A Safe and Accessible Cell-Based Spike–ACE2 Binding Assay for Evaluating SARS-CoV-2 Neutralization Activity in Biological Samples Using Flow Cytometry
Abstract
1. Introduction
2. Experimental Design
2.1. Materials
- 10 mL serological pipettes (Fisher Scientific, Ottawa, ON, Canada; Cat. no.: 356551).
- 15 mL Falcon tubes (Fisher Scientific, Ottawa, ON, Canada; Cat. no.: 352096).
- 40 µm mesh strainer (Avantor Mississauga, ON, Canada; Cat. no.: 76327-098).
- 50 mL Falcon tubes (Fisher Scientific Ottawa, ON, Canada; Cat. no.: 352070).
- 50 mL plastic reservoir (Sigma Aldrich Oakville, ON, Canada; Cat. no.: AXYRESV50).
- 96-well U-bottom plates (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 168136).
- 96-well V-bottom plates (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 249662).
- Adhesive plate covers (Diamed, Mississauga, ON, Canada; Cat. no.: DLAU658-2).
- Amicon Ultra-2 centrifugal filter unit 10 kDa MWCO (MilliporeSigma, Oakville, ON, Canada; Cat. no.: UFC201024).
- Centrifugal filter unit (MilliporeSigma, Oakville, ON, Canada; Cat. no.: UFC510096).
- Counting slides (Revvity, Markham, ON, Canada; Cat. no.: CHT4-SD100-002).
- Glass bottles/beakers (Various N/A).
- Graduated cylinders (Various N/A).
- Pipette tips (Various N/A).
- Serological pipette filler/controller (Various N/A).
- Spray bottle (Various N/A).
- SteriTopTM filter unit (0.2 µm) (MilliporeSigma, Oakville, ON, Canada; Cat. no.: SCGPT10RE).
- Cell culture-treated T75/T175 flasks (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 156499/159910).
2.2. Equipment
- Analytical balance (Various N/A).
- Biological safety cabinet (Various N/A).
- Cellometer Auto 2000 (Revvity, Markham, ON, Canada; Cat. no.: CMT-A2K).
- Refrigerated centrifuge (Various N/A).
- Flow cytometer (Various N/A).
- CO2 incubator (Various N/A).
- Micropipette (Various N/A).
- Microscope (Various N/A).
- Milli-Q® IQ 7000 ultrapure water system (MilliporeSigma, Oakville, ON, Canada; Cat. no.: ZIQ7000T0).
- Multichannel micropipette (Various N/A).
- NanoDrop™ One/OneC Microvolume UV-Vis spectrophotometer (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: ND-ONE-W).
- pH meter (Various N/A).
2.3. Reagents
- 0.5 M EDTA (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 15575020).
- 10× PBS (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 70011044).
- 2-Mercaptoethanol (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 21985023).
- AccutaseTM (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: A1110501).
- AOPI (Revvity, Markham, ON, Canada; Cat. no.: CS2-0106-5ML).
- eBioscience™ IC Fixation Buffer (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 00822249).
- BSA-Fraction V (Rockland Immunochemicals, Limerick, PA, USA; Cat. no.: BSA-1000).
- Ethanol (Commercial Alcohols, Brampton, ON, Canada; Cat. no.: P016EAAN).
- EZ-Link™ NHS-LC-LC-Biotin (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 21343).
- FBS (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 12483-020).
- GlutaMAXTM (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 35050061).
- HCl (Fisher Scientific, Ottawa, ON, Canada; Cat. no.: SA48-500).
- HEPES (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 15630080).
- NaOH (Fisher Scientific, Ottawa, ON, Canada; Cat. no.: SS266-1).
- Non-essential amino acids (NEAA) (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 11140-050).
- Penicillin-Streptomycin (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 15140-122).
- RPMI 1640 (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 21870092).
- Sodium azide (MilliporeSigma, Oakville, ON, Canada; Cat. no.: S2002-100G).
- Streptavidin R-phycoerythrin conjugate (SAPE) (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: SA10044).
- Trypsin-EDTA (0.05%) (Thermo Fisher Scientific, Mississauga, ON, Canada; Cat. no.: 25300054).
- Vero E6 cells (ATCC, Manassas, VA, USA; Cat. no.: CRL-1586).
2.4. Solution and Standard Preparation
2.4.1. 70% Ethanol
- Mix 700 mL ethanol with 300 mL Milli-Q water in a plastic spray bottle and store at room temperature indefinitely.
2.4.2. Complete Growth Medium
- Under aseptic conditions (i.e., in a biosafety cabinet, use serological or micro-pipette) add 50 mL of FBS, 5 mL of HEPES, 5 mL of NEAA, 5 mL of GlutaMAXTM, 5 mL of Penicillin–Streptomycin and 500 µL of 2-Mercaptoethanol to a 500 mL bottle of RPMI 1640. Store media at 2–8 °C.
2.4.3. Wash Buffer (PBS + 1% [w/v] BSA + 0.05% [w/v] Sodium Azide)
- Dissolve 10 g of BSA and 0.5 g of sodium azide in 800 mL of Milli-Q water in a glass beaker.
- Using a graduate cylinder or serological pipette, add 100 mL of 10× PBS and adjust pH to 7.4 with HCl / NaOH as necessary.
- Top up volume to 1 L with Milli-Q water.
- Filter sterilize using a 0.2 µm pore size SteriTopTM filter unit. Store solution at 2–8 °C.
2.4.4. Flow Buffer (PBS + 1% BSA + 0.05% Sodium Azide + 5 mM EDTA)
2.4.5. 1× PBS
3. Procedure
3.1. Thawing and Maintenance of Vero E6 Cells for Assay
- 3.1.1
- Remove a frozen cryovial of Vero E6 cells from liquid nitrogen and thaw in a warm water bath (35–40 °C). Gently shake tube by hand every 15–30 s and ensure tube is removed immediately after ice is thawed or only when a small ice crystal remains. NOTE: Avoid contact of the water with the area around the lid of the tube to reduce chances of contamination.
- 3.1.2
- Decontaminate the exterior of the tube with 70% ethanol prior to transferring the tube into a biological safety cabinet (BSC). Use sterile conditions while working within the BSC.
- 3.1.3
- Using a micropipette, transfer the contents of the cryovial into a 15 mL tube containing 10 mL of sterile 1× PBS.
- 3.1.4
- Centrifuge the 15 mL tube at 500× g for 5 min at room temperature.
- 3.1.5
- Resuspend the pellet in 10 mL of complete growth medium and transfer the cell-containing medium into a T75 flask with filter cap.
CRITICAL STEP: The wash step of 3.1.3 should enable maximal cell growth by removing traces of the freezing media used to cryopreserve the cells.
- 3.1.6
- Maintain Vero E6 cells in a humidified 37 °C incubator with 5% CO2. NOTE: Vero E6 cells will adhere to the surface and generate a monolayer.
- 3.1.7
- Once 70–90% confluency is reached (≈2–3 days), remove the media using a serological pipette and wash the cells with 10 mL sterile 1× PBS by gentle rotation ensuring the liquid has passed over the entire monolayer. Then, remove the solution by aspiration.
- 3.1.8
- Dispense 1.5 mL of trypsin-EDTA solution into the flask to detach the cells and move back and forth to cover the entire growth area. Incubate for 3–5 min at 37 °C or until cells are dissociated.
- 3.1.9
- Using a serological pipette, add 10.5 mL of complete growth medium to inactivate the trypsin protease solution. Pipette cell suspension up and down 4-6 times to ensure proper dissociation of the cells.
- 3.1.10
- Return a fraction of this solution to the existing or new flask for maintenance of cells. Top up with complete growth medium to 10 mL. NOTE: The cells should reach confluence again in 2–3 days if 3 mL of cells from 3.1.9 are added.
- 3.1.11
- Once ready to conduct an experiment, the end user may want to expand Vero E6 culture into multiple T75 flasks (or flasks with larger surface area) depending on number of samples to be analyzed. A confluent T75 flask will provide approximately 10 million cells, which will only be sufficient for a single 96-well plate following the protocol below. Cells may be used for the assay described in 3.3 within 3 months of thawing of cryovial in 3.1.1.
3.2. Chemical Biotinylation of Spike
3.3. Spike–ACE2 Binding Assay
- 3.3.1
- Prepare a 96-well V-bottom plate with the biological samples (e.g., diluted monoclonal antibodies) to be assessed for SARS-CoV-2 spike neutralizing activity. IC50 (half-maximal inhibitory concentration) determination can be performed by analyzing multiple serial dilutions of the same sample (e.g., serial 3-fold dilutions). Prepare all dilutions in wash buffer. NOTE: For each dilution assessed, a final volume of 50 µL remains within each appropriate well of the V-bottom plate.
- 3.3.2
- On each plate, a minimum of 8 wells are set aside for control conditions (Figure 2): four background control wells for measurement of background signal (i.e., cells incubated with wash buffer) and four maximum binding control wells for measurement of maximum spike binding to cells (with bio-spike but no biological test sample). At this stage, simply add 50 µL of wash buffer in these control wells.
CRITICAL STEP: The inclusion of these wells is essential for the calculation of the % of neutralization. NOTE: The background control wells do not receive bio-spike in step 3.3.11, while the maximum binding control wells do not receive biological sample (potential nAbs), allowing for minimal and maximal binding respectively.
- 3.3.3
- Remove the flask containing Vero E6 cells from the incubator and place it in the biological cabinet. Work under aseptic conditions to protect the flask from contamination.
- 3.3.4
- As described in step 3.1.7, remove the media and wash the cells with 1× PBS.
- 3.3.5
- Next, remove the PBS and add AccutaseTM with a serological pipette to dissociate the cells from the flask (1.5 mL or 4 mL for a T75 or T175 flask, respectively).
CRITICAL STEP: AccutaseTM treatment is gentler on the cells than trypsin, helping preserve their health and most importantly to maintain the integrity of membrane-bound proteins such as ACE2, which is fundamental for the surrogate neutralization assay to work.
- 3.3.6
- Incubate cells with AccutaseTM at room temperature until cells have largely dissociated (this should take ≈5–10 min). The cell dissociation progress can be monitored under a light microscope.
- 3.3.7
- Add 10.5 mL of complete growth medium per flask and pipette cell suspension up and down 4–6 times to ensure proper dissociation of the cells before transferring into a 15 mL conical tube.
- 3.3.8
- Sub-culture the cells as described in 3.1.10 and return the flask to the incubator if desired.
- 3.3.9
- Centrifuge the cells from step 3.3.7 at 500× g for 5 min at room temperature to remove any trace amounts of AccutaseTM. OPTIONAL STEP: For the Vero E6 cells to be used in this assay, aseptic conditions are recommended but not required going forward.
- 3.3.10
- Prepare a 5.5 mL solution of bio-spike at 5 µg/mL in wash buffer per 96-well plate of samples while cells are being centrifuged.
- 3.3.11
- Pour this solution into a 50 mL reservoir and transfer 50 µL of bio-spike into each appropriate well on the 96-well plate already containing your test biological samples using a multichannel micropipette.
CRITICAL STEP: Do not include bio-spike solution in the background control wells (signal measured in the presence of cells and SAPE only) as described in step 3.3.2 and Figure 2. Instead add 50 µL wash buffer.
- 3.3.12
- Use a serological pipette to resuspend the pelleted cells (from step 3.3.9) in complete growth medium (no more than 5 mL for a T75 flask). OPTIONAL STEP: Filter the cell solution through a 40 µm mesh strainer into a 50 mL conical tube to remove clumps of cells.
- 3.3.13
- Count the cells by mixing 20 µL of the filtered cell solution with an equal volume of AOPI solution. Mix well and pipette 20 µL of the mixture onto a counting slide to enumerate cells with the Cellometer Auto 2000, as per manufacturer’s instructions.
- 3.3.14
- Adjust cell volume to a final concentration of 2 × 106 viable cells/mL based on the live cell count.
- 3.3.15
- Pour cell solution into a reservoir and transfer 50 µL (1 × 105 cells) into each of the prepared wells of the 96-well plate containing the test samples and controls using a multichannel micropipette. At this point, each well should have a final volume of 150 µL. NOTE: Keep in mind that the final dilution of the sample will be 1/3 of the initial prepared dilution in step 3.3.1. Each well will contain 150 µL of solution, 250 ng of bio-spike (except for background controls wells) and 1 × 105 cells.
- 3.3.16
- Cover the prepared plate with an adhesive plate cover and incubate in the fridge (2–8 °C) for 1 h.
- 3.3.17
- Centrifuge the 96-well V-bottom plate for 8 min at 400× g at 4 °C.
- 3.3.18
- Remove the adhesive plate cover and remove the supernatant with a multichannel. Gently blot the plate on a paper towel before returning to an upright position. OPTIONAL STEP: A quick and confident motion and flicking the plate over a basin is an efficient and practical way to achieve the same result and save the user’s time. NOTE: Properly decontaminate the basin and waste fluid to eliminate any cells or biological material at the end of the procedure.
- 3.3.19
- Pour wash buffer into a 50 mL reservoir and add 150 µL to each well with a multichannel micropipette. Dispensing carefully, one can use the same set of tips for all the wells. OPTIONAL STEP: Resuspending the cells is not necessary here.
- 3.3.20
- Repeat steps 3.3.17–3.3.19 one more time for a total of 2 washes and then centrifuge to remove the wash buffer as described in 3.3.17.
CRITICAL STEP: The washes are necessary to remove any trace amount of free bio-spike and or Ab that could interfere in the subsequent step.
- 3.3.21
- Prepare a 1/600 dilution of streptavidin R-phycoerythrin conjugate (SAPE) in wash buffer. For each plate, add 27.5 µL of SAPE (stock at 1 mg/mL) to 16.5 mL of wash buffer in a 50 mL Falcon tube and mix well. NOTE: SAPE is used as a probe and will interact with any biotin present on the bio-spike.
- 3.3.22
- Pour the SAPE solution in a reservoir and add 150 µL of solution with a multichannel micropipette to each well. Mix with gentle pipetting using new tips for each well.
- 3.3.23
- Cover the plate with the adhesive plate cover and wrap in aluminum foil. Incubate for 1 h in the fridge (2–8 °C).
CRITICAL STEP: PE is sensitive to light, the aluminum will minimize photobleaching and loss of fluorescence that will impact the sensitivity of the assay.
- 3.3.24
- Repeat steps 3.3.17–3.3.20 to wash away any excess SAPE.
- 3.3.25
- Add 50 µL of Fixation Buffer to each well and mix by gentle pipetting, using a multichannel pipette and new tips for each well. OPTIONAL STEP: We use eBioscience IC Fixation Buffer, but other formaldehyde-based fixatives could also be used.
- 3.3.26
- Wrap plates in aluminum foil and incubate in the fridge for 30 min.
- 3.3.27
- Add an additional 100 µL of flow buffer to each well with gentle pipetting. Wrap plates in aluminum foil. OPTIONAL STEP: The volume can be reduced to accelerate the acquisition of the data, which usually takes ≈1 h/plate.
- 3.3.28
- OPTIONAL STEP: It is recommended to transfer the cells into a 96-well U-bottom plate to reduce chances of clogging the instrument before moving on to acquisition.
- 3.3.29
- Acquire data on a high throughput sampler-capable flow cytometer. Plot the data of relative PE fluorescence on singlets (linear diagonal gating on a dot plot with FSC-H by FSC-A (Figure 3B)). Acquire at most half of the volume (50–75 µL) to allow for a second run if needed (acquiring 10,000 cells should be sufficient for analysis purposes
- 3.3.30
- Using FlowJo™ (BD Life Sciences) or a similar software package, determine the Geometric Mean Fluorescent Intensity (GMFI) of PE for single cells in each well (Figure 4).
- 3.3.31
- Calculate the % Neutralization value using the following formula:
- GMFI Sample is the measured fluorescence at any given competitor concentration;
- GMFI Background is the background fluorescence measured in the presence of cells and SAPE only;
- GMFI Maximum is the maximum fluorescence measured in the absence of competitor relative to bio-spike-only wells (maximum) and Vero E6-only with SAPE (background).
4. Expected Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, C.W.; Chia, W.N.; Qin, X.; Liu, P.; Chen, M.I.; Tiu, C.; Hu, Z.; Chen, V.C.; Young, B.E.; Sia, W.R.; et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol. 2020, 38, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Maghsood, F.; Dashti, N.; Bahadori, T.; Golsaz-Shirazi, F.; Moog, C.; Amiri, M.M.; Shokri, F. Comparative assessment of four virus neutralization assays for detection of SARS-CoV-2 neutralizing antibodies. Anal. Biochem. 2025, 702, 115860. [Google Scholar] [CrossRef] [PubMed]
- Sholukh, A.M.; Fiore-Gartland, A.; Ford, E.S.; Miner, M.D.; Hou, Y.J.; Tse, L.V.; Kaiser, H.; Zhu, H.; Lu, J.; Madarampalli, B.; et al. Evaluation of Cell-Based and Surrogate SARS-CoV-2 Neutralization Assays. J. Clin. Microbiol. 2021, 59, e0052721. [Google Scholar] [CrossRef]
- Ali, D.W.; Bartlett, M.L.; Heger, C.D.; Ramirez, F.; Johnson, L.; Schully, K.L.; Laing, E.D.; Wang, W.; Weiss, C.D.; Goguet, E.; et al. Automated and virus variant-programmable surrogate test qualitatively compares to the gold standard SARS-CoV-2 neutralization assay. npj Viruses 2024, 2, 68. [Google Scholar] [CrossRef]
- Streif, S.; Baeumner, A.J. Advances in Surrogate Neutralization Tests for High-Throughput Screening and the Point-of-Care. Anal. Chem. 2025, 97, 5407–5423. [Google Scholar] [CrossRef]
- Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H.; Zhang, L.; Nie, L.; Qin, H.; Wang, M.; et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg. Microbes Infect. 2020, 9, 680–686. [Google Scholar] [CrossRef]
- Lim, J.Y.; Fiore, A.; Le, B.; Minzer, C.; White, H.; Burinski, K.; Janwari, H.; Wright, D.; Perebikovsky, S.; Davis, R.; et al. Development and Validation of Novel Cell-free Direct Neutralization Assay for SARS-CoV-2. J. Virol. Methods 2025, 338, 115201. [Google Scholar] [CrossRef]
- Marien, J.; Michiels, J.; Heyndrickx, L.; Nkuba-Ndaye, A.; Ceulemans, A.; Bartholomeeusen, K.; Madinga, J.; Mbala-Kingebeni, P.; Vanlerberghe, V.; Ahuka-Mundeke, S.; et al. Evaluation of a surrogate virus neutralization test for high-throughput serosurveillance of SARS-CoV-2. J. Virol. Methods 2021, 297, 114228. [Google Scholar] [CrossRef]
- Nie, J.; Li, Q.; Wu, J.; Zhao, C.; Hao, H.; Liu, H.; Zhang, L.; Nie, L.; Qin, H.; Wang, M.; et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nat. Protoc. 2020, 15, 3699–3715. [Google Scholar] [CrossRef]
- Walker, S.N.; Chokkalingam, N.; Reuschel, E.L.; Purwar, M.; Xu, Z.; Gary, E.N.; Kim, K.Y.; Helble, M.; Schultheis, K.; Walters, J.; et al. SARS-CoV-2 Assays To Detect Functional Antibody Responses That Block ACE2 Recognition in Vaccinated Animals and Infected Patients. J. Clin. Microbiol. 2020, 58, e01533-20. [Google Scholar] [CrossRef]
- Abe, K.T.; Li, Z.; Samson, R.; Samavarchi-Tehrani, P.; Valcourt, E.J.; Wood, H.; Budylowski, P.; Dupuis, A.P., 2nd; Girardin, R.C.; Rathod, B.; et al. A simple protein-based surrogate neutralization assay for SARS-CoV-2. JCI Insight 2020, 5, e142362. [Google Scholar] [CrossRef]
- Rossotti, M.A.; van Faassen, H.; Tran, A.T.; Sheff, J.; Sandhu, J.K.; Duque, D.; Hewitt, M.; Wen, X.; Bavananthasivam, J.; Beitari, S.; et al. Arsenal of nanobodies shows broad-spectrum neutralization against SARS-CoV-2 variants of concern in vitro and in vivo in hamster models. Commun. Biol. 2022, 5, 933. [Google Scholar] [CrossRef]
- Colwill, K.; Galipeau, Y.; Stuible, M.; Gervais, C.; Arnold, C.; Rathod, B.; Abe, K.T.; Wang, J.H.; Pasculescu, A.; Maltseva, M.; et al. A scalable serology solution for profiling humoral immune responses to SARS-CoV-2 infection and vaccination. Clin. Transl. Immunol. 2022, 11, e1380. [Google Scholar] [CrossRef]
- Egia-Mendikute, L.; Bosch, A.; Prieto-Fernandez, E.; Vila-Vecilla, L.; Zanetti, S.R.; Lee, S.Y.; Jimenez-Lasheras, B.; Garcia Del Rio, A.; Antonana-Vildosola, A.; de Blas, A.; et al. A flow cytometry-based neutralization assay for simultaneous evaluation of blocking antibodies against SARS-CoV-2 variants. Front. Immunol. 2022, 13, 1014309. [Google Scholar] [CrossRef] [PubMed]
- Bloch, E.; Garcia, L.; Donnadieu, F.; Rosado, J.; Planas, D.; Bruel, T.; Hocqueloux, L.; Prazuck, T.; Schwartz, O.; Tondeur, L.; et al. Multiplex ACE2-RBD binding inhibition assay: An integrated tool for assessing neutralizing antibodies to SARS-CoV-2 variants and protection against breakthrough infections. J. Immunol. Methods 2025, 541, 113886. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Li, Y.; Sun, H.; Ma, D.; Tang, X.; Zeng, A.; Huang, F. Characterization of key spike RBD residues influencing SARS-CoV-2 variant adaptation to avian ACE2. Front. Cell. Infect. Microbiol. 2025, 15, 1631926. [Google Scholar] [CrossRef]
- Izac, J.R.; Kwee, E.J.; Tian, L.; Elsheikh, E.; Gaigalas, A.K.; Elliott, J.T.; Wang, L. Development of a Cell-Based SARS-CoV-2 Pseudovirus Neutralization Assay Using Imaging and Flow Cytometry Analysis. Int. J. Mol. Sci. 2023, 24, 12332. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Y.; Tian, X.; Bai, Z.; Gong, Y.; Qi, J.; Liu, D.; Liu, W.; Li, J. Analysis of ACE2 Gene-Encoded Proteins Across Mammalian Species. Front. Vet. Sci. 2020, 7, 457. [Google Scholar] [CrossRef]
- Melin, A.D.; Janiak, M.C.; Marrone, F., 3rd; Arora, P.S.; Higham, J.P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. 2020, 3, 641. [Google Scholar] [CrossRef]
- Ma, C.; Gong, C. ACE2 models of frequently contacted animals provide clues of their SARS-CoV-2 S protein affinity and viral susceptibility. J. Med. Virol. 2021, 93, 4469–4479. [Google Scholar] [CrossRef]
- Pi-Estopinan, F.; Perez, M.T.; Fraga, A.; Bergado, G.; Diaz, G.D.; Orosa, I.; Diaz, M.; Solozabal, J.A.; Rodriguez, L.M.; Garcia-Rivera, D.; et al. A cell-based ELISA as surrogate of virus neutralization assay for RBD SARS-CoV-2 specific antibodies. Vaccine 2022, 40, 1958–1967. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020, 586, 572–577. [Google Scholar] [CrossRef]
- Sherman, E.J.; Emmer, B.T. ACE2 protein expression within isogenic cell lines is heterogeneous and associated with distinct transcriptomes. Sci. Rep. 2021, 11, 15900. [Google Scholar] [CrossRef]
- Renner, T.M.; Akache, B.; Stuible, M.; Rohani, N.; Cepero-Donates, Y.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Baardsnes, J.; Koyuturk, I.; et al. Tuning the immune response: Sulfated archaeal glycolipid archaeosomes as an effective vaccine adjuvant for induction of humoral and cell-mediated immunity towards the SARS-CoV-2 Omicron variant of concern. Front. Immunol. 2023, 14, 1182556. [Google Scholar] [CrossRef]
- Renner, T.M.; Stuible, M.; Rossotti, M.A.; Rohani, N.; Cepero-Donates, Y.; Sauvageau, J.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Baardsnes, J.; et al. Modifying the glycosylation profile of SARS-CoV-2 spike-based subunit vaccines alters focusing of the humoral immune response in a mouse model. Commun. Med. 2025, 5, 111. [Google Scholar] [CrossRef] [PubMed]
- Arias-Arias, J.L.; Monturiol-Gross, L.; Corrales-Aguilar, E. A Live-Cell Imaging-Based Fluorescent SARS-CoV-2 Neutralization Assay by Antibody-Mediated Blockage of Receptor Binding Domain-ACE2 Interaction. Biotech 2025, 14, 10. [Google Scholar] [CrossRef]
- Bermudez-Abreut, E.; Fundora-Barrios, T.; Hernandez Fernandez, D.R.; Noa Romero, E.; Fraga-Quintero, A.; Casadesus Pazos, A.V.; Fernandez-Marrero, B.; Plasencia Iglesias, C.A.; Clavel Perez, M.; Sosa Aguiar, K.; et al. Antiviral activity of an ACE2-Fc fusion protein against SARS-CoV-2 and its variants. PLoS ONE 2025, 20, e0312402. [Google Scholar] [CrossRef]
- Dashti, N.; Golsaz-Shirazi, F.; Soltanghoraee, H.; Zarnani, A.H.; Mohammadi, M.; Imani, D.; Jeddi-Tehrani, M.; Amiri, M.M.; Shokri, F. Preclinical assessment of a recombinant RBD-Fc fusion protein as SARS-CoV-2 candidate vaccine. Eur. J. Microbiol. Immunol. 2024, 14, 228–242. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Zhou, H.; Zhu, H.; Jiang, S.; Wang, P. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat. Rev. Immunol. 2023, 23, 189–199. [Google Scholar] [CrossRef]
- Amanat, F.; Strohmeier, S.; Rathnasinghe, R.; Schotsaert, M.; Coughlan, L.; Garcia-Sastre, A.; Krammer, F. Introduction of Two Prolines and Removal of the Polybasic Cleavage Site Lead to Higher Efficacy of a Recombinant Spike-Based SARS-CoV-2 Vaccine in the Mouse Model. mBio 2021, 12, e02648-20. [Google Scholar] [CrossRef]
- Stuible, M.; Gervais, C.; Lord-Dufour, S.; Perret, S.; L’Abbe, D.; Schrag, J.; St-Laurent, G.; Durocher, Y. Rapid, high-yield production of full-length SARS-CoV-2 spike ectodomain by transient gene expression in CHO cells. J. Biotechnol. 2021, 326, 21–27. [Google Scholar] [CrossRef]
- Akache, B.; Renner, T.M.; Tran, A.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Duque, D.; Haukenfrers, J.; Rossotti, M.A.; Gaudreault, F.; et al. Immunogenic and efficacious SARS-CoV-2 vaccine based on resistin-trimerized spike antigen SmT1 and SLA archaeosome adjuvant. Sci. Rep. 2021, 11, 21849. [Google Scholar] [CrossRef]
- Renner, T.M.; Stuible, M.; Cass, B.; Perret, S.; Guimond, J.; Lord-Dufour, S.; McCluskie, M.J.; Durocher, Y.; Akache, B. Reduced cross-protective potential of Omicron compared to ancestral SARS-CoV-2 spike vaccines against potentially zoonotic coronaviruses. npj Viruses 2024, 2, 58. [Google Scholar] [CrossRef] [PubMed]
- Akache, B.; Renner, T.M.; Stuible, M.; Rohani, N.; Cepero-Donates, Y.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Gervais, C.; Hill, J.J.; et al. Immunogenicity of SARS-CoV-2 spike antigens derived from Beta & Delta variants of concern. npj Vaccines 2022, 7, 118. [Google Scholar] [CrossRef] [PubMed]
- Stocks, B.; Thibeault, M.-P.; Bates, J.; Lord-Dufour, S.; Gervais, C.; Stuible, M.; Durocher, Y.; Melanson, J. SMT1-1: SARS-CoV-2 Spike Glycoprotein Reference Material SMT1-1; National Research Council of Canada: Ottawa, ON, Canada, 2021. [Google Scholar] [CrossRef]
- Kricka, L.J.; Master, S.R. Validation and quality control of protein microarray-based analytical methods. Mol. Biotechnol. 2008, 38, 19–31. [Google Scholar] [CrossRef]
- Kim, H.; Shin, S.; Hwang, S.H.; Kim, M.; Cho, Y.U.; Jang, S. Validation of High-sensitivity Flow Cytometry for Reliable Immune Cell Analysis in Real-world Laboratory Settings. Ann. Lab. Med. 2023, 43, 620–624. [Google Scholar] [CrossRef]
- Tachibana, K.; Nakamura, Y.; Do, T.L.; Kihara, T.; Kawada, H.; Yamamoto, N.; Ando, K. Mutations in the SARS-CoV-2 spike proteins affected the ACE2-binding affinity during the development of Omicron pandemic variants. Biochem. Biophys. Res. Commun. 2024, 719, 150120. [Google Scholar] [CrossRef]
- Sultana, N.; Nagesha, S.N.; Reddy, C.N.L.; Ramesh, B.N.; Shyamalamma, S.; Shashidhara, K.S.; Satish, K.M.; Pradeep, C.; Vidyadhar, G.D. Computational analysis of affinity dynamics between the variants of SARS-CoV-2 spike protein (RBD) and human ACE-2 receptor. Virol. J. 2024, 21, 88. [Google Scholar] [CrossRef]
- Barrass, S.V.; Butcher, S.J. Advances in high-throughput methods for the identification of virus receptors. Med. Microbiol. Immunol. 2020, 209, 309–323. [Google Scholar] [CrossRef]
- Valero-Rello, A.; Baeza-Delgado, C.; Andreu-Moreno, I.; Sanjuan, R. Cellular receptors for mammalian viruses. PLoS Pathog. 2024, 20, e1012021. [Google Scholar] [CrossRef]
- De Cae, S.; Van Molle, I.; van Schie, L.; Shoemaker, S.R.; Deckers, J.; Debeuf, N.; Lameire, S.; Nerinckx, W.; Roose, K.; Fijalkowska, D.; et al. Ultrapotent SARS coronavirus-neutralizing single-domain antibodies that clamp the spike at its base. Nat. Commun. 2025, 16, 5040. [Google Scholar] [CrossRef]
- Lee, W.S.; Taiaroa, G.; Esterbauer, R.; Conlan, M.; Neil, J.; Gartner, M.; Smith, M.; Wang, M.; Shepherd, R.; Tran, T.; et al. Potent neutralising monoclonal antibodies targeting the spike of NL63 coronavirus. npj Viruses 2025, 3, 35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossotti, M.A.; Ryan, S.; Hussack, G.; Tanha, J.; Akache, B.; Renner, T.M. A Safe and Accessible Cell-Based Spike–ACE2 Binding Assay for Evaluating SARS-CoV-2 Neutralization Activity in Biological Samples Using Flow Cytometry. Methods Protoc. 2025, 8, 104. https://doi.org/10.3390/mps8050104
Rossotti MA, Ryan S, Hussack G, Tanha J, Akache B, Renner TM. A Safe and Accessible Cell-Based Spike–ACE2 Binding Assay for Evaluating SARS-CoV-2 Neutralization Activity in Biological Samples Using Flow Cytometry. Methods and Protocols. 2025; 8(5):104. https://doi.org/10.3390/mps8050104
Chicago/Turabian StyleRossotti, Martin A., Shannon Ryan, Greg Hussack, Jamshid Tanha, Bassel Akache, and Tyler M. Renner. 2025. "A Safe and Accessible Cell-Based Spike–ACE2 Binding Assay for Evaluating SARS-CoV-2 Neutralization Activity in Biological Samples Using Flow Cytometry" Methods and Protocols 8, no. 5: 104. https://doi.org/10.3390/mps8050104
APA StyleRossotti, M. A., Ryan, S., Hussack, G., Tanha, J., Akache, B., & Renner, T. M. (2025). A Safe and Accessible Cell-Based Spike–ACE2 Binding Assay for Evaluating SARS-CoV-2 Neutralization Activity in Biological Samples Using Flow Cytometry. Methods and Protocols, 8(5), 104. https://doi.org/10.3390/mps8050104