Fast and Slow Laser-Stimulated Degradation of Mn-Doped Li4Ti5O12
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Synthesis
2.2. Sample Preparation, Visualization, and Measurements
3. Results
3.1. First Series
3.2. Second Series
4. Discussion
4.1. Interpretation of Raman Spectra after Degradation
4.2. Physicochemical Model of Stimulated Degradation
4.2.1. Stimulated Amorphization
4.2.2. Stimulated Transport of Molecules and Ions into the Volume of Irradiated Particles
4.2.3. Combined Result of Fast and Slow Stimulated Processes
4.2.4. Laser Ablation of Decomposition Products
4.2.5. Possible Laser-Induced Crystallization
4.2.6. The Discussion about Further Verifications of the Proposed Physicochemical Model
4.3. Possible Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landmarks Timeline. Available online: https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/landmarks-timeline.html (accessed on 10 August 2020).
- Burba, C.M.; Palmer, J.M.; Holinsworth, B.S. Laser-induced phase changes in olivine FePO4: A warning on characterizing LiFePO4-based cathodes with Raman spectroscopy. J. Raman Spectrosc. 2009, 40, 225–228. [Google Scholar] [CrossRef]
- Galinetto, P.; Mozzati, M.C.; Grandi, M.S.; Bini, M.; Capsoni, D.; Ferrari, S.; Massarotti, V. Phase stability and homogeneity in undoped and Mn-doped LiFePO4 under laser heating. J. Raman Spectrosc. 2010, 41, 1276–1282. [Google Scholar] [CrossRef]
- Markevich, E.; Sharabi, R.; Haik, O.; Borgel, V.; Salitra, G.; Aurbach, D.; Semrau, G.; Schmidt, M.A.; Schall, N.; Stinner, C. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines. J. Power Sources 2011, 196, 6433–6439. [Google Scholar] [CrossRef]
- Bai, Y.; Yin, Y.; Yang, J.; Qing, C.; Zhang, W. Raman study of pure, C-coated and Co-doped LiFePO4: Thermal effect and phase stability upon laser heating. J. Raman Spectrosc. 2011, 42, 831–838. [Google Scholar] [CrossRef]
- Ryabin, A.A.; Slautin, B.N.; Pelegov, D.V. Three-stage kinetics of laser-induced LiFePO4 decomposition. J. Raman Spectrosc. 2020, 51, 528–536. [Google Scholar] [CrossRef]
- Ryabin, A.A.; Pelegov, D.V. An ambiguity of laser-induced degradation in LiFePO4 and advantages of single-particle approach to Raman spectroscopy. J. Raman Spectrosc. 2022, 53, 1625–1634. [Google Scholar] [CrossRef]
- Song, S.W.; Han, K.S.; Fujita, H.; Yoshimura, M. In situ visible Raman spectroscopic study of phase change in LiCoO2 film by laser irradiation. Chem. Phys. Lett. 2001, 344, 299–304. [Google Scholar] [CrossRef]
- Kohler, R.; Proell, J.; Ulrich, S.; Trouillet, V.; Indris, S.; Przybylski, M.; Pfleging, W. Laser-assisted structuring and modification of LiCoO2 thin films. SPIE—Int. Soc. Opt. Eng. 2009, 7202, 69–79. [Google Scholar]
- Ruther, R.E.; Callender, A.F.; Zhou, H.; Martha, S.K.; Nanda, J. Raman Microscopy of Lithium-Manganese-Rich Transition Metal Oxide Cathodes. J. Electrochem. Soc. 2015, 162, A98–A102. [Google Scholar] [CrossRef] [Green Version]
- Paolone, A.; Sacchetti, A.; Corridoni, T.; Postorino, P.; Cantelli, R.; Rousse, G.; Masquelier, C. MicroRaman spectroscopy on LiMn2O4: Warnings on laser-induced thermal decomposition. Solid State Ion. 2004, 170, 135–138. [Google Scholar] [CrossRef]
- Bernardini, S.; Bellatreccia, F.; Della Ventura, G.; Ballirano, P.; Sodo, A. Raman spectroscopy and laser-induced degradation of groutellite and ramsdellite, two cathode materials of technological interest. RSC Adv. 2020, 10, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Capsoni, D.; Bini, M.; Massarotti, V.; Mustarelli, P.; Chiodelli, G.; Azzoni, C.B.; Mozzati, M.C.; Linati, L.; Ferrari, S. Cations Distribution and Valence States in Mn-Substituted Li4Ti5O12 Structure. Chem. Mater. 2008, 20, 4291–4298. [Google Scholar] [CrossRef]
- Nithya, V.D.; Kalai Selvan, R.; Vediappan, K.; Sharmila, S.; Lee, C.W. Molten salt synthesis and characterization of Li4Ti5−xMnxO12 (x = 0.0, 0.05 and 0.1) as anodes for Li-ion batteries. Appl. Surf. Sci. 2012, 261, 515–519. [Google Scholar] [CrossRef]
- Kaftelen, H.; Tuncer, M.; Tu, S.; Repp, S.; Göçmez, H.; Thomann, R.; Weber, S.; Erdem, E. Mn-substituted spinel Li4Ti5O12 materials studied by multifrequency EPR spectroscopy. J. Mater. Chem. A 2013, 1, 9973. [Google Scholar] [CrossRef]
- Singh, H.; Topsakal, M.; Attenkofer, K.; Wolf, T.; Leskes, M.; Duan, Y.; Wang, F.; Vinson, J.; Lu, D.; Frenkel, A.I. Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate. Phys. Rev. Mater. 2018, 2, 125403. [Google Scholar] [CrossRef] [PubMed]
- Leonidov, I.A.; Leonidova, O.N.; Perelyaeva, L.A.; Samigullina, R.F.; Kovyazina, S.A.; Patrakeev, M.V. Structure, ionic conduction, and phase transformations in lithium titanate Li4Ti5O12. Phys. Solid State 2003, 45, 2183–2188. [Google Scholar] [CrossRef]
- Julien, C.M.; Massot, M.; Zaghib, K. Structural studies of Li4/3Me5/3O4 (Me = Ti, Mn) electrode materials: Local structure and electrochemical aspects. J. Power Sources 2004, 136, 72–79. [Google Scholar] [CrossRef]
- Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J.C.; Olivier-Fourcade, J.; Tirado, J.L.; Corredor, J.I.; Pérez Vicente, C. Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. Chem. Mater. 2004, 16, 5721–5725. [Google Scholar] [CrossRef]
- Pelegov, D.V.; Slautin, B.N.; Gorshkov, V.S.; Zelenovskiy, P.S.; Kiselev, E.A.; Kholkin, A.L.; Shur, V.Y. Raman spectroscopy, “big data”, and local heterogeneity of solid state synthesized lithium titanate. J. Power Sources 2017, 346, 143–150. [Google Scholar] [CrossRef]
- Pelegov, D.V.; Nasara, R.N.; Tu, C.; Lin, S. Defects in Li4Ti5O12 induced by carbon deposition: An analysis of unidentified bands in Raman spectra. Phys. Chem. Chem. Phys. 2019, 21, 20757–20763. [Google Scholar] [CrossRef] [PubMed]
- Mukai, K.; Kato, Y. Role of Oxide Ions in Thermally Activated Lithium Diffusion of Li[Li1/3Ti5/3]O4: X-ray Diffraction Measurements and Raman Spectroscopy. J. Phys. Chem. C 2015, 119, 10273–10281. [Google Scholar] [CrossRef]
- Chan, H.Y.H.; Takoudis, C.G.; Weaver, M.J. Oxide Film Formation and Oxygen Adsorption on Copper in Aqueous Media As Probed by Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. B 1999, 103, 357–365. [Google Scholar] [CrossRef]
- Deng, Y.; Handoko, A.D.; Du, Y.; Xi, S.; Yeo, B.S. In Situ Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of Cu III Oxides as Catalytically Active Species. ACS Catal. 2016, 6, 2473–2481. [Google Scholar] [CrossRef]
- Michalska, M.; Krajewski, M.; Ziolkowska, D.; Hamankiewicz, B.; Andrzejczuk, M.; Lipinska, L.; Korona, K.P.; Czerwinski, A. Influence of milling time in solid-state synthesis on structure, morphology and electrochemical properties of Li4Ti5O12 of spinel structure. Powder Technol. 2014, 266, 372–377. [Google Scholar] [CrossRef]
- Knyazev, A.V.; Smirnova, N.N.; Mączka, M.; Knyazeva, S.S.; Letyanina, I.A. Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4. Thermochim. Acta 2013, 559, 40–45. [Google Scholar] [CrossRef]
- Yue, J.; Suchomski, C.; Brezesinski, T.; Smarsly, B.M. Polymer-Templated Mesoporous Li4Ti5O12 as a High-Rate and Long-Life Anode Material for Rechargeable Li-Ion Batteries. ChemNanoMat 2015, 1, 415–421. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 2009, 12, 60–69. [Google Scholar] [CrossRef]
- Pendry, J.B. Controlling Electromagnetic Fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [Green Version]
- Tzarouchis, D.; Sihvola, A. Light Scattering by a Dielectric Sphere: Perspectives on the Mie Resonances. Appl. Sci. 2018, 8, 184. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Wang, Z.; Chen, L. Regeneration and characterization of air-oxidized LiFePO4. Electrochem. Commun. 2008, 10, 1442–1444. [Google Scholar] [CrossRef]
- Ziolkowska, D.; Korona, K.P.; Hamankiewicz, B.; Wu, S.-H.; Chen, M.-S.; Jasinski, J.B.; Kaminska, M.; Czerwinski, A. The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochim. Acta 2013, 108, 532–539. [Google Scholar] [CrossRef]
- Jugović, D.; Mitrić, M.; Milović, M.; Cvjetićanin, N.; Jokić, B.; Umićević, A.; Uskoković, D. The influence of fluorine doping on the structural and electrical properties of the LiFePO4 powder. Ceram. Int. 2017, 43, 3224–3230. [Google Scholar] [CrossRef] [Green Version]
- Lazarević, Z.Ž.; Križan, G.; Križan, J.; Milutinović, A.; Ivanovski, V.N.; Mitrić, M.; Gilić, M.; Umićević, A.; Kuryliszyn-Kudelska, I.; Romčević, N.Ž. Characterization of LiFePO4 samples obtained by pulse combustion under various conditions of synthesis. J. Appl. Phys. 2019, 126, 085109. [Google Scholar] [CrossRef]
- Mukai, K.; Kato, Y.; Nakano, H. Understanding the Zero-Strain Lithium Insertion Scheme of Li[Li1/3Ti5/3]O4: Structural Changes at Atomic Scale Clarified by Raman Spectroscopy. J. Phys. Chem. C 2014, 118, 2992–2999. [Google Scholar] [CrossRef]
- Pelegov, D.V.; Slautin, B.N.; Zelenovskiy, P.S.; Kuznetsov, D.K.; Kiselev, E.A.; Alikin, D.O.; Kholkin, A.L.; Shur, V.Y. Single particle structure characterization of solid-state synthesized Li4Ti5O12. J. Raman Spectrosc. 2017, 48, 278–283. [Google Scholar] [CrossRef]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Swamy, V.; Kuznetsov, A.; Dubrovinsky, L.S.; Caruso, R.A.; Shchukin, D.G.; Muddle, B.C. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71, 184302. [Google Scholar] [CrossRef]
- Nasara, R.N.; Lin, S. Recent Developments in Using Computational Materials Design for High-Performance Li4Ti5O12 Anode Material for Lithium-Ion Batteries. Multiscale Sci. Eng. 2019, 1, 87–107. [Google Scholar] [CrossRef] [Green Version]
- Siegal, Y.; Glezer, E.N.; Huang, L.; Mazur, E. Laser-Induced Phase Transitions in Semiconductors. Annu. Rev. Mater. Sci. 1995, 25, 223–247. [Google Scholar] [CrossRef]
- Yen, R.; Liu, J.M.; Kurz, H.; Bloembergen, N. Space-time resolved reflectivity measurements of picosecond laser-pulse induced phase transitions in (111) silicon surface layers. Appl. Phys. A Solids Surfaces 1982, 27, 153–160. [Google Scholar] [CrossRef]
- Bonse, J.; Brzezinka, K.-W.; Meixner, A. Modifying single-crystalline silicon by femtosecond laser pulses: An analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy. Appl. Surf. Sci. 2004, 221, 215–230. [Google Scholar] [CrossRef]
- Ryabin, A.A.; Pelegov, D.V. Spatial Resolution of Micro-Raman Spectroscopy for Particulate Lithium Iron Phosphate (LiFePO4). Appl. Spectrosc. 2022, 76, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Foucher, F.; Guimbretière, G.; Bost, N.; Westall, F. Petrographical and Mineralogical Applications of Raman Mapping. In Raman Spectroscopy and Applications; InTech: London, UK, 2017. [Google Scholar]
- Foucher, F. Influence of laser shape on thermal increase during micro-Raman spectroscopy analyses. J. Raman Spectrosc. 2022, 53, 664–676. [Google Scholar] [CrossRef]
- Everall, N.J. Confocal Raman microscopy: Common errors and artefacts. Analyst 2010, 135, 2512–2522. [Google Scholar] [CrossRef] [PubMed]
- Everall, N.J. Confocal Raman Microscopy: Why the Depth Resolution and Spatial Accuracy Can Be Much Worse Than You Think. Appl. Spectrosc. 2000, 54, 1515–1520. [Google Scholar] [CrossRef]
- Csarnovics, I.; Veres, M.; Nemec, P.; Molnár, S.; Kökényesi, S. Surface plasmon enhanced light-induced changes in Ge-Se amorphous chalcogenide-gold nanostructures. J. Non-Cryst. Solids 2021, 553, 120491. [Google Scholar] [CrossRef]
- Sumner, A.L.; Menke, E.J.; Dubowski, Y.; Newberg, J.T.; Penner, R.M.; Hemminger, J.C.; Wingen, L.M.; Brauers, T.; Finlayson-Pitts, B.J. The nature of water on surfaces of laboratory systems and implications for heterogeneous chemistry in the troposphere. Phys. Chem. Chem. Phys. 2004, 6, 604. [Google Scholar] [CrossRef] [Green Version]
- Rabinovich, Y.I.; Adler, J.J.; Esayanur, M.S.; Ata, A.; Singh, R.K.; Moudgil, B.M. Capillary forces between surfaces with nanoscale roughness. Adv. Colloid Interface Sci. 2002, 96, 213–230. [Google Scholar] [CrossRef]
- Butt, H.-J.; Kappl, M. Normal capillary forces. Adv. Colloid Interface Sci. 2009, 146, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Maier, S.; Salmeron, M. How Does Water Wet a Surface? Acc. Chem. Res. 2015, 48, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Weeks, B.L.; Vaughn, M.W.; DeYoreo, J.J. Direct Imaging of Meniscus Formation in Atomic Force Microscopy Using Environmental Scanning Electron Microscopy. Langmuir 2005, 21, 8096–8098. [Google Scholar] [CrossRef]
- Asay, D.B.; Kim, S.H. Effects of adsorbed water layer structure on adhesion force of silicon oxide nanoasperity contact in humid ambient. J. Chem. Phys. 2006, 124, 174712. [Google Scholar] [CrossRef] [PubMed]
- Barthel, A.J.; Kim, S.H. Surface chemistry dependence of water adsorption on solid substrates in humid ambient and humidity effects on wear of copper and glass surfaces. Tribol.-Mater. Surfaces Interfaces 2013, 7, 63–68. [Google Scholar] [CrossRef]
- Geissler, P.L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. Autoionization in Liquid Water. Science 2001, 291, 2121–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, K.-G.; Vasu, K.S.; Cherian, C.T.; Neek-Amal, M.; Zhang, J.C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O.P.; Kravets, V.G.; Abraham, J.; et al. Electrically controlled water permeation through graphene oxide membranes. Nature 2018, 559, 236–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belharouak, I.; Koenig, G.M.; Tan, T.; Yumoto, H.; Ota, N.; Amine, K. Performance Degradation and Gassing of Li4Ti5O12/LiMn2O4 Lithium-Ion Cells. J. Electrochem. Soc. 2012, 159, A1165–A1170. [Google Scholar] [CrossRef]
- Akhmanov, S.A.; Emel’yanov, V.I.; Koroteev, N.I.; Seminogov, V.N. Interaction of powerful laser radiation with the surfaces of semiconductors and metals: Nonlinear optical effects and nonlinear optical diagnostics. Sov. Phys. Uspekhi 1985, 28, 1084–1124. [Google Scholar] [CrossRef]
- Wu, K.; Yang, J.; Zhang, Y.; Wang, C.; Wang, D. Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. J. Appl. Electrochem. 2012, 42, 989–995. [Google Scholar] [CrossRef]
- Han, C.; He, Y.-B.; Liu, M.; Li, B.; Yang, Q.-H.; Wong, C.-P.; Kang, F. A review of gassing behavior in Li4Ti5O12-based lithium ion batteries. J. Mater. Chem. A 2017, 5, 6368–6381. [Google Scholar] [CrossRef]
Exp.→ | I | SEM | II | III | IV | V | SEM | |||||||||||
Day→ | 01 | 05 | 15 | 16 | 18 | 29 | 32 | 57 | 60 | 71 | 74 | 101 | ||||||
Control group of particles (0.09 mW) | #22 | SEM imaging | SEM imaging | |||||||||||||||
#23 | ||||||||||||||||||
#26 | ||||||||||||||||||
#28 | ||||||||||||||||||
#29 | ||||||||||||||||||
#31 | ||||||||||||||||||
#33 | ||||||||||||||||||
#36 | ||||||||||||||||||
#38 | ||||||||||||||||||
#39 | ||||||||||||||||||
Verification group of particles (0.09–4.9–0.09 mW) | #21 | |||||||||||||||||
#24 | × | |||||||||||||||||
#25 | ||||||||||||||||||
#27 | ||||||||||||||||||
#30 | ||||||||||||||||||
#32 | ||||||||||||||||||
#34 | ||||||||||||||||||
#35 | ||||||||||||||||||
#37 | ||||||||||||||||||
#40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikiforov, A.A.; K. Kuznetsov, D.; Nasara, R.N.; Govindarajan, K.; Lin, S.-k.; Pelegov, D.V. Fast and Slow Laser-Stimulated Degradation of Mn-Doped Li4Ti5O12. Batteries 2022, 8, 251. https://doi.org/10.3390/batteries8120251
Nikiforov AA, K. Kuznetsov D, Nasara RN, Govindarajan K, Lin S-k, Pelegov DV. Fast and Slow Laser-Stimulated Degradation of Mn-Doped Li4Ti5O12. Batteries. 2022; 8(12):251. https://doi.org/10.3390/batteries8120251
Chicago/Turabian StyleNikiforov, Aleksey A., Dmitrii K. Kuznetsov, Ralph N. Nasara, Kaviarasan Govindarajan, Shih-kang Lin, and Dmitry V. Pelegov. 2022. "Fast and Slow Laser-Stimulated Degradation of Mn-Doped Li4Ti5O12" Batteries 8, no. 12: 251. https://doi.org/10.3390/batteries8120251
APA StyleNikiforov, A. A., K. Kuznetsov, D., Nasara, R. N., Govindarajan, K., Lin, S. -k., & Pelegov, D. V. (2022). Fast and Slow Laser-Stimulated Degradation of Mn-Doped Li4Ti5O12. Batteries, 8(12), 251. https://doi.org/10.3390/batteries8120251