An Overview of Management Status and Recycling Strategies for Plastic Packaging Waste in China
Abstract
:1. Introduction
2. Management Status of PPW in China
3. Recycling Technologies and Carbon Emission Impacts of PPW
3.1. Mechanical Recycling
3.2. Chemical Recycling
3.3. Energy Recycling
3.4. Carbon Emission Impact Assessment
4. Recycling Strategies of PPW in China
4.1. Green Design of Plastic Packaging
4.2. The Full-Chain Recycling Process of Plastic Packaging Waste
5. Conclusions and Prospects
- (1)
- Promote the implementation of an extended producer responsibility system in China. For instance, food delivery platforms should bear more responsibility for PPW reduction.
- (2)
- The Chinese government should regard single-use plastic packaging as a pollutant, monitor and control the total amount from the source, and regulate the total amount at the source. Manufacturers should be prohibited from entering the market if they fail to provide production data.
- (3)
- Measurements and statistics should be accurate and align with scientific methods and available data. This will facilitate public monitoring and the enhancement of policy decrees.
- (4)
- The Chinese government should enhance public education on PPW recycling, particularly targeting school students. The education should focus on the necessity of recycling PPW and how to collect it.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Alam, O.; Billah, M.; Ding, Y. Characteristics of plastic bags and their potential environmental hazards. Resour. Conserv. Recycl. 2018, 132, 121–129. [Google Scholar] [CrossRef]
- Ragossnig, A.M.; Agamuthu, P. Plastic waste: Challenges and opportunities. Waste Manag. Res. 2021, 39, 629–630. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe. Plastics—The Facts 2021. 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 10 July 2023).
- China National Bureau of Statistics. The Plastic Products Output in China from 2012 to 2021. Available online: https://data.stats.gov.cn/easyquery.htm?cn=A01&zb=A02090X&sj=201212 (accessed on 30 January 2023).
- Horodytska, O.; Valdes, F.J.; Fullana, A. Plastic flexible films waste management–a state of art review. Waste Manag. 2018, 77, 413–425. [Google Scholar] [CrossRef]
- Dahlbo, H.; Poliakova, V.; Myllari, V.; Sahimaa, O.; Anderson, R. Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manag. 2018, 71, 52–61. [Google Scholar] [CrossRef]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef]
- Geueke, B.; Groh, K.; Muncke, J. Food packaging in the circular economy: Overview of chemical safety aspects for commonly used materials. J. Clean. Prod. 2018, 193, 491–505. [Google Scholar] [CrossRef]
- Schyns, Z.O.G.; Shaver, M.P. Mechanical recycling of packaging plastics: A review. Macromol. Rapid Commun. 2021, 42, e2000415. [Google Scholar] [CrossRef]
- Kabir, E.; Kaur, R.; Lee, J.; Kim, K.-H.; Kwon, E.E. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. J. Clean. Prod. 2020, 258, 120536. [Google Scholar] [CrossRef]
- Liang, Y.; Tan, Q.; Song, Q.; Li, J. An analysis of the plastic waste trade and management in Asia. Waste Manag. 2021, 119, 242–253. [Google Scholar] [CrossRef]
- Pazienza, P.; De Lucia, C. The EU policy for a plastic economy: Reflections on a sectoral implementation strategy. Bus. Strategy Environ. 2020, 29, 779–788. [Google Scholar] [CrossRef]
- Housni, H.; Bendahhou, K.; Tahiri, M.; Jouti, N.T. Compliance assessment of scientific research laboratories with legal requirements regarding the integrated management of chemicals and hazardous waste. Chem. Afr.–J. Tunis. Chem. Soc. 2022, 5, 1167–1189. [Google Scholar] [CrossRef]
- Okubo, N. The development of the Japanese legal system for public participation in land use and environmental matters. Land Use Policy 2016, 52, 492–500. [Google Scholar] [CrossRef]
- Kumagai, S.; Nakatani, J.; Saito, Y.; Fukushima, Y.; Yoshioka, T. Latest trends and challenges in feedstock recycling of polyolefinic plastics. J. Jpn. Pet. Inst. 2020, 63, 345–364. [Google Scholar] [CrossRef]
- Adyel, T.M.; Macreadie, P.I. Australia’s plan to reduce plastic waste falls short. Science 2021, 374, 163–164. [Google Scholar] [CrossRef]
- Duan, H.; Song, G.; Qu, S.; Dong, X.; Xu, M. Post-consumer packaging waste from express delivery in China. Resour. Conserv. Recycl. 2019, 144, 137–143. [Google Scholar] [CrossRef]
- Xu, Z.; Xiong, X.; Zhao, Y.; Xiang, W.; Wu, C. Pollutants delivered every day: Phthalates in plastic express packaging bags and their leaching potential. J. Hazard. Mater. 2020, 384, 121282. [Google Scholar] [CrossRef]
- Jin, Y.N.; Zhou, B.Y.; Ding, M.Y.; Li, L. Analysis of the generation and recycling of packaging waste in China. Res. Environ. Sci. 2008, 21, 90–94. [Google Scholar]
- Gong, J.; Xie, P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere 2020, 254, 126790. [Google Scholar] [CrossRef]
- China National Resources Recycling Association. 2020–2021 Development Report of China Recycled Plastics Industry. Available online: http://www.Chinacpra.org.cn/en/index.php (accessed on 1 July 2023).
- Ma, Z.; Jiang, W. China plastics industry (2020). China Plast. 2021, 35, 119–125. [Google Scholar]
- China National Resources Recycling Association. 2019–2020 Development Report of China Recycled Plastics Industry. Available online: https://www.statista.com/topics/8365/plastic-industry-in-China/#dossierKeyfigures (accessed on 5 July 2023).
- Wang, B.R.; Li, Y. Plastic bag usage and the policies: A case study of China. Waste Manag. 2021, 126, 163–169. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T. Thinkings on establishment of systems for sorting, collecting and managing plastics packaging waste. China Plast. 2021, 35, 21–29. [Google Scholar]
- Liu, J.L.; Yang, Y.F.; An, L.H.; Liu, Q.; Ding, J.N. The value of China’s legislation on plastic pollution prevention in 2020. Bull. Environ. Contam. Toxicol. 2022, 108, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, D.Y.; Li, X.S.; Chen, Y.Q.; Guo, H.X. Public attitudes toward the whole life cycle management of plastics: A text-mining study in China. Sci. Total Environ. 2023, 859, 159981. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Y.; Zhang, C.; Zhang, J.; An, L.; Liu, R. Management policies of single-use plastic pollution in China. Res. Environ. Sci. 2020, 33, 1062–1068. [Google Scholar]
- Liu, C.; Liu, C. Exploring plastic-management policy in China: Status, challenges and policy insights. Sustainability 2023, 15, 9087. [Google Scholar] [CrossRef]
- Tian, Y.; Yu, L.; Tian, Y.; Guo, L.; Li, D. Analysis on China’s import situation of waste plastics and suggestions on management. Mod. Chem. Ind. 2018, 38, 1. [Google Scholar]
- Wang, M.H.; He, Y.D.; Sen, B. Research and management of plastic pollution in coastal environments of China. Environ. Pollut. 2019, 248, 898–905. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, W.; Yang, S. China plastics industry (2018). China Plast. 2019, 33, 127. [Google Scholar]
- Ma, Z.; Jiang, W.; Yang, S. China plastics industry (2019). China Plast. 2020, 34, 102–106. [Google Scholar]
- Ma, Z.; Niu, G.; Lu, S. China plastics industry (2021). China Plast. 2022, 36, 142–148. [Google Scholar]
- Zhou, B.Y.; Guo, L.L.; Li, L.; Yu, H.J. Characteristics of generation and recycling of plastic packaging waste in China and management countermeasures. Res. Environ. Sci. 2010, 23, 282–287. [Google Scholar]
- Chu, J.W.; Zhou, Y.; Cai, Y.P.; Wang, X.; Li, C.H.; Liu, Q. Flows and waste reduction strategies of pe, pp, and pet plastics under plastic limit order in China. Resour. Conserv. Recycl. 2023, 188, 106668. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Wang, P.; Jian, X.M.; Liao, X.W.; Chen, W.Q. China’s roadmap to plastic waste management and associated economic costs. J. Environ. Manag. 2022, 309, 114686. [Google Scholar] [CrossRef]
- Workers’ Daily. China Leads the World in Plastic Waste Recycling and Utilization. Available online: https://www.chinanews.com.cn/sh/2022/04-30/9743519.shtml (accessed on 5 July 2023).
- China National Development and Reform Commission. China: Leading and Contributing to Global Plastic Pollution Management. Available online: https://www.ndrc.gov.cn/xwdt/ztzl/slwrzlzxd/202212/t20221227_1344073.html (accessed on 5 July 2023).
- China Food Newspaper. China’s Packaging Industry Revenue Surpasses 1.2 Trillion yuan in 2022. Available online: http://www.cnfood.cn/article?id=1655940877518999553 (accessed on 5 July 2023).
- Chen, Y. Development status and trend of harmless recycling of spent plastics. Mod. Chem. Ind. 2022, 42, 23–26. [Google Scholar]
- Plastic Recycling Is Here. Available online: http://paper.people.com.cn/zgnyb/html/2023-03/20/content_25972407.htm (accessed on 20 March 2023).
- Plastic Recycling Industry Development Status, the 14th Five-Year Period of Recycled Plastics Become the Focus of Environmental Policy Concerns. Available online: https://www.163.com/dy/article/GGJ249KU05387IEF.html (accessed on 4 August 2021).
- Wang, H.; Fu, K. Status and thinking of plastic wastes recycling industry in China under the new situation. China Plast. Ind. 2022, 50, 38–42. [Google Scholar]
- Ding, H.; Liao, S.L.; Tu, D.H.; Hua, P.; Zhang, J. Trade drives leakage of life-cycle carbon dioxide emissions from plastics in China over 2010–2021. J. Clean. Prod. 2023, 417, 137994. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van Der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond mechanical recycling: Giving new life to plastic waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef]
- Ahmad Wani, K.; Ariana, L.; Zuber, S.M. Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution; IGI Global: Hershey, PA, USA, 2020. [Google Scholar]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. An overview of plastic waste generation and management in food packaging industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Hassanian-Moghaddam, D.; Asghari, N.; Ahmadi, M. Circular polyolefins: Advances toward a sustainable future. Macromolecules 2023, 56, 5679–5697. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Jeswani, H.; Krueger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Sci. Total Environ. 2021, 769, 144483. [Google Scholar] [CrossRef]
- Yang, S.; Wei, B.; Xu, D.; Li, L.; Wang, Q. Application of aluminum-plastic packaging and new recycling technology of the waste. CIESC J. 2022, 73, 3326–3337. [Google Scholar]
- Wu, Z.; Liu, Z.; Liu, G.; Zhao, J. Research on crushing and regeneration mechanism of thermosetting plastic based on mechanical and physical method. China Mech. Eng. 2012, 23, 1639–1644. [Google Scholar]
- Juan, R.; Dominguez, C.; Robledo, N.; Paredes, B.; Galera, S.; Garcia-Munoz, R.A. Challenges and opportunities for recycled polyethylene fishing nets: Towards a circular economy. Polymers 2021, 13, 3155. [Google Scholar] [CrossRef]
- Maris, J.; Bourdon, S.; Brossard, J.M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 2018, 147, 245–266. [Google Scholar] [CrossRef]
- Sangroniz, A.; Zhu, J.-B.; Tang, X.; Etxeberria, A.; Chen, E.Y.X.; Sardon, H. Packaging materials with desired mechanical and barrier properties and full chemical recyclability. Nat. Commun. 2019, 10, 3559. [Google Scholar] [CrossRef]
- Epps, T.H.; Korley, L.T.J.; Yan, T.W.; Beers, K.L.; Burt, T.M. Sustainability of synthetic plastics: Considerations in materials life-cycle management. JACS Au 2022, 2, 3–11. [Google Scholar] [CrossRef]
- Babafemi, A.J.; Sirba, N.; Paul, S.C.; Miah, M.J. Mechanical and durability assessment of recycled waste plastic (resin8 & pet) eco-aggregate concrete. Sustainability 2022, 14, 5725. [Google Scholar]
- Lai, W.L.; Sharma, S.; Roy, S.; Maji, P.K.; Sharma, B.; Ramakrishna, S.; Goh, K.L. Roadmap to sustainable plastic waste management: A focused study on recycling pet for triboelectric nanogenerator production in Singapore and India. Environ. Sci. Pollut. Res. 2022, 29, 51234–51268. [Google Scholar] [CrossRef]
- Xu, H.; Meng, Z.; Guo, W.; Wang, H.; Cai, H.; Hua, L. Reusing with equivalent performance of waste automotive door trim polypropylene plastics. Eng. Plast. Appl. 2017, 45, 1–6. [Google Scholar]
- Smith, R.L.; Takkellapati, S.; Riegerix, R.C. Recycling of plastics in the united states: Plastic material flows and polyethylene terephthalate (pet) recycling processes. ACS Sustain. Chem. Eng. 2022, 10, 2084–2096. [Google Scholar] [CrossRef] [PubMed]
- Uekert, T.; Singh, A.; DesVeaux, J.S.; Ghosh, T.; Bhatt, A.; Yadav, G.; Afzal, S.; Walzberg, J.; Knauer, K.M.; Nicholson, S.R.; et al. Technical, economic, and environmental comparison of closed- loop recycling technologies for common plastics. ACS Sustain. Chem. Eng. 2023, 11, 965–978. [Google Scholar] [CrossRef]
- Thiounn, T.; Smith, R.C. Advances and approaches for chemical recycling of plastic waste. J. Polym. Sci. 2020, 58, 1347–1364. [Google Scholar] [CrossRef]
- Bassey, U.; Sarquah, K.; Hartmann, M.; Tom, A.O.; Beck, G.; Antwi, E.; Narra, S.; Nelles, M. Thermal treatment options for single-use, multilayered and composite waste plastics in africa. Energy 2023, 270, 126872. [Google Scholar] [CrossRef]
- Chea, J.D.; Yenkie, K.M.; Stanzione, J.F.; Ruiz-Mercado, G.J. A generic scenario analysis of end-of-life plastic management: Chemical additives. J. Hazard. Mater. 2023, 441, 129902. [Google Scholar] [CrossRef]
- Merchan, A.L.; Fischoeder, T.; Hee, J.; Lehnertz, M.S.; Osterthun, O.; Pielsticker, S.; Schleier, J.; Tiso, T.; Blank, L.M.; Klankermayer, J.; et al. Chemical recycling of bioplastics: Technical opportunities to preserve chemical functionality as path towards a circular economy. Green Chem. 2022, 24, 9428–9449. [Google Scholar] [CrossRef]
- Long, X. Study on thermal cracking of mixed vehicle waste plastics (pet-pe). Chem. Technol. 2017, 25, 49–52. [Google Scholar]
- Dogu, O.; Pelucchi, M.; Van de Vijver, R.; Van Steenberge, P.H.M.; D’Hooge, D.R.; Cuoci, A.; Mehl, M.; Frassoldati, A.; Faravelli, T.; Van Geem, K.M. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: State-of-the-art, challenges, and future directions. Progr. Energy Combust. Sci. 2021, 84, 100901. [Google Scholar] [CrossRef]
- Lopez, G.; Artetxe, M.; Amutio, M.; Alvarez, J.; Bilbao, J.; Olazar, M. Recent advances in the gasification of waste plastics. A critical overview. Renew. Sustain. Energy Rev. 2018, 82, 576–596. [Google Scholar] [CrossRef]
- Solis, M.; Silveira, S. Technologies for chemical recycling of household plastics—A technical review and trl assessment. Waste Manag. 2020, 105, 128–138. [Google Scholar] [CrossRef]
- Hulst, M.K.; Ottenbros, A.B.; van der Drift, B.; Ferjan, S.; van Harmelen, T.; Schwarz, A.E.; Worrell, E.; van Zelm, R.; Huijbregts, M.A.J.; Hauck, M. Greenhouse gas benefits from direct chemical recycling of mixed plastic waste. Resour. Conserv. Recycl. 2022, 186, 106582. [Google Scholar] [CrossRef]
- Kasmi, N.; Backstrom, E.; Hakkarainen, M. Open-loop recycling of post-consumer pet to closed-loop chemically recyclable high-performance polyimines. Resour. Conserv. Recycl. 2023, 193, 106974. [Google Scholar] [CrossRef]
- Quicker, P.; Seitz, M.; Vogel, J. Chemical recycling: A critical assessment of potential process approaches. Waste Manag. Res. 2022, 40, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Mark, L.O.; Cendejas, M.C.; Hermans, I. The use of heterogeneous catalysis in the chemical valorization of plastic waste. ChemSusChem 2020, 13, 5808–5836. [Google Scholar] [CrossRef]
- Martin, A.J.; Mondelli, C.; Jaydev, S.D.; Perez-Ramirez, J. Catalytic processing of plastic waste on the rise. Chem 2021, 7, 1487–1533. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Sultana, M.; Al-Mamun, M.R.; Hasan, M.R. Pyrolytic waste plastic oil and its diesel blend: Fuel characterization. J. Environ. Public Health 2016, 2016, 7869080. [Google Scholar] [CrossRef]
- Meys, R.; Frick, F.; Westhues, S.; Sternberg, A.; Klankermayer, J.; Bardow, A. Towards a circular economy for plastic packaging wastes–the environmental potential of chemical recycling. Resour. Conserv. Recycl. 2020, 162, 105010. [Google Scholar] [CrossRef]
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Norton, M. Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chem. 2020, 22, 6310–6322. [Google Scholar] [CrossRef]
- Consumption Daily Newspaper Agency. Anticipated Plastic Soft Packaging Recycling is Expected to Reach 50,000 tons by the Year 2025. Available online: https://new.qq.com/rain/a/20230110A08WVR00 (accessed on 1 September 2023).
- Torres, F.G.; De-la-Torre, G.E. Face mask waste generation and management during the COVID-19 pandemic: An overview and the peruvian case. Sci. Total Environ. 2021, 786, 147628. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, J.; Dubey, B.K.; Goel, S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 2021, 750, 141514. [Google Scholar] [CrossRef]
- Liu, J.; Vethaak, A.D.; An, L.; Liu, Q.; Yang, Y.; Ding, J. An environmental dilemma for China during the COVID-19 pandemic: The explosion of disposable plastic wastes. Bull. Environ. Contam. Toxicol. 2021, 106, 237–240. [Google Scholar] [CrossRef]
- World Economic Forum. The Plastic Pandemic is only Getting Worse during COVID-19. Available online: https://www.weforum.org/agenda/2020/07/plastic-waste-management-covid19-ppe/ (accessed on 1 September 2023).
- Ardusso, M.; Forero-Lopez, A.D.; Buzzi, N.S.; Spetter, C.V.; Fernandez-Severini, M.D. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of south america. Sci. Total Environ. 2021, 763, 144365. [Google Scholar] [CrossRef]
- Castaldi, M.J.; Themelis, N.J. Case for increasing the global capacity for waste to energy (wte). Abstr. Pap. Am. Chem. Soc. 2010, 239, 91–105. [Google Scholar] [CrossRef]
- Roger Harrabin. BBC Fact Check: Should Plastic Waste be Incinerated or Buried? Available online: https://www.bbc.com/zhongwen/simp/science-43131714 (accessed on 2 September 2023).
- Tabata, T. Waste-to-energy incineration plants as greenhouse gas reducers: A case study of seven japanese metropolises. Waste Manag. Res. 2013, 31, 1110–1117. [Google Scholar] [CrossRef]
- Guangdong Provincial Environmental Sanitation Association. China’s Waste Incineration for the Past Five Years. Available online: https://new.qq.com/rain/a/20230203A09BIX00 (accessed on 2 September 2023).
- Cheng, H.; Zhang, Y.; Meng, A.; Li, Q. Municipal solid waste fueled power generation in China: A case study of waste-to-energy in changchun city. Environ. Sci. Technol. 2007, 41, 7509–7515. [Google Scholar] [CrossRef] [PubMed]
- Meys, R.; Katelhon, A.; Bachmann, M.; Winter, B.; Zibunas, C.; Suh, S.; Bardow, A. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 2021, 374, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Posen, I.D.; Jaramillo, P.; Landis, A.E.; Griffin, W.M. Greenhouse gas mitigation for us plastics production: Energy first, feedstocks later. Environ. Res. Lett. 2017, 12, 034024. [Google Scholar] [CrossRef]
- Bachmann, M.; Zibunas, C.; Hartmann, J.; Tulus, V.; Suh, S.; Guillen-Gosalbez, G.; Bardow, A. Towards circular plastics within planetary boundaries. Nat. Sustain. 2023, 6, 599–610. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Zhang, Z.; Lei, J.; Hou, Y. Plastic waste recycling by pyrolysis at home and abroad under the background of carbon neutrality. Chem. Ind. Eng. Prog. 2022, 41, 1470–1478. [Google Scholar]
- von der Assen, N.; Voll, P.; Peters, M.; Bardow, A. Life cycle assessment of CO2 capture and utilization: A tutorial review. Chem. Soc. Rev. 2014, 43, 7982–7994. [Google Scholar] [CrossRef]
- Volk, R.; Stallkamp, C.; Steins, J.J.; Yogish, S.P.; Muller, R.C.; Stapf, D.; Schultmann, F. Techno-economic assessment and comparison of different plastic recycling pathways: A german case study. J. Ind. Ecol. 2021, 25, 1318–1337. [Google Scholar] [CrossRef]
- Weththasinghe, K.K.; Akash, A.; Harding, T.; Subhani, M.; Wijayasundara, M. Carbon footprint of wood and plastic as packaging materials–an australian case of pallets. J. Clean. Prod. 2022, 363, 132446. [Google Scholar] [CrossRef]
- Bassi, S.A.; Tonini, D.; Saveyn, H.; Astrup, T.F. Environmental and socioeconomic impacts of poly(ethylene terephthalate) (pet) packaging management strategies in the EU. Environ. Sci. Technol. 2022, 56, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Groot, J.; Bing, X.Y.; Bos-Brouwers, H.; Bloemhof-Ruwaard, J. A comprehensive waste collection cost model applied to post-consumer plastic packaging waste. Resour. Conserv. Recycl. 2014, 85, 79–87. [Google Scholar] [CrossRef]
- Lin, Y.Q.; Severson, M.H.; Nguyen, R.T.; Johnson, A.; King, C.; Coddington, B.; Hu, H.Q.; Madden, B. Economic and environmental feasibility of recycling flexible plastic packaging from single stream collection. Resour. Conserv. Recycl. 2023, 192, 106908. [Google Scholar] [CrossRef]
- Tak, H.; Zin, C.W.; Lee, H.J.; Kwak, Z.M. Life cycle assessment study of material recycling of the plastic waste. J. Korea Soc. Waste Manag. 2002, 19, 199–210. [Google Scholar]
- Choi, B.; Yoo, S.; Park, S.I. Carbon footprint of packaging films made from ldpe, pla, and pla/pbat blends in south korea. Sustainability 2018, 10, 2369. [Google Scholar] [CrossRef]
- Ahamed, A.; Vallam, P.; Iyer, N.S.; Veksha, A.; Bobacka, J.; Lisak, G. Life cycle assessment of plastic grocery bags and their alternatives in cities with con fi ned waste management structure: A singapore case study. J. Clean. Prod. 2021, 278, 123956. [Google Scholar] [CrossRef]
- Li, Z.L.; Lin, G.; Wang, H.T.; Zhao, Y.; Chen, T. Constructing carbon sink-oriented waste management system towards reduction and maximum recovery via high-precision packaging waste inventory. Resour. Conserv. Recycl. 2022, 184, 106412. [Google Scholar] [CrossRef]
- Brouwer, M.T.; van Velzen, E.U.T.; Ragaert, K.; ten Klooster, R. Technical limits in circularity for plastic packages. Sustainability 2020, 12, 10021. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Huang, N.; Fan, C. Carbon footprint assessment and certification of al-pe-pa complex package. Res. Environ. Sci. 2012, 25, 712–716. [Google Scholar]
- Zhang, Y.; Buongiorno, J. Paper or plastic? The united states’ demand for paper and paperboard in packaging. Scand. J. For. Res. 1998, 13, 54–65. [Google Scholar] [CrossRef]
- Sokolova, T.; Krishna, A.; Döring, T. Paper meets plastic: The perceived environmental friendliness of product packaging. J. Consum. Res. 2023, 50, 468–491. [Google Scholar] [CrossRef]
- McKinsey Company. Climate Impact of Plastics. Available online: https://www.mckinsey.com/industries/chemicals/our-insights/climate-impact-of-plastics#/ (accessed on 2 September 2023).
- Romao, S.; Bettencourt, A.; Ribeiro, I.A.C. Novel features of cellulose-based films as sustainable alternatives for food packaging. Polymers 2022, 14, 4968. [Google Scholar] [CrossRef]
- Sid, S.; Mor, R.S.; Kishore, A.; Sharanagat, V.S. Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends Food Sci. Technol. 2021, 115, 87–104. [Google Scholar] [CrossRef]
- Masanet, E.; Auer, R.; Tsuda, D.; Barillot, T.; Baynes, A. An assessment and prioritization of “design for recycling” guidelines for plastic components. In Proceedings of the 2002 IEEE International Symposium on Electronics & the Environment, Conference Record, San Francisco, CA, USA, 6–9 May 2002; pp. 5–10. [Google Scholar]
- Ding, Q.; Zhu, H.P. The key to solving plastic packaging wastes: Design for recycling and recycling technology. Polymers 2023, 15, 1485. [Google Scholar] [CrossRef]
- Mayumi, K.; Kikuchi, Y.; Nakatani, J.; Hirao, M. Decision support for plastics recycling system design based on individual fossil resource consumption. Kagaku Kogaku Ronbunshu 2010, 36, 243–254. [Google Scholar] [CrossRef]
- Keller, J.; Scagnetti, C.; Albrecht, S. The relevance of recyclability for the life cycle assessment of packaging based on design for life cycle. Sustainability 2022, 14, 4076. [Google Scholar] [CrossRef]
- Tanksale, A.N.; Das, D.; Verma, P.; Tiwari, M.K. Unpacking the role of primary packaging material in designing green supply chains: An integrated approach. Int. J. Prod. Econ. 2021, 236, 108133. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, M. Automotive plastic parts design, recycling, research, and development in China. J. Thermoplast. Compos. Mater. 2015, 28, 142–157. [Google Scholar] [CrossRef]
- Hatti-Kaul, R.; Nilsson, L.J.; Zhang, B.; Rehnberg, N.; Lundmark, S. Designing biobased recyclable polymers for plastics. Trends Biotechnol. 2020, 38, 50–67. [Google Scholar] [CrossRef]
- Gandhi, N.; Farfaras, N.; Wang, N.-H.L.; Chen, W.-T. Life cycle assessment of recycling high-density polyethylene plastic waste. J. Renew. Mater. 2021, 9, 1463–1483. [Google Scholar] [CrossRef]
- Hou, P.; Xu, Y.; Taiebat, M.; Lastoskie, C.; Miller, S.A.; Xu, M. Life cycle assessment of end-of-life treatments for plastic film waste. J. Clean. Prod. 2018, 201, 1052–1060. [Google Scholar] [CrossRef]
- Shen, C.; Deng, Y.; Zhang, J.; Zhang, C. Improve life cycle management of plastic pollution in China. Res. Environ. Sci. 2021, 34, 2026–2034. [Google Scholar]
- Li, J.; Wang, Y. Application of the green ecological design in packaging design. Packag. Eng. 2014, 35, 5–8,16. [Google Scholar]
- Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 2019, 9, 374. [Google Scholar] [CrossRef]
- Matthews, C.; Moran, F.; Jaiswal, A.K. A review on european union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 2021, 283, 125263. [Google Scholar] [CrossRef]
- Kaur, G.; Uisan, K.; Ong, K.L.; Lin, C.S.K. Recent trends in green and sustainable chemistry & waste valorisation: Rethinking plastics in a circular economy. Curr. Opin. Green Sustain. Chem. 2018, 9, 30–39. [Google Scholar]
Laws and Regulations | Year | Major Regulations on Plastic Recycling |
---|---|---|
Urgent notice on the immediate cessation of the production of disposable foamed plastic tableware | 2001 | Stop the production of disposable foamed plastic tableware immediately and look for suitable alternatives. |
A Notice on Restricting the Use of Plastic Shopping Bags for Production and Sale | 2008 | The production, sale, and use of plastic shopping bags with thicknesses less than 0.025 mm are prohibited; shopping bags are purchased for use. |
Soil Pollution Control Action Plan | 2016 | Strengthening the recycling and utilization of waste agricultural film. |
The Implementation Plan for Prohibiting the Entry of Foreign Garbage and Promoting the Reform of the Solid Waste Import Management System | 2017 | PPW imported from domestic sources will be banned at the end of 2017; PPW from industrial sources will be banned in 2019. |
Pilot Work Plan for the Construction of “Waste-Free Cities” | 2018 | Establish an index system for “waste-free cities”; coordinate the management of solid waste in economic and social development. |
New Law of the People’s Republic of China on the Prevention and Control of Environmental Pollution by Solid Waste | 2020 | Encourage and guide reductions in use; actively recycle plastic bags and other disposable plastic products; and promote the application of recyclable, easily recyclable, and degradable alternative products. |
Opinions on Further Strengthening the Control of Plastic Pollution | 2020 | Promote alternative products; standardize the recycling of waste plastic packaging; improve the management system of the production, circulation, use, recycling, and disposal of plastic products. |
“14th Five-year Plan” Plastic Pollution Control Action Plan | 2021 | By 2025, make full-chain plastic product production, circulation, consumption, recycling, and end disposal more effective. |
Notice on the Issuance of Action Plans for the Treatment of New Pollutants | 2022 | Formulate “one product, one policy” control measures for microplastic pollution. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Jin, D.; Hu, X.; He, W.; Li, G. An Overview of Management Status and Recycling Strategies for Plastic Packaging Waste in China. Recycling 2023, 8, 90. https://doi.org/10.3390/recycling8060090
Yu C, Jin D, Hu X, He W, Li G. An Overview of Management Status and Recycling Strategies for Plastic Packaging Waste in China. Recycling. 2023; 8(6):90. https://doi.org/10.3390/recycling8060090
Chicago/Turabian StyleYu, Chaojie, Diyi Jin, Xichao Hu, Wenzhi He, and Guangming Li. 2023. "An Overview of Management Status and Recycling Strategies for Plastic Packaging Waste in China" Recycling 8, no. 6: 90. https://doi.org/10.3390/recycling8060090
APA StyleYu, C., Jin, D., Hu, X., He, W., & Li, G. (2023). An Overview of Management Status and Recycling Strategies for Plastic Packaging Waste in China. Recycling, 8(6), 90. https://doi.org/10.3390/recycling8060090