Spectral Characterization of CeF3-YF3-TbF3 Nanoparticles for Temperature Sensing in 80–320 K Temperature Range
Abstract
1. Introduction
2. Results
2.1. Physical Characterization of the Samples
2.2. Temperature-Dependent Spectral Characterization of the Samples
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brites, C.D.; Marin, R.; Suta, M.; Carneiro Neto, A.N.; Ximendes, E.; Jaque, D.; Carlos, L.D. Spotlight on luminescence thermometry: Basics, challenges, and cutting-edge applications. Adv. Mater. 2023, 35, 2302749. [Google Scholar] [CrossRef]
- Santos, E.P.; Pugina, R.S.; Hilário, E.G.; Carvalho, A.J.; Jacinto, C.; Rego-Filho, F.A.; Canabarro, A.; Gomes, A.S.; Caiut, J.M.A.; Moura, A.L. Towards accurate real-time luminescence thermometry: An automated machine learning approach. Sens. Actuators A Phys. 2023, 362, 114666. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Trends in luminescence thermometry. J. Appl. Phys. 2020, 128, 040902. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Millán, A.; Carlos, L.D. Lanthanides in luminescent thermometry. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, pp. 339–427. [Google Scholar] [CrossRef]
- Pudovkin, M.S.; Zelenikhin, P.V.; Shtyreva, V.V.; Evtugyn, V.G.; Salnikov, V.V.; Nizamutdinov, A.S.; Semashko, V.V. Cellular uptake and cytotoxicity of unmodified Pr3+: LaF3 nanoparticles. J. Nanoparticle Res. 2019, 21, 184. [Google Scholar] [CrossRef]
- Fedorov, P.P.; Luginina, A.A.; Kuznetsov, S.V.; Osiko, V.V. Nanofluorides. J. Fluor. Chem. 2011, 132, 1012–1039. [Google Scholar] [CrossRef]
- Rahman, P.; Green, M. The synthesis of rare earth fluoride based nanoparticles. Nanoscale 2009, 1, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Pudovkin, M.S.; Shamsutdinov, N.I.; Zelenikhin, P.V.; Nizamutdinov, A.S. Transmission electron microscopy and flow cytometry study of cellular uptake of unmodified Pr3+: LaF3 nanoparticles in dynamic. J. Nanoparticle Res. 2021, 23, 124. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, G.; Wei, X.; Duan, C.; Chen, Y.; Yin, M. Pr3+-Doped β-NaYF4 for temperature sensing with fluorescence intensity ratio technique. J. Nanosci. Nanotechnol. 2014, 14, 3739–3742. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.Y.; Cheng, S.J.; Wang, X.F.; Yan, X.H. Optical thermometry based on luminescence behavior of Dy3+-doped transparent LaF3 glass ceramics. Appl. Phys. A 2015, 121, 1171–1178. [Google Scholar] [CrossRef]
- Jia, M.; Sun, Z.; Lin, F.; Hou, B.; Li, X.; Zhang, M.; Wang, H.; Xu, Y.; Fu, Z. Prediction of thermal-coupled thermometric performance of Er3+. J. Phys. Chem. Lett. 2019, 10, 5786–5790. [Google Scholar] [CrossRef]
- Khadiev, A.R.; Korableva, S.L.; Ginkel, A.K.; Morozov, O.A.; Nizamutdinov, A.S.; Semashko, V.V.; Pudovkin, M.S. Down-conversion based Tm3+: LiY1−XYbXF4 temperature sensors. Opt. Mater. 2022, 134, 113118. [Google Scholar] [CrossRef]
- Pudovkin, M.; Oleynikova, E.; Kiiamov, A.; Cherosov, M.; Gafurov, M. Nd3+, Yb3+: YF3 optical temperature nanosensors operating in the biological windows. Materials 2022, 16, 39. [Google Scholar] [CrossRef]
- Kaczmarek, A.M.; Kaczmarek, M.K.; Van Deun, R. Er3+-to-Yb3+ and Pr3+-to-Yb3+ energy transfer for highly efficient near-infrared cryogenic optical temperature sensing. Nanoscale 2019, 11, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, K.; Bednarkiewicz, A.; Marciniak, L.N.I.R. NIR luminescence lifetime nanothermometry based on phonon assisted Yb3+–Nd3+ energy transfer. Nanoscale Adv. 2021, 3, 4918–4925. [Google Scholar] [CrossRef]
- Dai, W.; Hu, J.; Liu, G.; Xu, S.; Huang, K.; Zhou, J.; Xu, M. Thermometer of stable SrAl2Si2O8: Ce3+, Tb3+ based on synergistic luminescence. J. Lumin. 2020, 217, 116807. [Google Scholar] [CrossRef]
- Ding, M.; Lu, C.; Chen, L.; Ji, Z. Ce3+/Tb3+ co-doped β-NaYF4 dual-emitting phosphors for self-referencing optical thermometry. J. Alloys Compd. 2018, 763, 85–93. [Google Scholar] [CrossRef]
- Chiriu, D.; Stagi, L.; Carbonaro, C.M.; Corpino, R.; Ricci, P.C. Energy transfer mechanism between Ce and Tb ions in sol-gel synthesized YSO crystals. Mater. Chem. Phys. 2016, 171, 201–207. [Google Scholar] [CrossRef]
- Ke, L.; Jiang, Y.; Cai, X.; Nie, Z.; Wei, D.; Xu, Y.; Zhang, Y. Color tunable emission and enhance green light emission in oxyfluoride glass ceramics containing Ce3+/Tb3+: Na5Y9F32 nanocrystals. J. Mater. Sci. Mater. Electron. 2024, 35, 536. [Google Scholar] [CrossRef]
- Pudovkin, M.S.; Kalinichenko, S.I.; Nizamutdinov, A.S. CeF3-TbF3-YF3 nanoparticles for ratiometric temperature sensing. Opt. Mater. 2024, 148, 114831. [Google Scholar] [CrossRef]
- Solodov, A.N.; Shayimova, J.R.; Gataullina, R.M.; Zagidullin, A.A.; Amirov, R.R.; Leontyev, A.V.; Shmelev, A.G.; Nurtdinova, L.A.; Nikiforov, V.G.; Saifina, A.F.; et al. Hydrophilization of Core-Shell NaYF4: Yb/Er@ NaGdF4: Ce/Tb Nanostructures Using Polyethylenimine for Multimodal Imaging. Colloids Surf. A Physicochem. Eng. Aspects 2025, 721, 137183. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Z.; Li, Z.; Shi, Z.; Song, Y.; Zou, B.; Zou, H. Ba3Lu (BO3)3: Ce3+, Tb3+/Mn2+: Dual-functional material for WLEDs and optical pressure sensing. Inorg. Chem. 2024, 63, 4288–4298. [Google Scholar] [CrossRef]
- Solodov, A.N.; Zimin, K.; Gataullina, R.M.; Zagidullin, A.A.; Leontyev, A.V.; Shmelev, A.G.; Nurtdinova, L.A.; Nikiforov, V.G.; Khasanov, O.K.; Amirova, L.M.; et al. Fluorescent polymer composites based on core-shell NaYF4: Yb/Er@ NaGdF4: Ce/Tb structures for temperature monitoring and anti-counterfeiting protection. Opt. Mater. 2025, 159, 116511. [Google Scholar] [CrossRef]
- Li, X.B.; Dai, W.B.; Nie, K.; Li, S.P.; Xu, M. Investigation on optical properties of borate Sr3Y2B4O12: Ce/Tb/Sm and its application in wLEDs. J. Lumin. 2023, 263, 120038. [Google Scholar] [CrossRef]
- Pudovkin, M.S.; Koryakovtseva, D.A.; Lukinova, E.V.; Korableva, S.L.; Khusnutdinova, R.S.; Kiiamov, A.G.; Nizamutdinov, A.S.; Semashko, V.V. Characterization of Pr-Doped LaF3 Nanoparticles Synthesized by Different Variations of Coprecipitation Method. J. Nanomater. 2019, 2019, 7549325. [Google Scholar] [CrossRef]
- Lin, Y.C.; Bettinelli, M.; Karlsson, M. Unraveling the mechanisms of thermal quenching of luminescence in Ce3+-doped garnet phosphors. Chem. Mater. 2019, 31, 3851–3862. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.C.; Mo, F.; Li, N.; Guo, Z.; Zhu, Z. Insight into temperature-dependent photoluminescence of LaOBr: Ce3+, Tb3+ phosphor as a ratiometric and colorimetric luminescent thermometer. Dye. Pigment. 2017, 145, 476–485. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, X.; Ye, S.; Ding, J. Visual ratiometric optical thermometer with high sensitivity and excellent signal discriminability based on LiScSiO4: Ce3+, Tb3+ thermochromic phosphor. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 294, 122534. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; You, F.; Liang, C.; He, Z. Ratiometric thermal sensing based on dual emission of YBO3: Ce3+, Tb3+. J. Alloys Compd. 2020, 833, 155011. [Google Scholar] [CrossRef]











| Sample Ce0.5Y0.5−XTbXF3 | 2θ, Degree | FWHM, β, Degree | CSD, nm | d, nm | Lattice Parameters a, Å | Lattice Parameters c, Å |
|---|---|---|---|---|---|---|
| X = 0.001 | 28.50 | 0.7011 ± 0.0091 | 12 | 18 ± 1 | 6.97 ± 0.07 | 7.08 ± 0.06 |
| X = 0.002 | 28.52 | 0.6868 ± 0.0122 | 12 | 20 ± 1 | 6.98 ± 0.08 | 7.10 ± 0.06 |
| X = 0.005 | 28.50 | 0.5326 ± 0.0075 | 15 | 17 ± 1 | 6.98 ± 0.07 | 7.08 ± 0.05 |
| X = 0.01 | 28.30 | 0.5944 ± 0.0093 | 14 | 20 ± 1 | 7.01 ± 0.08 | 7.13 ± 0.11 |
| X = 0.05 | 28.48 | 0.6302 ± 0.0078 | 14 | 21 ± 1 | 6.99 ± 0.07 | 7.09 ± 0.06 |
| X = 0 | 28.52 | 0.6277 ± 0.0097 | 14 | 19 ± 1 | 6.98 ± 0.07 | 7.09 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinichenko, S.; Pudovkin, M. Spectral Characterization of CeF3-YF3-TbF3 Nanoparticles for Temperature Sensing in 80–320 K Temperature Range. Condens. Matter 2025, 10, 62. https://doi.org/10.3390/condmat10040062
Kalinichenko S, Pudovkin M. Spectral Characterization of CeF3-YF3-TbF3 Nanoparticles for Temperature Sensing in 80–320 K Temperature Range. Condensed Matter. 2025; 10(4):62. https://doi.org/10.3390/condmat10040062
Chicago/Turabian StyleKalinichenko, Svetlana, and Maksim Pudovkin. 2025. "Spectral Characterization of CeF3-YF3-TbF3 Nanoparticles for Temperature Sensing in 80–320 K Temperature Range" Condensed Matter 10, no. 4: 62. https://doi.org/10.3390/condmat10040062
APA StyleKalinichenko, S., & Pudovkin, M. (2025). Spectral Characterization of CeF3-YF3-TbF3 Nanoparticles for Temperature Sensing in 80–320 K Temperature Range. Condensed Matter, 10(4), 62. https://doi.org/10.3390/condmat10040062

