale loss) | Microscopy and measurement using Aperio ImageScope | Image quality could affect the result and complex steps for detection. | Sveen et al., 2019 [14] |
Cyprinus carpio | Removal of the mucus using tissue paper, tissue swabs, and sandbag | 15 mm in diameter | Histopathology and microscopy analysis | Histopathology is time-consuming and is limited by methodologic drawbacks. | Raj et al., 2011 [19] |
Nile tilapia (Oreochromis niloticus) | Scalpel to induce an incision (cutting) wound at the dorsal musculature | Incisional (1 cm) (cut injury) | Histopathology | Histopathology is time-consuming and is limited by methodologic drawbacks. | Eissa et al., 2013 [120] |
Gilthead seabream (Sparus aurata L.) | Circular biopsy punch (Stickel) below the lateral line | Diameter of 8 mm and depth of 2 mm | Image analysis software called Image-Pro Plus | Image quality can affect the final result, and can be computationally extensive, which limits the speed and efficiency. | Chen et al., 2020 [121] |
References
- Richardson, R.J. Parallels between vertebrate cardiac and cutaneous wound healing and regeneration. NPJ Regen. Med. 2018, 3, 21. [Google Scholar] [CrossRef]
- Theoret, C. Tissue engineering in wound repair: The three “R” s—Repair, replace, regenerate. Vet. Surg. 2009, 38, 905–913. [Google Scholar] [CrossRef]
- Clark, R. Wound repair. Overview and general considerations. In The Molecular and Cellular Biology of Wound Repair; Springer Science: New York, NY, USA, 1994. [Google Scholar]
- Kawasumi, A.; Sagawa, N.; Hayashi, S.; Yokoyama, H.; Tamura, K. Wound healing in mammals and amphibians: Toward limb regeneration in mammals. In New Perspectives in Regeneration; Springer Science: New York, NY, USA, 2012; pp. 33–49. [Google Scholar]
- Masson-Meyers, D.S.; Andrade, T.A.; Caetano, G.F.; Guimaraes, F.R.; Leite, M.N.; Leite, S.N.; Frade, M.A.C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol. 2020, 101, 21–37. [Google Scholar] [CrossRef]
- Vandamme, T.F. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 2014, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Lilley, E.J.A. The role of the three Rs in improving the planning and reproducibility of animal experiments. Animals 2019, 9, 975. [Google Scholar] [CrossRef] [PubMed]
- Díaz, L.; Zambrano, E.; Flores, M.E.; Contreras, M.; Crispín, J.C.; Alemán, G.; Bravo, C.; Armenta-Espinosa, A.; Valdés, V.J.; Tovar, A.; et al. Ethical considerations in animal research: The principle of 3R’s. Rev. Investig. Clin. 2021, 73, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Franco, N.H.; Olsson, I.A.S. Scientists and the 3Rs: Attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science. Lab. Anim. 2014, 48, 50–60. [Google Scholar] [CrossRef]
- Kousholt, B.S.; Præstegaard, K.F.; Stone, J.C.; Thomsen, A.F.; Johansen, T.T.; Ritskes-Hoitinga, M.; Wegener, G. Reporting of 3Rs Approaches in Preclinical Animal Experimental Studies—A Nationwide Study. Animals 2023, 13, 3005. [Google Scholar] [CrossRef]
- Richardson, R.; Slanchev, K.; Kraus, C.; Knyphausen, P.; Eming, S.; Hammerschmidt, M. Adult zebrafish as a model system for cutaneous wound-healing research. J. Investig. Dermatol. 2013, 133, 1655–1665. [Google Scholar] [CrossRef]
- Guerra, R.; Santos, N.; Cecarelli, P.; Silva, J.; Hernandez-Blazquez, F. Healing of skin wounds in the African catfish Clarias gariepinus. J. Fish Biol. 2008, 73, 572–583. [Google Scholar] [CrossRef]
- Schmidt, J.G. Wound healing in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio): With a focus on gene expression and wound imaging. Ph.D. Thesis, Technical University of Denmark, Kongens Lingby, Denmark, 2013. [Google Scholar]
- Sveen, L.R.; Timmerhaus, G.; Krasnov, A.; Takle, H.; Handeland, S.; Ytteborg, E. Wound healing in post-smolt Atlantic salmon (Salmo salar L.). Sci. Rep. 2019, 9, 3565. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.B.; Wahli, T.; McGurk, C.; Eriksen, T.B.; Obach, A.; Waagbø, R.; Handler, A.; Tafalla, C. Effect of temperature and diet on wound healing in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 2015, 41, 1527–1543. [Google Scholar] [CrossRef] [PubMed]
- Roubal, F.; Bullock, A. The mechanism of wound repair in the skin of juvenile Atlantic salmon, Salmo salar L., following hydrocortisone implantation. J. Fish Biol. 1988, 32, 545–555. [Google Scholar] [CrossRef]
- Anderson, C.; Roberts, R. A comparison of the effects of temperature on wound healing in a tropical and a temperate teleost. J. Fish Biol. 1975, 7, 173–182. [Google Scholar] [CrossRef]
- Derwin, R.; Patton, D.; Avsar, P.; Strapp, H.; Moore, Z. The impact of topical agents and dressing on pH and temperature on wound healing: A systematic, narrative review. Int. Wound J. 2022, 19, 1397–1408. [Google Scholar] [CrossRef]
- Raj, V.S.; Fournier, G.; Rakus, K.; Ronsmans, M.; Ouyang, P.; Michel, B.; Delforges, C.; Costes, B.; Farnir, F.; Leroy, B. Skin mucus of Cyprinus carpio inhibits cyprinid herpesvirus 3 binding to epidermal cells. Vet. Res. 2011, 42, 92. [Google Scholar] [CrossRef]
- Sveen, L.R. Aquaculture Relevant Stressors and Their Impacts on Skin and Wound Healing in Post-Smolt Atlantic Salmon (Salmo salar L.). Doctoral Thesis, The University of Bergen, Bergen, Norway, 2018. Available online: https://bora.uib.no/bora-xmlui/handle/1956/19024 (accessed on 21 February 2024).
- Sveen, L.; Karlsen, C.; Ytteborg, E. Mechanical induced wounds in fish–a review on models and healing mechanisms. Rev. Aquac. 2020, 12, 2446–2465. [Google Scholar] [CrossRef]
- Zordan, M.D.; Mill, C.P.; Riese, D.J.; Leary, J.F. A high throughput, interactive imaging, bright-field wound healing assay. Cytom. Part A 2011, 79, 227–232. [Google Scholar] [CrossRef]
- Serena, T.E.; Cole, W.; Coe, S.; Harrell, K.; Serena, L.; Yaakov, R.; Rennie, M.Y. The safety of punch biopsies on hard-to-heal wounds: A large multicentre clinical trial. J. Wound Care 2020, 29, S4–S7. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, J.; Wang, J.; Mangalindan, R.; Zhu, L.; Ladiges, W.C. A model for studying cutaneous wound healing and resilience to aging: Ear punch biopsy in old mice. Aging Pathobiol. Ther. 2020, 2, 173. [Google Scholar] [CrossRef]
- Robinson, H.; Jarrett, P.; Vedhara, K.; Tarlton, J.; Whiting, C.; Law, M.; Broadbent, E. The effect of expressive writing on wound healing: Immunohistochemistry analysis of skin tissue two weeks after punch biopsy wounding. J. Psychosom. Res. 2022, 161, 110987. [Google Scholar] [CrossRef] [PubMed]
- Feki, A.; Bardaa, S.; Hajji, S.; Ktari, N.; Hamdi, M.; Chabchoub, N.; Kallel, R.; Boudawara, T.; Nasri, M.; Amara, I.B. Falkenbergia rufolanosa polysaccharide–Poly (vinyl alcohol) composite films: A promising wound healing agent against dermal laser burns in rats. Int. J. Biol. Macromol. 2020, 144, 954–966. [Google Scholar] [CrossRef] [PubMed]
- Capon, A.; Mordon, S. Can thermal lasers promote skin wound healing? Am. J. Clin. Dermatol. 2003, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Richardson, R.; Metzger, M.; Knyphausen, P.; Ramezani, T.; Slanchev, K.; Kraus, C.; Schmelzer, E.; Hammerschmidt, M. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development 2016, 143, 2077–2088. [Google Scholar] [CrossRef] [PubMed]
- Shao, K.; Han, B.; Gao, J.; Jiang, Z.; Liu, W.; Liu, W.; Liang, Y. Fabrication and feasibility study of an absorbable diacetyl chitin surgical suture for wound healing. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Khalkhal, E.; Razzaghi, M.; Rostami-Nejad, M.; Rezaei-Tavirani, M.; Beigvand, H.H.; Tavirani, M. Evaluation of laser effects on the human body after laser therapy. J. Lasers Med. Sci. 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.; Gao, Y.; Wang, F.; Wang, Y.; Cao, M.; Zhang, W.; Liang, Y.; Song, M.; Jiang, G. Toxicity of silver nanoparticles on wound healing: A case study of zebrafish fin regeneration model. Sci. Total Environ. 2020, 717, 137178. [Google Scholar] [CrossRef]
- Seo, S.B.; Dananjaya, S.; Nikapitiya, C.; Park, B.K.; Gooneratne, R.; Kim, T.-Y.; Lee, J.; Kim, C.-H.; De Zoysa, M. Silver nanoparticles enhance wound healing in zebrafish (Danio rerio). Fish Shellfish Immunol. 2017, 68, 536–545. [Google Scholar] [CrossRef]
- Avdesh, A.; Chen, M.; Martin-Iverson, M.T.; Mondal, A.; Ong, D.; Rainey-Smith, S.; Taddei, K.; Lardelli, M.; Groth, D.M.; Verdile, G. Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction. JoVE (J. Vis. Exp.) 2012, 69, e4196. [Google Scholar]
- Lopez-Luna, J.; Al-Jubouri, Q.; Al-Nuaimy, W.; Sneddon, L.U. Reduction in activity by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. J. Exp. Biol. 2017, 220, 1451–1458. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007, 43, S25–S30. [Google Scholar] [CrossRef]
- Mizuta, M.; Hirano, S.; Hiwatashi, N.; Tateya, I.; Kanemaru, S.i.; Nakamura, T.; Ito, J. Effect of astaxanthin on vocal fold wound healing. Laryngoscope 2014, 124, E1–E7. [Google Scholar] [CrossRef]
- Oh, H.; Lee, J.S.; Sung, D.; Lim, J.-M.; Choi, W.I.J.I.J.o.N. Potential antioxidant and wound healing effect of nano-liposol with high loading amount of astaxanthin. Int. J. Nanomed. 2020, 15, 9231–9240. [Google Scholar] [CrossRef]
- Pérez-Escudero, A.; Vicente-Page, J.; Hinz, R.C.; Arganda, S.; De Polavieja, G.G. idTracker: Tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 2014, 11, 743. [Google Scholar] [CrossRef]
- Audira, G.; Sampurna, B.P.; Juniardi, S.; Liang, S.-T.; Lai, Y.-H.; Hsiao, C.-D. A simple setup to perform 3D locomotion tracking in zebrafish by using a single camera. Inventions 2018, 3, 11. [Google Scholar] [CrossRef]
- Eguiraun, H.; López-de-Ipiña, K.; Martinez, I. Application of entropy and fractal dimension analyses to the pattern recognition of contaminated fish responses in aquaculture. Entropy 2014, 16, 6133–6151. [Google Scholar] [CrossRef]
- Nimkerdphol, K.; Nakagawa, M. Effect of sodium hypochlorite on zebrafish swimming behavior estimated by fractal dimension analysis. J. Biosci. Bioeng. 2008, 105, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Deakin, A.G.; Spencer, J.W.; Cossins, A.R.; Young, I.S.; Sneddon, L.U. Welfare challenges influence the complexity of movement: Fractal analysis of behaviour in zebrafish. Fishes 2019, 4, 8. [Google Scholar] [CrossRef]
- Tokuda, K.; Baron, B.; Kuramitsu, Y.; Kitagawa, T.; Tokuda, N.; Morishige, N.; Kobayashi, M.; Kimura, K.; Nakamura, K.; Sonoda, K.H. Optimization of fixative solution for retinal morphology: A comparison with Davidson’s fixative and other fixation solutions. Jpn. J. Ophthalmol. 2018, 62, 481–490. [Google Scholar] [CrossRef]
- Sneddon, L.U.; Elwood, R.W.; Adamo, S.A.; Leach, M.C. Defining and assessing animal pain. Anim. Behav. 2014, 97, 201–212. [Google Scholar] [CrossRef]
- Sneddon, L.U. Evolution of nociception and pain: Evidence from fish models. Philos. Trans. R. Soc. B 2019, 374, 20190290. [Google Scholar] [CrossRef] [PubMed]
- Kalueff, A.V.; Kaluyeva, A.; Maillet, E.L. Anxiolytic-like effects of noribogaine in zebrafish. Behav. Brain Res. 2017, 330, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, C.; Liu, X.; Peng, Y.; Jin, S. A composite model of wound segmentation based on traditional methods and deep neural networks. Comput. Intell. Neurosci. 2018, 2018, 4149103. [Google Scholar] [CrossRef] [PubMed]
- Carrión, H.; Jafari, M.; Bagood, M.D.; Yang, H.-Y.; Isseroff, R.R.; Gomez, M. Automatic wound detection and size estimation using deep learning algorithms. PLoS Comput. Biol. 2022, 18, e1009852. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved liver lesion classification. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018. [Google Scholar]
- Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations: Fast and flexible image augmentations. Information 2020, 11, 125. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Falk, T.; Mai, D.; Bensch, R.; Çiçek, Ö.; Abdulkadir, A.; Marrakchi, Y.; Böhm, A.; Deubner, J.; Jäckel, Z.; Seiwald, K. U-Net: Deep learning for cell counting, detection, and morphometry. Nat. Methods 2019, 16, 67–70. [Google Scholar] [CrossRef]
- Kido, S.; Hirano, Y.; Hashimoto, N. Detection and classification of lung abnormalities by use of convolutional neural network (CNN) and regions with CNN features (R-CNN). In Proceedings of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7–9 January 2018. [Google Scholar]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Vina del Mar, Chile, 27–29 October 2020. [Google Scholar]
- Finn, J.P.; Nielsen, N. The effect of temperature variation on the inflammatory response of rainbow trout. J. Pathol. 1971, 105, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Bullock, A.M.; Marks, R.; Roberts, R.J. The cell kinetics of teleost fish epidermis: Epidermal mitotic activity in relation to wound healing at varying temperatures in plaice (Pleuronectes platessa). J. Zool. 1978, 185, 197–204. [Google Scholar] [CrossRef]
- Post, G. The Immune Response of Rainbow Trout:(Salmo Gairdnerii) to Aermonas Hydrophila; Utah State Department of Fish and Game: Vernal, UT, USA, 1963. [Google Scholar]
- Shanmugapriya, K.; Kim, H.; Saravana, P.S.; Chun, B.-S.; Kang, H.W. Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: Investigation on anticancer, wound healing, and antibacterial effects. Colloids Surf. B Biointerfaces 2018, 172, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.K.; Jones, C.M.; Ryan, A.E. Vitamin C and wound healing: II. Ascorbic acid content and tensile strength of healing wounds in human beings. N. Engl. J. Med. 1942, 226, 474–481. [Google Scholar] [CrossRef]
- Lund, C.C.; Crandon, J.H. Ascorbic acid and human wound healing. Ann. Surg. 1941, 114, 776. [Google Scholar] [CrossRef]
- Meephansan, J.; Rungjang, A.; Yingmema, W.; Deenonpoe, R.; Ponnikorn, S. Effect of astaxanthin on cutaneous wound healing. Clin. Cosmet. Investig. Dermatol. 2017, 10, 259. [Google Scholar] [CrossRef]
- YUSOF, A.A. The effects of Carica papaya Linn. latex on the healing of burn wounds in rats. J. Sains Kesihat. Malays. 2005, 3, 39–47. [Google Scholar]
- Jalalpure, S.S.; Agrawal, N.; Patil, M.; Chimkode, R.; Tripathi, A. Antimicrobial and wound healing activities of leaves of Alternanthera sessilis Linn. Int. J. Green Pharm. (IJGP) 2008, 2, 141. [Google Scholar] [CrossRef]
- Jonkman, J.E.; Cathcart, J.A.; Xu, F.; Bartolini, M.E.; Amon, J.E.; Stevens, K.M.; Colarusso, P. An introduction to the wound healing assay using live-cell microscopy. Cell Adhes. Migr. 2014, 8, 440–451. [Google Scholar] [CrossRef]
- Shaw, T.J.; Martin, P. Wound repair at a glance. J. Cell Sci. 2009, 122, 3209–3213. [Google Scholar] [CrossRef] [PubMed]
- Zahm, J.M.; Kaplan, H.; Hérard, A.L.; Doriot, F.; Pierrot, D.; Somelette, P.; Puchelle, E. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil. Cytoskelet. 1997, 37, 33–43. [Google Scholar] [CrossRef]
- Coomber, B.L.; Gotlieb, A.I. In vitro endothelial wound repair. Interaction of cell migration and proliferation. Arterioscler. Off. J. Am. Heart Assoc. Inc. 1990, 10, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.Y.; Leung, E.P.; Mak, N.; Wong, R.N. A simplified method for quantifying cell migration/wound healing in 96-well plates. SLAS Discov. Adv. Sci. Drug Discov. 2010, 15, 427–433. [Google Scholar] [CrossRef]
- Dorsett-Martin, W.A. Rat models of skin wound healing: A review. Wound Repair Regen. 2004, 12, 591–599. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Eaglstein, W.H.; Davis, S.C.; Mertz, P. The pig as a model for human wound healing. Wound Repair Regen. 2001, 9, 66–76. [Google Scholar] [CrossRef]
- Abergel, R.P.; Lyons, R.; Dwyer, R.; White, R.R.; Uitto, J. Use of lasers for closure of cutaneous wounds: Experience with Nd: YAG, argon and CO2 lasers. J. Dermatol. Surg. Oncol. 1986, 12, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Spadoni, D.; Cain, C.L. Facial resurfacing. Using the carbon dioxide laser. AORN J. 1989, 50, 1009–1013. [Google Scholar] [CrossRef]
- Romanos, G.E.; Pelekanos, S.; Strub, J.R. Effects of Nd: YAG laser on wound healing processes: Clinical and immunohistochemical findings in rat skin. Lasers Surg. Med. 1995, 16, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Posten, W.; Wrone, D.A.; Dover, J.S.; Arndt, K.A.; Silapunt, S.; Alam, M. Low-level laser therapy for wound healing: Mechanism and efficacy. Dermatol. Surg. 2005, 31, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Mester, E. The effect of laser radiation on wound healing and collagen synthesis. Stimul. Newslett. 1973, 55–59. Available online: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=4078961 (accessed on 18 February 2024).
- Mester, E.; Spiry, T.; Szende, B.; Tota, J.G. Effect of laser rays on wound healing. Am. J. Surg. 1971, 122, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Kana, J.S.; Hutschenreiter, G. Effect of low—Power density laser radiation on healing of open skin wounds in rats. Arch. Surg. 1981, 116, 293–296. [Google Scholar] [CrossRef]
- Dyson, M.; Young, S. Effect of laser therapy on wound contraction and cellularity in mice. Lasers Med. Sci. 1986, 1, 125–130. [Google Scholar] [CrossRef]
- Carvalho, P.d.T.C.d.; Mazzer, N.; Reis, F.A.d.; Belchior, A.C.G.; Silva, I.S. Analysis of the influence of low-power HeNe laser on the healing of skin wounds in diabetic and non-diabetic rats. Acta Cir. Bras. 2006, 21, 177–183. [Google Scholar] [CrossRef]
- Samaneh, R.; Ali, Y.; Mostafa, J.; Mahmud, N.A.; Zohre, R. Laser therapy for wound healing: A review of current techniques and mechanisms of action. Biosci. Biotechnol. Res. Asia 2015, 12, 217–223. [Google Scholar] [CrossRef]
- Lemes, C.H.J.; da Rosa, W.L.d.O.; Sonego, C.L.; Lemes, B.J.; Moraes, R.R.; da Silva, A.F. Does laser therapy improve the wound healing process after tooth extraction? A systematic review. Wound Repair Regen. 2019, 27, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Grada, A.; Mervis, J.; Falanga, V. Research techniques made simple: Animal models of wound healing. J. Investig. Dermatol. 2018, 138, 2095–2105.e1. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, W.J. Considerations for selecting the correct animal model for dermal wound-healing studies. J. Biomater. Sci. Polym. Ed. 2008, 19, 1087–1096. [Google Scholar] [CrossRef]
- Parnell, L.K.; Volk, S.W. The evolution of animal models in wound healing research: 1993–2017. Adv. Wound Care 2019, 8, 692–702. [Google Scholar] [CrossRef]
- Xia, Z.; Sato, A.; Hughes, M.A.; Cherry, G.W. Stimulation of fibroblast growth in vitro by intermittent radiant warming. Wound Repair Regen. 2000, 8, 138–144. [Google Scholar] [CrossRef]
- Benediktsdóttir; Helgason; Sigurjónsdóttir. Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature. J. Fish Dis. 1998, 21, 19–28.
- Løvoll, M.; Wiik-Nielsen, C.; Tunsjø, H.S.; Colquhoun, D.; Lunder, T.; Sørum, H.; Grove, S. Atlantic salmon bath challenged with Moritella viscosa–pathogen invasion and host response. Fish Shellfish Immunol. 2009, 26, 877–884. [Google Scholar] [CrossRef]
- Metselaar, M.; Thompson, K.; Gratacap, R.; Kik, M.J.; LaPatra, S.E.; Lloyd, S.J.; Call, D.R.; Smith, P.; Adams, A. Association of red-mark syndrome with a Rickettsia-like organism and its connection with strawberry disease in the USA. J. Fish Dis. 2010, 33, 849–858. [Google Scholar] [CrossRef]
- Verner-Jeffreys, D.; Pond, M.; Peeler, E.; Rimmer, G.; Oidtmann, B.; Way, K.; Mewett, J.; Jeffrey, K.; Bateman, K.; Reese, R. Emergence of cold water strawberry disease of rainbow trout Oncorynchus mykiss in England and Wales: Outbreak investigations and transmission studies. Dis. Aquat. Org. 2008, 79, 207–218. [Google Scholar] [CrossRef]
- Mateus, A.P.; Costa, R.A.; Sadoul, B.; Bégout, M.-L.; Cousin, X.; Canario, A.V.; Power, D.M. Thermal imprinting during embryogenesis modifies skin repair in juvenile European sea bass (Dicentrarchus labrax). Fish Shellfish Immunol. 2023, 134, 108647. [Google Scholar] [CrossRef]
- Jamieson, D. Oxygen toxicity and reactive oxygen metabolites in mammals. Free Radic. Biol. Med. 1989, 7, 87–108. [Google Scholar] [CrossRef]
- Janoff, A.; Carp, H. Proteases, antiproteases, and oxidants: Pathways of tissue injury during inflammation. Monogr. Pathol. 1982, 23, 62–82. [Google Scholar]
- Reddy, B.S.; Reddy, R.K.K.; Naidu, V.; Madhusudhana, K.; Agwane, S.B.; Ramakrishna, S.; Diwan, P.V. Evaluation of antimicrobial, antioxidant and wound-healing potentials of Holoptelea integrifolia. J. Ethnopharmacol. 2008, 115, 249–256. [Google Scholar] [CrossRef]
- Jorge, M.P.; Madjarof, C.; Ruiz, A.L.T.G.; Fernandes, A.T.; Rodrigues, R.A.F.; de Oliveira Sousa, I.M.; Foglio, M.A.; de Carvalho, J.E. Evaluation of wound healing properties of Arrabidaea chica Verlot extract. J. Ethnopharmacol. 2008, 118, 361–366. [Google Scholar] [CrossRef]
- Dunnill, C.; Patton, T.; Brennan, J.; Barrett, J.; Dryden, M.; Cooke, J.; Leaper, D.; Georgopoulos, N.T. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int. Wound J. 2017, 14, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Martin, A. The use of antioxidants in healing. Dermatol. Surg. 1996, 22, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.; Hylands, P.; Mensah, A.; Hensel, A.; Deters, A. In vitro tests and ethnopharmacological investigations: Wound healing as an example. J. Ethnopharmacol. 2005, 100, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Ciapara, I.; Felix-Valenzuela, L.; Goycoolea, F. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef]
- Yaqoob, Z.; Arshad, M.S.; Imran, M.; Munir, H.; Qaisrani, T.B.; Khalid, W.; Asghar, Z.; Suleria, H.A.R. Mechanistic role of astaxanthin derived from shrimp against certain metabolic disorders. Food Sci. Nutr. 2022, 10, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Yamashita, E.; Miki, W. Quenching activities of common hydrophilic and lipophilic antioxidants against singlet oxygen using chemiluminescence detection system. Carotenoid Sci. 2007, 11, 16–20. [Google Scholar]
- Linster, C.L.; Van Schaftingen, E. Vitamin C: Biosynthesis, recycling and degradation in mammals. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.; Sampson, B.; Rowe, A. Sequential changes in trace metal, metallothionein and calmodulin concentrations in healing skin wounds. J. Anat. 1999, 195, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.K. The role of nutrition in the management of lower extremity wounds. Int. J. Low. Extrem. Wounds 2005, 4, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, M. Wound Management, 1st ed.; Churchill Livingstone: London, UK, 1997. [Google Scholar]
- Moores, J. Vitamin C: A wound healing perspective. Br. J. Community Nurs. 2013, 18, S6–S11. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, B.M.; Fisher, B.J.; Kraskauskas, D.; Ward, S.; Wayne, J.S.; Brophy, D.F.; Fowler III, A.A.; Yager, D.R.; Natarajan, R. Vitamin C promotes wound healing through novel pleiotropic mechanisms. Int. Wound J. 2016, 13, 572–584. [Google Scholar] [CrossRef]
- Chokesuwattanaskul, S.; Sukpat, S.; Duangpatra, J.; Buppajarntham, S.; Decharatanachart, P.; Mutirangura, A.; Patumraj, S. High dose oral vitamin C and mesenchymal stem cells aid wound healing in a diabetic mouse model. J. Wound Care 2018, 27, 334–339. [Google Scholar] [CrossRef]
- Butera, A.; Maiorani, C.; Gallo, S.; Pascadopoli, M.; Venugopal, A.; Marya, A.; Scribante, A. Evaluation of adjuvant systems in non-surgical peri-implant treatment: A literature review. Healthcare 2022, 10, 886. [Google Scholar] [CrossRef]
- Scribante, A.; Gallo, S.; Pascadopoli, M.; Frani, M.; Butera, A. Ozonized gels vs chlorhexidine in non-surgical periodontal treatment: A randomized clinical trial. In Oral Diseases; Wiley Online Library: Hoboken, NJ, USA, 2023. [Google Scholar]
- Talasani, R.R.; Potharaju, S.P.; Lakshmi, B.V.; Bai, Y.D.; Chintala, R.K.; Mahankali, V.; AlGhamdi, A.R.S. Efficacy of ozonated water over chlorhexidine mouth rinse in chronic gingivitis patients—A comparative clinical study. Saudi Dent. J. 2022, 34, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Vuola, A.O.; Akram, S.U.; Kannala, J. Mask-RCNN and U-net ensembled for nuclei segmentation. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar]
- Dogan, R.O.; Dogan, H.; Bayrak, C.; Kayikcioglu, T. A two-phase approach using mask R-CNN and 3D U-Net for high-accuracy automatic segmentation of pancreas in CT imaging. Comput. Methods Programs Biomed. 2021, 207, 106141. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, E.; Fonseca, X.B.; Albornoz, E.M.; Martínez, C.E.; Ramrez, S.C. A brief analysis of u-net and mask r-cnn for skin lesion segmentation. In Proceedings of the 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), Budapest, Hungary, 3–5 July 2019. [Google Scholar]
- Saputra, F.; Farhan, A.; Suryanto, M.E.; Kurnia, K.A.; Chen, K.H.-C.; Vasquez, R.D.; Roldan, M.J.M.; Huang, J.-C.; Lin, Y.-K.; Hsiao, C.-D. Automated Cardiac Chamber Size and Cardiac Physiology Measurement in Water Fleas by U-Net and Mask RCNN Convolutional Networks. Animals 2022, 12, 1670. [Google Scholar] [CrossRef]
- Widyaningrum, R.; Candradewi, I.; Aji, N.R.A.S.; Aulianisa, R. Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis. Imaging Sci. Dent. 2022, 52, 383. [Google Scholar] [CrossRef]
- Eissa, A.; Zaki, M.; Saeid, S.; Abdelsalam, M.; Ali, H.; Moustafa, A.; Ibrahim, T.; Abumhara, A. In vitro evaluation of the efficacy of hemodialysate (Solcoseryl®) as a wound healing agent in Nile tilapia (Oreochromis niloticus). Int. J. Vet. Sci. Med. 2013, 1, 57–64. [Google Scholar] [CrossRef]
- Chen, Z.; Ceballos-Francisco, D.; Guardiola, F.A.; Huang, D.; Esteban, M.Á. Skin wound healing in gilthead seabream (Sparus aurata L.) fed diets supplemented with arginine. Fish Shellfish Immunol. 2020, 104, 347–358. [Google Scholar] [CrossRef]
Strain | Image Color | Dice Coefficient | IOU | Sensitivity | Specificity | n |
---|---|---|---|---|---|---|
U-Net method | ||||||
Zebrafish PET strain | RGB | 0.815 ± 0.242 | 0.737 ± 0.251 | 0.801 ± 0.265 (a, d) | 0.996 ± 0.004 (a) | 75 |
Gray scale | 0.781 ± 0.276 | 0.703 ± 0.281 | 0.762 ± 0.300 (a, c) | 0.997 ± 0.004 (a) | 75 | |
Zebrafish Golden strain | RGB | 0.411 ± 0.356 | 0.328 ± 0.318 | 0.400 ± 0.381 (b) | 0.992 ± 0.012 (b) | 79 |
Gray scale | 0.648 ± 0.313 | 0.548 ± 0.308 | 0.592 ± 0.330 (c) | 0.997 ± 0.005 (a) | 79 | |
Zebrafish TL strain | RGB | 0.907 ± 0.116 | 0.846 ± 0.157 | 0.951 ± 0.116 (d) | 0.995 ± 0.002 (a, b) | 60 |
Gray scale | 0.882 ± 0.162 | 0.815 ± 0.187 | 0.878 ± 0.185 (a, d) | 0.996 ± 0.003 (a) | 60 | |
Mask RCNN method | ||||||
Zebrafish PET strain | RGB | 0.774 ± 0.332 | 0.716 ± 0.318 | 0.792 ± 0.340 (a, d) | 0.996 ± 0.004 (a) | 75 |
Gray scale | 0.759 ± 0.334 | 0.696 ± 0.324 | 0.757 ± 0.343 (a, c) | 0.997 ± 0.002 (a) | 75 | |
Zebrafish Golden strain | RGB | 0.431 ± 0.444 | 0.390 ± 0.413 | 0.421 ± 0.444 (b) | 0.997 ± 0.005 (a) | 79 |
Gray scale | 0.352 ± 0.439 | 0.320 ± 0.408 | 0.353 ± 0.449 (b) | 0.997 ± 0.006 (a) | 79 | |
Zebrafish TL strain | RGB | 0.872 ± 0.226 | 0.819 ± 0.234 | 0.916 ± 0.221 (a, d) | 0.996 ± 0.003 (a) | 60 |
Gray scale | 0.884 ± 0.188 | 0.825 ± 0.201 | 0.937 ± 0.183 (a, d) | 0.995 ± 0.003 (a, b) | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siregar, P.; Liu, Y.-S.; Casuga, F.P.; Huang, C.-Y.; Chen, K.H.-C.; Huang, J.-C.; Hung, C.-H.; Lin, Y.-K.; Hsiao, C.-D.; Lin, H.-Y. Optimization of Laser-Based Method to Conduct Skin Ablation in Zebrafish and Development of Deep Learning-Based Method for Skin Wound-Size Measurement. Inventions 2024, 9, 25. https://doi.org/10.3390/inventions9020025
Siregar P, Liu Y-S, Casuga FP, Huang C-Y, Chen KH-C, Huang J-C, Hung C-H, Lin Y-K, Hsiao C-D, Lin H-Y. Optimization of Laser-Based Method to Conduct Skin Ablation in Zebrafish and Development of Deep Learning-Based Method for Skin Wound-Size Measurement. Inventions. 2024; 9(2):25. https://doi.org/10.3390/inventions9020025
Chicago/Turabian StyleSiregar, Petrus, Yi-Shan Liu, Franelyne P. Casuga, Ching-Yu Huang, Kelvin H.-C. Chen, Jong-Chin Huang, Chih-Hsin Hung, Yih-Kai Lin, Chung-Der Hsiao, and Hung-Yu Lin. 2024. "Optimization of Laser-Based Method to Conduct Skin Ablation in Zebrafish and Development of Deep Learning-Based Method for Skin Wound-Size Measurement" Inventions 9, no. 2: 25. https://doi.org/10.3390/inventions9020025