In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review
Abstract
:1. Introduction
2. Discussion
2.1. In Situ Diagnostic Techniques
2.1.1. Cell Charging and Discharging
2.1.2. Polarization Test
- Activation polarization-At lower current densities, the polarization curve is dominated by activation polarization that reflects the energy needed to overcome the activation energy associated with the charge transfer processes. It is a measure of the kinetics of the charge transfer reactions at the electrode-electrolyte interfaces. This form of loss can be minimized by electrode pre-treatment (thermal, chemical or catalyst addition) or by increasing the electrode surface area that reduces the current per unit area of the electrode. The use of a high surface area, porous carbon felt will usually reduce the activation polarization by reducing the effective current density.
- Ohmic polarization-Ohmic polarization in a cell consists of voltage losses associated with the ionic transport resistances of the electrolyte and membrane, the electrical resistance of the cell components (current collector, graphite felt and BP) and the contact resistances at the interfaces (current collector to BP and BP to the electrode). The linear part of the polarization curve is dominated by the ohmic losses that can be determined from the slope of this region of the plot. Strategies are implemented to minimize resistance using highly conducting electrodes and thin membranes [54]. The contact resistances between the porous electrode and the bipolar plate surface are usually minimized by felt compression that also reduces the resistivity of the carbon felt itself. Some battery developers may also apply a conducting paste to glue the felt to the bipolar plate [55].
- Concentration polarization-The concentration polarization is observed in the high current density region and is associated with mass transport limitations in the cell. Concentration overpotential is the result of the change in the concentration of electroactive species at the electrode surface compared with the bulk solution. Electron transfer takes place at the electrode-electrolyte interface and leads to a depletion of the electroactive species at the electrode surface. This leads to the formation of a diffusion layer and ions diffuse from the bulk solution to the electrode surface under the influence of the concentration gradient. At high currents, the supply of reactants cannot keep up with the rate of electron transfer, and this leads to concentration polarization [56]. Flow rate, current density and the concentration of electrolytes influence the concentration overpotential and the limiting current density in the cell.
2.1.3. Reference Electrode Configuration
2.1.4. Spatially Resolved Current or Voltage Mapping
- Printed circuit board (PCB): The basic idea behind this technique is to supplant one or both current collectors (CC) with a PCB. Through the PCB manufacturing technique, a segmented CC can be designed with each segment insulated from each other for individual collection of current/voltage. The thin, flat PCB is placed between the end plate and the flow field to ensure low contact resistance, as shown in Figure 9. A PCB substrate is mostly composed of epoxy glass fiber or polytetrafluoroethylene (PTFE). To minimize the contact resistance and to avoid corrosion, the segments are usually coated with gold. This method offers the possibility of incorporating flow fields of different types directly on the board.
- Resistor network: In the resistor network method, the end BP is divided into electrically isolate segments of the same type to form a resistor network. Characterization can be performed in two ways: active or passive. High resolution or precise shunt resistors are connected in series with each segment. In the passive method, the current density in each segment is calculated from the voltage drop across each precise resistor. The active method requires the direct connection of the resistor to the measurement units. The measurement unit directly obtains the current flowing through each resistor.
- Hall effect sensors: The fundamentals of the Hall effect sensors were introduced by Wieser et al. [98]. This technique employs the use of one Hall effect sensor for each individual segment. A Hall effect sensor is a current transducer with two pairs of terminals to allow for connection to the current source and measurement of the voltage. The sensor works on the Hall effect principle, which states that a current carrying conductor when placed in a magnetic field generates a voltage perpendicular to both the magnetic field and the current. The voltage of the sensor, which is proportional to the current, is determined by the magnetic flux density passing through each sensor.
2.1.5. Electrochemical Impedance Spectroscopy (EIS)
2.1.6. Pressure Drop Measurement
2.1.7. State-of-Charge Monitoring Methods
2.1.8. Spectroscopic Measurement Method
2.1.9. Imaging Techniques
3. Summary and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suberu, M.Y.; Mustafa, M.W.; Bashir, N. Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Shigematsu, T. Redox flow battery for energy storage. SEI Tech. Rev. 2011, 73, 13. [Google Scholar]
- De Leon, C.P.; Frías-Ferrer, A.; González-García, J.; Szánto, D.A.; Walsh, F.C. Walsh, Redox flow cells for energy conversion. J. Power Sources 2006, 160, 716–732. [Google Scholar] [CrossRef] [Green Version]
- Parasuraman, A.; Lim, T.M.; Menictas, C.; Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 2013, 101, 27–40. [Google Scholar] [CrossRef]
- Kear, G.; Shah, A.A.; Walsh, F.C. Development of the all—Vanadium redox flow battery for energy storage: A review of techno-logical, financial and policy aspects. Int. J. Energy Res. 2012, 36, 1105–1120. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Rychcik, M.; Robins, R.G.; Fane, A.G.; Green, M.A. New all—Vanadium redox flow cell. J. Electro Chem. Soc. 1986, 133, 1057. [Google Scholar] [CrossRef]
- Skyllaskazacos, M.; Chakrabarti, H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M. Progress in flow battery research and development. J. Electrochem. Soc. 2011, 158, R55–R79. [Google Scholar] [CrossRef]
- Leung, P.; Li, X.; de Leon, C.P.; Berlouis, L.; Low, C.T.J.; Walsh, F.C. Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2012, 2, 10125–10156. [Google Scholar] [CrossRef]
- Poullikkas, A. A comparative overview of large-scale battery systems for electricity storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, Y.; Cheng, J.; Cao, G.; Yang, Y. Investigation on the stability of electrolyte in vanadium flow batteries. Electrochim. Acta 2013, 96, 268–273. [Google Scholar] [CrossRef]
- Rahman, F.; Skyllas-Kazacos, M. Vanadium redox battery: Positive half-cell electrolyte studies. J. Power Sources 2009, 189, 1212–1219. [Google Scholar] [CrossRef]
- Kim, S.; Thomsen, E.; Xia, G.; Nie, Z.; Bao, J.; Recknagle, K.; Wang, W.; Viswanathan, V.; Luo, Q.; Wei, X.; et al. 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes. J. Power Sources 2013, 237, 300–309. [Google Scholar] [CrossRef]
- Roe, S.; Menictas, C.; Skyllas-Kazacos, M. A High energy density vanadium redox flow battery with 3 m vanadium electrolyte. J. Electrochem. Soc. 2015, 163, A5023–A5028. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, H.; Qian, P.; Zhao, P.; Zhou, H.; Yi, B. Investigations on the Electrode Process of Concentrated V(IV)/V(V) Species in a Vanadium Redox Flow Battery. Acta Phys. Chim. Sin. 2006, 22, 403–408. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, P.; Chen, J.; Cui, B.; Zhang, C.; Wu, F. Conducting polymer composites: Material synthesis and applications in electro-chemical capacitive energy storage. Mater. Chem. Front. 2017, 1, 251–268. [Google Scholar]
- Sun, B.; Skyllas-Kazacos, M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Therm. Treat. Electrochim. Acta 1992, 37, 1253–1260. [Google Scholar] [CrossRef]
- Flox, C.; Rubio-García, J.; Skoumal, M.; Andreu, T.; Morante, J. Thermo–chemical treatments based on NH3/O2 for improved graphite-based fiber electrodes in vanadium redox flow batteries. Carbon 2013, 60, 280–288. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, Y.-J.; Kim, J.-H.; Park, M.-S. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries. Mater. Chem. Phys. 2011, 131, 547–553. [Google Scholar] [CrossRef]
- Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, C.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J. Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries. J. Power Sources 2016, 321, 210–218. [Google Scholar] [CrossRef]
- Ghimire, P.C.; Schweiss, R.; Scherer, G.G.; Lim, T.M.; Wai, N.; Bhattarai, A.; Yan, Q. Optimization of thermal oxidation of electrodes for the performance enhancement in all-vanadium redox flow battery. Carbon 2019, 155, 176–185. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.-S.; Kim, J.Y.; Kim, Y.-J. A Study on the effect of surface modifications of the carbon felt electrode on the performance of vanadium redox flow battery. ECS Meet. Abstr. 2010, 405. [Google Scholar] [CrossRef]
- Li, W.W.; Chu, Y.Q.; Ma, C.A. Highly hydroxylated graphite felts used as electrodes for a vanadium redox flow battery. Adv. Mater. Res. 2014, 936, 471–475. [Google Scholar] [CrossRef]
- Sun, B.; Skyllas-Kazacos, M. Chemical modification of graphite electrode materials for vanadium redox flow battery applica-tion—part II. Acid treatments. Electrochim. Acta 1992, 37, 2459–2465. [Google Scholar] [CrossRef]
- Wu, T.; Huang, K.; Liu, S.; Zhuang, S.; Fang, D.; Li, S.; Lu, D.; Su, A. Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery. J. Solid State Electrochem. 2011, 16, 579–585. [Google Scholar] [CrossRef]
- Kim, K.J.; Lee, S.-W.; Yim, T.; Kim, J.-G.; Choi, J.W.; Kim, J.H.; Park, M.-S.; Kim, Y.-J. A new strategy for integrating abundant oxygen functional groups into carbon felt electrode for vanadium redox flow batteries. Sci. Rep. 2015, 4, 6906. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Skyllas-Kazakos, M. Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution. Electrochim. Acta 1991, 36, 513–517. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, M.-S.; Kim, J.-H.; Hwang, U.; Lee, N.J.; Jeong, G.; Kim, Y.-J. Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries. Chem. Commun. 2012, 48, 5455–5457. [Google Scholar] [CrossRef]
- González, Z.; Sanchez, A.S.; Blanco, C.; Granda, M.; Menéndez, R.; Santamaría, R. Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochem. Commun. 2011, 13, 1379–1382. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Gu, M.; Nie, Z.; Wei, X.; Wang, C.; Sprenkle, V.; Wang, W. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Lett. 2014, 14, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhang, H.; Liu, T.; Li, X.; Liu, Z. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery. J. Power Sources 2012, 218, 455–461. [Google Scholar] [CrossRef]
- Wei, L.; Zhao, T.; Zeng, L.; Zhou, X.; Zeng, Y. Titanium Carbide Nanoparticle—Decorated Electrode Enables Significant En-hancement in Performance of All—Vanadium Redox Flow Batteries. Energy Technol. 2016, 4, 990–996. [Google Scholar] [CrossRef]
- Yang, C.; Wang, H.; Lu, S.; Wu, C.; Liu, Y.; Tan, Q.; Liang, D.; Xiang, Y. Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries. Electrochim. Acta 2015, 182, 834–840. [Google Scholar] [CrossRef]
- Ghimire, P.C.; Schweiss, R.; Scherer, G.G.; Wai, N.; Lim, T.M.; Bhattarai, A.; Nguyen, T.D.; Yan, Q. Titanium carbide-decorated graphite felt as high performance negative electrode in vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 6625–6632. [Google Scholar] [CrossRef]
- Cao, L.; Skyllas-Kazacos, M.; Wang, D.-W. modification based on moo3 as electrocatalysts for high power density vanadium redox flow batteries. ChemElectroChem 2017, 4, 1836–1839. [Google Scholar] [CrossRef]
- Schwenzer, B.; Zhang, J.; Kim, S.; Li, L.; Liu, J.; Yang, Z. Membrane development for vanadium redox flow batteries. ChemSusChem 2011, 4, 1388–1406. [Google Scholar] [CrossRef] [PubMed]
- Sukkar, T.; Skyllas-Kazacos, M. Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery. J. Membr. Sci. 2003, 222, 249–264. [Google Scholar] [CrossRef]
- Mohammadi, T.; Skyllas-Kazacos, M. Characterisation of novel composite membrane for redox flow battery applications. J. Membr. Sci. 1995, 98, 77–87. [Google Scholar] [CrossRef]
- Blanc, C.; Rufer, A. Optimization of the operating point of a vanadium redox flow battery. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 2600–2605. [Google Scholar]
- Houser, J.; Clement, J.; Pezeshki, A.; Mench, M.M. Influence of architecture and material properties on vanadium redox flow battery performance. J. Power Sources 2016, 302, 369–377. [Google Scholar] [CrossRef]
- Zhang, M.; Moore, M.; Watson, J.S.; Zawodzinski, T.A.; Counce, R.M. Capital Cost Sensitivity analysis of an all-vanadium redox-flow battery. J. Electrochem. Soc. 2012, 159, A1183–A1188. [Google Scholar] [CrossRef]
- Eckroad, S. Vanadium Redox Flow Batteries: An In-Depth Analysis; Electric Power Research Institute: Palo Alto, CA, USA, 2007; p. 1014836. [Google Scholar]
- Chen, D.; Hickner, M.; Agar, E.; Kumbur, E.C. Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries. Electrochem. Commun. 2013, 26, 37–40. [Google Scholar] [CrossRef]
- Agar, E.; Dennison, C.; Knehr, K.; Kumbur, E. Identification of performance limiting electrode using asymmetric cell configuration in vanadium redox flow batteries. J. Power Sources 2013, 225, 89–94. [Google Scholar] [CrossRef]
- Benjamin, A.; Agar, E.; Dennison, C.; Kumbur, E. On the quantification of coulombic efficiency for vanadium redox flow batteries: Cutoff voltages vs. state-of-charge limits. Electrochem. Commun. 2013, 35, 42–44. [Google Scholar] [CrossRef]
- Ulaganathan, M.; Jain, A.; Aravindan, V.; Jayaraman, S.; Ling, W.C.; Lim, T.M.; Srinivasan, M.; Yan, Q.; Madhavi, S. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. J. Power Sources 2015, 274, 846–850. [Google Scholar] [CrossRef]
- Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern, S.; Hiller, H.; Hager, M.D.; Schubert, U. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nat. Cell Biol. 2015, 527, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Ryu, J.; Cho, J. Nanostructured electrocatalysts for all—Vanadium redox flow batteries. Chemistry 2015, 10, 2096–2110. [Google Scholar] [CrossRef]
- Maharjan, M.; Bhattarai, A.; Ulaganathan, M.; Wai, N.; Oo, M.O.; Wang, J.-Y.; Lim, T.M. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery. J. Power Sources 2017, 362, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Skyllas-Kazacos, M.; Kazacos, G.; Poon, G.; Verseema, H. Recent advances with UNSW vanadium-based redox flow batteries. Int. J. Energy Res. 2009, 34, 182–189. [Google Scholar] [CrossRef]
- Sukkar, T.; Skyllas-Kazacos, M. Water transfer behaviour across cation exchange membranes in the vanadium redox battery. J. Membr. Sci. 2003, 222, 235–247. [Google Scholar] [CrossRef]
- Mohammadi, T.; Chieng, S.; Kazacos, M.S. Water transport study across commercial ion exchange membranes in the vanadium redox flow battery. J. Membr. Sci. 1997, 133, 151–159. [Google Scholar] [CrossRef]
- Akter, P.; Li, Y.; Bao, J.; Skyllas-Kazacos, M.; Rahman, M.F. Optimal charging of vanadium redox flow battery with time-varying input power. Batteries 2019, 5, 20. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J.; Park, M.-S.; Kim, Y.-J.; Kim, J.H.; Dou, S.X.; Skyllas-Kazacos, M. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries. J. Mater. Chem. A 2015, 3, 16913–16933. [Google Scholar] [CrossRef]
- Qian, P.; Zhang, H.; Chen, J.; Wen, Y.; Luo, Q.; Liu, Z.; You, D.; Yi, B. A novel electrode-bipolar plate assembly for vanadium redox flow battery applications. J. Power Sources 2008, 175, 613–620. [Google Scholar] [CrossRef]
- Yoon, K.J.; Huang, W.; Ye, G.; Gopalan, S.; Pal, U.B.; Seccombe, D.A., Jr. Electrochemical performance of solid oxide fuel cells manufactured by single step co-firing process. J. Electrochem. Soc. 2007, 154, B389–B395. [Google Scholar] [CrossRef]
- Mench, M.M. Fuel Cell Engines; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Aaron, D.; Tang, Z.; Papandrew, A.B.; Zawodzinski, T.A. Polarization curve analysis of all-vanadium redox flow batteries. J. Appl. Electrochem. 2011, 41, 1175–1182. [Google Scholar] [CrossRef]
- Kumar, S.; Jayanti, S. Effect of flow field on the performance of an all-vanadium redox flow battery. J. Power Sources 2016, 307, 782–787. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, T.; Zhang, C. Performance of a vanadium redox flow battery with and without flow fields. Electrochim. Acta 2014, 142, 61–67. [Google Scholar] [CrossRef]
- Liu, Q.H.; Grim, G.M.; Papandrew, A.B.; Turhan, A.; Zawodzinski, T.A.; Mench, M.M. High performance vanadium redox flow batteries with optimized electrode configuration and membrane selection. J. Electrochem. Soc. 2012, 159, A1246–A1252. [Google Scholar] [CrossRef]
- Maurya, S.; Nguyen, P.T.; Kim, Y.S.; Kang, Q.; Mukundan, R. Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery. J. Power Sources 2018, 404, 20–27. [Google Scholar] [CrossRef]
- Pezeshki, A.M.; Clement, J.T.; Veith, G.; Zawodzinski, T.A.; Mench, M.M. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation. J. Power Sources 2015, 294, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Aaron, D.; Liu, Q.; Tang, Z.; Grim, G.; Papandrew, A.; Turhan, A.; Zawodzinski, T.; Mench, M. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 2012, 206, 450–453. [Google Scholar] [CrossRef]
- Brown, L.D.; Neville, T.P.; Jervis, R.; Mason, T.J.; Shearing, P.R.; Brett, D.J. The effect of felt compression on the performance and pressure drop of all-vanadium redox flow batteries. J. Energy Storage 2016, 8, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.G.; Ye, Q.; Cheng, P.; Zhao, T.S. Effects of operating temperature on the performance of vanadium redox flow batteries. Appl. Energy 2015, 155, 349–353. [Google Scholar]
- Chen, J.-Y.; Hsieh, C.-L.; Hsu, N.-Y.; Chou, Y.-S.; Chen, Y.-S. Determining the limiting current density of vanadium redox flow batteries. Energies 2014, 7, 5863–5873. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.; Bu, Y.; Kubin, J.; Weinman, D. Effects of current scan rate on the polarization curve of vanadium redox flow batteries. In Proceedings of the 2017 International Energy and Sustainability Conference (IESC), New York, NY, USA, 19–20 October 2017; pp. 1–4. [Google Scholar]
- Darling, R.M.; Perry, M.L. The Influence of Electrode and channel configurations on flow-battery performance. ECS Meet. Abstr. 2014, 161, A1381. [Google Scholar] [CrossRef]
- Ertugrul, T.Y.; Clement, J.T.; Gandomi, Y.A.; Aaron, D.S.; Mench, M.M. In-situ current distribution and mass transport analysis via strip cell architecture for a vanadium redox flow battery. J. Power Sources 2019, 437, 226920. [Google Scholar] [CrossRef]
- Küver, A.; Vogel, I.; Vielstich, W. Distinct performance evaluation of a direct methanol SPE fuel cell. A new method using a dynamic hydrogen reference electrode. J. Power Sources 1994, 52, 77–80. [Google Scholar] [CrossRef]
- Büchi, F.; Scherer, G.G. Investigation of the transversal water profile in nafion membranes in polymer electrolyte fuel cells. J. Electrochem. Soc. 2001, 148, A183–A188. [Google Scholar] [CrossRef]
- Ren, X.; Springer, T.E.; Gottesfeld, S. Water and Methanol Uptakes in nafion membranes and membrane effects on direct methanol cell performance. J. Electrochem. Soc. 2000, 147, 92–98. [Google Scholar] [CrossRef]
- Elgammal, R.; Tang, Z.; Sun, C.-N.; Lawton, J.; Zawodzinski, T.A. Species uptake and mass transport in membranes for vanadium redox flow batteries. Electrochim. Acta 2017, 237, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Langner, J.; Melke, J.; Ehrenberg, H.; Roth, C. Determination of overpotentials in all vanadium redox flow batteries. ECS Trans. 2014, 58, 1–7. [Google Scholar] [CrossRef]
- Ghimire, P.C. Electrode Modification and In-Situ Studies to Enhance the Performance of Vanadium Redox Flow Batteries. Ph.D. Thesis, Nanyang Technological University, Singapore, 2020. [Google Scholar]
- Bhattarai, A.; Whitehead, A.H.; Schweiss, R.; Scherer, G.G.; Skyllas-Kazacos, M.; Wai, N.; Nguyen, T.D.; Ghimire, P.C.; Oo, M.O.; Hng, H.H. Anomalous behavior of anion exchange membrane during operation of a vanadium redox flow battery. ACS Appl. Energy Mater. 2019, 2, 1712–1719. [Google Scholar] [CrossRef]
- Aaron, D.S.; Sun, C.-N.; Bright, M.; Papandrew, A.B.; Mench, M.M.; Zawodzinski, T.A. In situ kinetics studies in all-vanadium redox flow batteries. ECS Electrochem. Lett. 2013, 2, A29–A31. [Google Scholar] [CrossRef]
- Liu, Q.; Turhan, A.; Zawodzinski, T.A.; Mench, M.M. In situ potential distribution measurement in an all-vanadium flow battery. Chem. Commun. 2013, 49, 6292–6294. [Google Scholar] [CrossRef]
- Gandomi, Y.A.; Aaron, D.S.; Zawodzinski, T.A.; Mench, M.M. In Situ potential distribution measurement and validated model for all-vanadium redox flow battery. J. Electrochem. Soc. 2015, 163, A5188–A5201. [Google Scholar] [CrossRef] [Green Version]
- Ventosa, E.; Skoumal, M.; Vázquez, F.J.; Flox, C.; Morante, J.R. Operando studies of all-vanadium flow batteries: Easy-to-make reference electrode based on silver–silver sulfate. J. Power Sources 2014, 271, 556–560. [Google Scholar] [CrossRef]
- Choi, C.; Choi, Y.; Kim, S.; Jung, H.-Y.; Kim, H.-T. Resistor Design for the use of dynamic hydrogen electrode in vanadium redox flow batteries. Electrochim. Acta 2016, 213, 490–495. [Google Scholar] [CrossRef]
- Reed, D.; Thomsen, E.; Li, B.; Wang, W.; Nie, Z.; Koeppel, B.; Kizewski, J.; Sprenkle, V. Sprenkle, Stack developments in a kW class all va-nadium mixed acid redox flow battery at the Pacific Northwest National Laboratory. J. Electrochem. Soc. 2016, 163, A5211–A5219. [Google Scholar] [CrossRef] [Green Version]
- Schweiss, R.; Pritzl, A.; Meiser, C. Parasitic hydrogen evolution at different carbon fiber electrodes in vanadium redox flow batteries. J. Electrochem. Soc. 2016, 163, A2089–A2094. [Google Scholar] [CrossRef]
- Shah, A.; Al-Fetlawi, H.; Walsh, F. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim. Acta 2010, 55, 1125–1139. [Google Scholar] [CrossRef] [Green Version]
- Corcuera, S.; Skyllas-Kazacos, M. State-of-charge monitoring and electrolyte rebalancing methods for the vanadium redox flow battery. Eur. Chem. Bull. 2012, 1, 511–519. [Google Scholar]
- Noack, J.; Wietschel, L.; Roznyatovskaya, N.; Pinkwart, K.; Tübke, J. Techno-Economic modeling and analysis of redox flow battery systems. Energies 2016, 9, 627. [Google Scholar] [CrossRef]
- Wandschneider, F.; Finke, D.; Grosjean, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H. Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction. J. Power Sources 2014, 272, 436–447. [Google Scholar] [CrossRef]
- Al-Fetlawi, H.; Shah, A.; Walsh, F. Non-isothermal modelling of the all-vanadium redox flow battery. Electrochim. Acta 2009, 55, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Trovò, A.; Marini, G.; Sutto, A.; Alotto, P.; Giomo, M.; Moro, F.; Guarnieri, M. Standby thermal model of a vanadium redox flow battery stack with crossover and shunt-current effects. Appl. Energy 2019, 240, 893–906. [Google Scholar] [CrossRef]
- Schneider, I.; Kramer, D.; Wokaun, A.; Scherer, G. Spatially resolved characterization of PEFCs using simultaneously neutron radiography and locally resolved impedance spectroscopy. Electrochem. Commun. 2005, 7, 1393–1397. [Google Scholar] [CrossRef]
- Schneider, I.A.; Scherer, G.G. Local transient techniques in polymer electrolyte fuel cell (PEFC) diagnostics. In Handbook of Fuel Cells; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Kalyvas, C.; Kucernak, A.; Brett, D.; Hinds, G.; Atkins, S.; Brandon, N. Spatially resolved diagnostic methods for polymer elec-trolyte fuel cells: A review. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 254–275. [Google Scholar] [CrossRef]
- Zamel, N.; Hanke-Rauschenbach, R.; Kirsch, S.; Bhattarai, A.; Gerteisen, D. Relating the N-shaped polarization curve of a PEM fuel cell to local oxygen starvation and hydrogen evolution. Int. J. Hydrogen Energy 2013, 38, 15318–15327. [Google Scholar] [CrossRef]
- Zamel, N.; Bhattarai, A.; Gerteisen, D. Measurement of Spatially Resolved Impedance Spectroscopy with Local Perturbation. Fuel Cells 2013, 13, 910–916. [Google Scholar] [CrossRef]
- Pérez, L.C.; Brandão, L.; Sousa, J.; Mendes, A. Segmented polymer electrolyte membrane fuel cells—A review. Renew. Sustain. Energy Rev. 2011, 15, 169–185. [Google Scholar] [CrossRef]
- Clement, J.T.; Aaron, D.S.; Mench, M.M. In Situ Localized Current Distribution Measurements in All-Vanadium Redox Flow Batteries. J. Electrochem. Soc. 2016, 163, A5220–A5228. [Google Scholar] [CrossRef] [Green Version]
- Wieser, C.; Helmbold, A.; Gülzow, E. A new technique for two-dimensional current distribution measurements in electrochemical cells. J. Appl. Electrochem. 2000, 30, 803–807. [Google Scholar] [CrossRef]
- Hsieh, W.-Y.; Leu, C.-H.; Wu, C.-H.; Chen, Y.-S. Measurement of local current density of all-vanadium redox flow batteries. J. Power Sources 2014, 271, 245–251. [Google Scholar] [CrossRef]
- Gerber, T.; Fischer, P.; Pinkwart, K.; Tübke, J. Segmented printed circuit board electrode for locally-resolved current density measurements in all-vanadium redox flow batteries. Batteries 2019, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, A.; Wai, N.; Schweiss, R.; Whitehead, A.; Scherer, G.G.; Ghimire, P.C.; Nguyen, T.D.; Hng, H.H. Study of flow behavior in all-vanadium redox flow battery using spatially resolved voltage distribution. J. Power Sources 2017, 360, 443–452. [Google Scholar] [CrossRef]
- Ghimire, P.C.; Bhattarai, A.; Schweiss, R.; Scherer, G.G.; Wai, N.; Yan, Q. A comprehensive study of electrode compression effects in all vanadium redox flow batteries including locally resolved measurements. Appl. Energy 2018, 230, 974–982. [Google Scholar] [CrossRef]
- Ghimire, P.C.; Bhattarai, A.; Schweiss, R.; Scherer, G.G.; Wai, N.; Lim, T.M.; Yan, Q. Investigation of reactant conversion in the vanadium redox flow battery using spatially resolved state of charge mapping. Batteries 2019, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, J.R.; Barsoukov, E. Impedance spectroscopy: Theory, experiment, and applications. History 2005, 1, 1–13. [Google Scholar]
- Baricci, A.; Zago, M.; Casalegno, A. Modelling analysis of heterogeneity of ageing in high temperature polymer electrolyte fuel cells: Insight into the evolution of electrochemical impedance spectra. Electrochim. Acta 2016, 222, 596–607. [Google Scholar] [CrossRef]
- Harper, J.; Rust, M.; Sayers, B.; Savage, A.; Analytical, S. High-Frequency, High-Current Impedance Spectroscopy: Experimental Protocols Enabling Measurement up to 1 MHz at High Current Densities; Technical Bulletin for Solartron Analytical; Solartron Analytical: Farnborough, UK, 2004. [Google Scholar]
- Wagner, N.; Gülzow, E. Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell. J. Power Sources 2004, 127, 341–347. [Google Scholar] [CrossRef]
- De Levie, R. On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim. Acta 1963, 8, 751–780. [Google Scholar] [CrossRef]
- De Levie, R. On porous electrodes in electrolyte solutions—IV. Electrochim. Acta 1964, 9, 1231–1245. [Google Scholar] [CrossRef]
- Keiser, H.; Beccu, K.D.; Gutjahr, M.A. Abschätzung der Porenstruktur Poröser Elektroden aus Impedanzmessungen. Electrochim. Acta 1976, 21, 539. (In German) [Google Scholar] [CrossRef]
- Keddam, M.; Rakotomavo, C.; Takenouti, H. Impedance of a porous electrode with an axial gradient of concentration. J. Appl. Electrochem. 1984, 14, 437–448. [Google Scholar] [CrossRef]
- Rammelt, U.; Reinhard, G.; Rammelt, K. Impedance dispersion on coated metal electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1984, 180, 327–336. [Google Scholar] [CrossRef]
- Reinhard, G.; Rammelt, U.; Rammelt, K. Analysis of impedance spectra on corroding metals. Corros. Sci. 1986, 26, 109–120. [Google Scholar] [CrossRef]
- Paasch, G.; Micka, K.; Gersdorf, P. Theory of the electrochemical impedance of macrohomogeneous porous electrodes. Electrochim. Acta 1993, 38, 2653–2662. [Google Scholar] [CrossRef]
- MacDonald, J.R.; Johnson, W.B.; Raistrick, I.D. Impedance Spectroscopy; Wiley: New York, NY, USA, 1987; p. 90. [Google Scholar]
- Delahay, P.; Tobias, C.W. Advances in Electrochemistry and Electrochemical Engineering; Wiley: Hoboken, NJ, USA, 1967. [Google Scholar]
- Scheider, W. Theory of the frequency dispersion of electrode polarization. Topology of networks with fractional power fre-quency dependence. J. Phys. Chem. 1975, 79, 127–136. [Google Scholar] [CrossRef]
- Messaggi, M.; Rabissi, C.; Gambaro, C.; Meda, L.; Casalegno, A.; Zago, M. Investigation of vanadium redox flow batteries per-formance through locally-resolved polarisation curves and impedance spectroscopy: Insight into the effects of electrolyte, flow field geometry and electrode thickness. J. Power Sources 2020, 449, 227588. [Google Scholar] [CrossRef]
- Hsieh, C.-L.; Tsai, P.-H.; Hsu, N.-Y.; Chen, Y.-S. Effect of compression ratio of graphite felts on the performance of an all-vanadium redox flow battery. Energies 2019, 12, 313. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.-N.; Delnick, F.M.; Aaron, D.S.; Papandrew, A.B.; Mench, M.M.; Zawodzinski, T.A., Jr. Probing electrode losses in all-vanadium redox flow batteries with impedance spectroscopy. ECS Electrochem. Lett. 2013, 2, A43–A45. [Google Scholar] [CrossRef] [Green Version]
- Mazur, P.; Mrlik, J.; Charvat, J.; Pocedic, J.; Vrana, J.; Dundalek, J.; Kosek, J. A complex four-point method for the evaluation of ohmic and faradaic losses within a redox flow battery single-cell. MethodsX 2019, 6, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Casalegno, A. Physically-based impedance modeling of the negative electrode in all-vanadium redox flow batteries: Insight into mass transport issues. Electrochim. Acta 2017, 248, 505–517. [Google Scholar] [CrossRef]
- Derr, I.; Bruns, M.; Langner, J.; Fetyan, A.; Melke, J.; Roth, C. Degradation of all-vanadium redox flow batteries (VRFB) investi-gated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation. J. Power Sources 2016, 325, 351–359. [Google Scholar] [CrossRef]
- Schneider, J.; Bulczak, E.; El-Nagar, G.A.; Gebhard, M.; Kubella, P.; Schnucklake, M.; Fetyan, A.; Derr, I.; Roth, C. Degradation phenomena of bismuth-modified felt electrodes in vrfb studied by electrochemical impedance spectroscopy. Batteries 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Noack, J.N.; Vorhauser, L.; Pinkwart, K.; Tuebke, J. Aging studies of vanadium redox flow batteries. ECS Trans. 2011, 33, 3–9. [Google Scholar] [CrossRef]
- Choi, C.; Kim, S.; Kim, R.; Lee, J.; Heo, J.; Kim, H.-T. In-situ observation of the degradation of all-vanadium redox flow batteries with dynamic hydrogen reference electrode under real operation conditions. J. Ind. Eng. Chem. 2019, 70, 355–362. [Google Scholar] [CrossRef]
- Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization. J. Power Sources 2018, 380, 105–114. [Google Scholar] [CrossRef]
- Schneider, J.; Tichter, T.; Khadke, P.; Zeis, R.; Roth, C. Deconvolution of electrochemical impedance data for the monitoring of electrode degradation in VRFB. Electrochim. Acta 2020, 336, 135510. [Google Scholar] [CrossRef]
- Bhattarai, A.; Wai, N.; Schweiss, R.; Whitehead, A.; Lim, T.M.; Hng, H.H. Advanced porous electrodes with flow channels for vanadium redox flow battery. J. Power Sources 2017, 341, 83–90. [Google Scholar] [CrossRef]
- Skyllas-Kazacos, M.; Cao, L.; Kazacos, M.; Kausar, N.; Mousa, A. Vanadium electrolyte studies for the vanadium redox bat-tery—A review. ChemSusChem 2016, 9, 1521–1543. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, T.; Zhang, C. Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries. Appl. Energy 2014, 130, 139–147. [Google Scholar] [CrossRef]
- Oriji, G.; Katayama, Y.; Miura, T. Investigations on V (IV)/V (V) and V (II)/V (III) redox reactions by various electrochemical methods. J. Power Sources 2005, 139, 321–324. [Google Scholar] [CrossRef]
- Haddadi-Asl, V.; Kazacos, M.; Skyllas-Kazacos, M. Conductive carbon-polypropylene composite electrodes for vanadium redox battery. J. Appl. Electrochem. 1995, 25, 29–33. [Google Scholar] [CrossRef]
- Oh, K.; Won, S.; Ju, H. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries. Electrochim. Acta 2015, 181, 13–23. [Google Scholar] [CrossRef]
- Khazaeli, A.; Vatani, A.; Tahouni, N.; Panjeshahi, M.H. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries. J. Power Sources 2015, 293, 599–612. [Google Scholar] [CrossRef]
- Park, S.-K.; Shim, J.; Yang, J.H.; Jin, C.-S.; Lee, B.S.; Lee, Y.S.; Shin, K.-H.; Jeon, J.-D. The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery. Electrochim. Acta 2014, 116, 447–452. [Google Scholar] [CrossRef]
- Tang, A.; Bao, J.; Skyllas-Kazacos, M. Studies on pressure losses and flow rate optimization in vanadium redox flow battery. J. Power Sources 2014, 248, 154–162. [Google Scholar] [CrossRef]
- Reed, D.; Thomsen, E.; Li, B.; Wang, W.; Nie, Z.; Koeppel, B.; Sprenkle, V. Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery. J. Power Sources 2016, 306, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Kee, R.J.; Zhu, H. Distribution of incompressible flow within interdigitated channels and porous electrodes. J. Power Sources 2015, 299, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Ke, X.; Alexander, J.I.D.; Prahl, J.M.; Savinell, R.F. A simple analytical model of coupled single flow channel over porous electrode in vanadium redox flow battery with serpentine flow channel. J. Power Sources 2015, 288, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Zhao, T.; Leung, P. Numerical investigations of flow field designs for vanadium redox flow batteries. Appl. Energy 2013, 105, 47–56. [Google Scholar] [CrossRef]
- Chen, J.Q.; Wang, B.G.; Lv, H.L. Numerical Simulation and experiment on the electrolyte flow distribution for all vanadium redox flow battery. Adv. Mater. Res. 2011, 236–238, 604–607. [Google Scholar] [CrossRef]
- Inoue, M.; Kobayashi, M. Electrode Material for Flow-Through Type Electrolytic Cell, Wherein the Electrode Comprises Carbona-Ceous Material Having at Least One Groove. U.S. Patent 5648184A, 15 July 1997. [Google Scholar]
- Lee, D.G.; Kim, K.H.; Kim, B.G.; Kook, K.M. Multi-Layered Electrode for Redox Flow Battery and Redox Flow Battery Comprising Said Multi-Layered Electrode. Korea Patent 1013708510000, 28 February 2014. [Google Scholar]
- Lee, S.-W. Electrode for a Redox Flow Battery. Korea Patent 1020120077348, 27 January 2014. [Google Scholar]
- Zheng, Z.; Zhang, C.; Ren, J.; Wang, D.; Ma, H.; Ning, H. Electrode for a Flow Battery. CN Patent PCT/CN2010/070198, 17 November 2011. [Google Scholar]
- Ogino, S.; Deguchi, H.; Tokuda, N. Electrode for Redox Flow Battery and Redox Flow Battery. Sumitomo Electric Industries. WIPO Patent WO2019239732, 19 December 2019. [Google Scholar]
- Skyllas-Kazacos, M.; Maddern, B.; Kazacos, M.; Joy, J. State-of-Charge of Redox Cell. AU Patent PCT/AU89/00252, 23 September 1989. [Google Scholar]
- Skyllas-Kazacos, M.; Kazacos, M. State of charge monitoring methods for vanadium redox flow battery control. J. Power Sources 2011, 196, 8822–8827. [Google Scholar] [CrossRef]
- Blanc, P.; Madic, C.; Launay, J.P. Spectrophotometric identification of a mixed-valence cation-cation complex between aquadioxovanadium(V) and aquaoxovanadium(IV) ions in perchloric, sulfuric, and hydrochloric acid media. Inorg. Chem. 1982, 21, 2923–2928. [Google Scholar] [CrossRef]
- Gao, X.; Bourke, A.; Lynch, R.; Leahy, M.; Buckley, D. Presented at The International Conference Flow Battery Forum 2013, Dublin, Ireland, 26–27 June 2013; Swanbarton Limited: Malmesbury, UK, 2013; pp. 20–21. [Google Scholar]
- Buckley, D.N.; Gao, X.; Lynch, R.P.; Quill, N.; Leahy, M.J. Towards Optical Monitoring of Vanadium Redox Flow Batteries (VRFBs): An Investigation of the Underlying Spectroscopy. J. Electrochem. Soc. 2014, 161, A524–A534. [Google Scholar] [CrossRef]
- Oriji, G.; Katayama, Y.; Miura, T. Investigation on V (IV)/V (V) species in a vanadium redox flow battery. Electrochim. Acta 2004, 49, 3091–3095. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Liu, S.; Wu, X.; Li, S. Study of vanadium (IV) species and corresponding electrochemical performance in concentrated sulfuric acid media. Electrochim. Acta 2011, 56, 10197–10203. [Google Scholar] [CrossRef]
- Martin, E.; Bentley, K. Spectrophotometric Investigation of Vanadium (II), Vanadium (III), and Vanadium (IV) in Various Media. Anal. Chem. 1962, 34, 354–358. [Google Scholar] [CrossRef]
- Madic, C.; Begun, G.M.; Hahn, R.L.; Launay, J.P.; Thiessen, W.E. Dimerization of aquadioxovanadium(V) ion in concentrated perchloric and sulfuric acid media. Inorg. Chem. 1984, 23, 469–476. [Google Scholar] [CrossRef]
- Tang, Z.; Aaron, D.S.; Papandrew, A.B.; Zawodzinski, T.A. Monitoring the state of charge of operating vanadium redox flow batteries. ECS Trans. 2012, 41, 1–9. [Google Scholar] [CrossRef]
- Manivannan, A.; Xiao, J.; Liaw, B.Y.; Mukerjee, S.; Doeff, M.; Wang, D. Batteries and Energy Technology Joint Session (General)-226th ECS Meeting; The Electrochemical Society: Pennington, NJ, USA, 2015. [Google Scholar]
- Choi, N.H.; Kwon, S.-K.; Kim, H. Analysis of the Oxidation of the V(II) by Dissolved Oxygen Using UV-Visible Spectrophotometry in a Vanadium Redox Flow Battery. J. Electrochem. Soc. 2013, 160, A973–A979. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Liu, L. An on-line spectroscopic monitoring system for the electrolytes in vanadium redox flow batteries. RSC Adv. 2015, 5, 100235–100243. [Google Scholar] [CrossRef]
- Liu, L.; Xi, J.; Wu, Z.; Zhang, W.; Zhou, H.; Li, W.; Qiu, X. State of charge monitoring for vanadium redox flow batteries by the transmission spectra of V(IV)/V(V) electrolytes. J. Appl. Electrochem. 2012, 42, 1025–1031. [Google Scholar] [CrossRef]
- Liu, L.; Xi, J.; Wu, Z.; Zhang, W.; Zhou, H.; Li, W.; He, Y. Online Spectroscopic Study on the Positive and the Negative Electrolytes in Vanadium Redox Flow Batteries. J. Spectrosc. 2012, 2013, 1–8. [Google Scholar] [CrossRef]
- Jia, C.; Liu, Q.; Sun, C.J.; Yang, F.; Ren, Y.; Heald, S.M.; Liu, Y.; Li, Z.F.; Lu, W.; Xie, J. In situ x-ray near-edge absorption spec-troscopy investigation of the state of charge of all-vanadium redox flow batteries. ACS Appl. Mater. Interfaces 2014, 6, 17920–17925. [Google Scholar] [CrossRef]
- Nelson, G.J.; Harris, W.M.; Lombardo, J.J.; Izzo, J.R.; Chiu, W.K.; Tanasini, P.; Cantoni, M.; Van Herle, J.; Comninellis, C.; Andrews, J.C.; et al. Comparison of SOFC cathode microstructure quantified using X-ray nanotomography and focused ion beam–scanning electron microscopy. Electrochem. Commun. 2011, 13, 586–589. [Google Scholar] [CrossRef]
- Shearing, P.; Bradley, R.; Gelb, J.; Tariq, F.; Withers, P.; Brandon, N. Exploring microstructural changes associated with oxidation in Ni–YSZ SOFC electrodes using high resolution X-ray computed tomography. Solid State Ion. 2012, 216, 69–72. [Google Scholar] [CrossRef]
- Shearing, P.R.; Bradley, R.S.; Gelb, J.; Lee, S.N.; Atkinson, A.; Withers, P.; Brandon, N.P. Using Synchrotron X-Ray Nano-CT to Characterize sofc electrode microstructures in three-dimensions at operating temperature. Electrochem. Solid State Lett. 2011, 14, B117–B120. [Google Scholar] [CrossRef] [Green Version]
- Shearing, P.; Gelb, J.; Yi, J.; Lee, W.-K.; Drakopolous, M.; Brandon, N. Analysis of triple phase contact in Ni–YSZ microstructures using non-destructive X-ray tomography with synchrotron radiation. Electrochem. Commun. 2010, 12, 1021–1024. [Google Scholar] [CrossRef]
- Guan, Y.; Li, W.; Gong, Y.; Liu, G.; Zhang, X.; Chen, J.; Gelb, J.; Yun, W.; Xiong, Y.; Tian, Y.; et al. Analysis of the three-dimensional microstructure of a solid-oxide fuel cell anode using nano X-ray tomography. J. Power Sources 2011, 196, 1915–1919. [Google Scholar] [CrossRef]
- Izzo, J.R.; Joshi, A.S.; Grew, K.N.; Chiu, W.K.S.; Tkachuk, A.; Wang, S.H.; Yun, W. Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution. J. Electrochem. Soc. 2008, 155, B504. [Google Scholar] [CrossRef] [Green Version]
- Shearing, P.; Gelb, J.; Brandon, N. X-ray nano computerised tomography of SOFC electrodes using a focused ion beam sample-preparation technique. J. Eur. Ceram. Soc. 2010, 30, 1809–1814. [Google Scholar] [CrossRef]
- Shearing, P.R.; Eastwood, D.S.; Bradley, R.S.; Gelb, J.; Cooper, S.J.; Tariq, F.; Lee, P.D. Exploring electrochemical devices using X-ray microscopy: 3D micro-structure of batteries and fuel cells. Microsc. Anal. 2013, 27, 19–22. [Google Scholar]
- Nelson Weker, J.; Toney, M.F. Emerging in Situ and Operando Nanoscale X—Ray Imaging Techniques for Energy Storage Ma-terials. Adv. Funct. Mater. 2015, 25, 1622–1637. [Google Scholar] [CrossRef]
- Hartnig, C.; Manke, I.; Schloesser, J.; Krüger, P.; Kuhn, R.; Riesemeier, H.; Wippermann, K.; Banhart, J. High resolution synchrotron X-ray investigation of carbon dioxide evolution in operating direct methanol fuel cells. Electrochem. Commun. 2009, 11, 1559–1562. [Google Scholar] [CrossRef]
- Hartnig, C.; Manke, I.; Kuhn, R.; Kardjilov, N.; Banhart, J.; Lehnert, W. Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells. Appl. Phys. Lett. 2008, 92, 134106. [Google Scholar] [CrossRef] [Green Version]
- Manke, I.; Hartnig, C.; Grünerbel, M.; Lehnert, W.; Kardjilov, N.; Haibel, A.; Hilger, A.; Banhart, J.; Riesemeier, H. Investigation of water evolution and transport in fuel cells with high resolution synchrotron x-ray radiography. Appl. Phys. Lett. 2007, 90, 174105. [Google Scholar] [CrossRef]
- Jervis, R.; Brown, L.D.; Neville, T.P.; Millichamp, J.; Finegan, D.P.; Heenan, T.M.; Brett, D.J.; Shearing, P.R. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries. J. Phys. D Appl. Phys. 2016, 49, 434002. [Google Scholar] [CrossRef]
- Gebhard, M.; Schnucklake, M.; Hilger, A.; Röhe, M.; Osenberg, M.; Krewer, U.; Manke, I.; Roth, C. X–Ray—computed radiography and tomography study of electrolyte invasion and distribution inside pristine and heat–treated carbon felts for redox flow batteries. Energy Technol. 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, N.; Eifert, L.; Banerjee, R.; Köble, K.; Faragó, T.; Zuber, M.; Bazylak, A.; Zeis, R. Visualization of electrolyte flow in vanadium redox flow batteries using synchrotron X-ray radiography and tomography—Impact of electrolyte species and electrode compression. J. Power Sources 2019, 439, 227071. [Google Scholar] [CrossRef]
- Banhart, J. Advanced Tomographic Methods in Materials Research and Engineering; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Dobrzyński, L.; Blinowski, K.; Price, D.L. Neutrons and Solid State Physics. Phys. Today 1995, 48, 93. [Google Scholar] [CrossRef] [Green Version]
- Price, D.; Skold, K. Neutron Scattering; Academic Press: Cambridge, MA, USA, 1987. [Google Scholar]
- Foderaro, A.; Moldauer, P.A. The Elements of Neutron Interaction Theory. Phys. Today 1973, 26, 86. [Google Scholar] [CrossRef]
- Lehmann, E.; Vontobel, P.; Kardjilov, N. Hydrogen distribution measurements by neutrons. Appl. Radiat. Isot. 2004, 61, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Pekula, N.; Heller, K.; Chuang, P.A.; Turhan, A.; Mench, M.M.; Brenizer, J.S.; Ünlü, K. Study of water distribution and transport in a polymer electrolyte fuel cell using neutron imaging. Nucl. Instrum. Methods Physics Res. Section A Accel. Spectrom. Detect. Assoc. Equip. 2005, 542, 134–141. [Google Scholar] [CrossRef]
- Turhan, A.; Heller, K.; Brenizer, J.S.; Mench, M.M. Quantification of liquid water accumulation and distribution in a polymer elec-trolyte fuel cell using neutron imaging. J. Power Sources 2006, 160, 1195–1203. [Google Scholar] [CrossRef]
- Cho, K.T.; Turhan, A.; Lee, J.H.; Brenizer, J.S.; Heller, A.K.; Shi, L.; Mench, M.M. Probing water transport in polymer electrolyte fuel cells with neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2009, 605, 119–122. [Google Scholar] [CrossRef]
- Heller, A.K.; Shi, L.; Brenizer, J.S.; Mench, M.M. Three dimensional water and ice quantification using neutron imaging. J. Radioanal. Nucl. Chem. 2009, 282, 183–186. [Google Scholar] [CrossRef]
- Hatzell, M.C.; Turhan, A.; Kim, S.; Hussey, D.S.; Jacobson, D.L.; Mench, M.M. Quantification of temperature driven flow in a polymer electrolyte fuel cell using high-resolution neutron radiography. J. Electrochem. Soc. 2011, 158, B717–B726. [Google Scholar] [CrossRef] [Green Version]
- LaManna, J.; Chakraborty, S.; Gagliardo, J.J.; Mench, M.M. Isolation of transport mechanisms in PEFCs using high resolution neutron imaging. Int. J. Hydrogen Energy 2014, 39, 3387–3396. [Google Scholar] [CrossRef]
- Owejan, J.; Trabold, T.; Jacobson, D.; Baker, D.; Hussey, D.; Arif, M. In situ investigation of water transport in an operating PEM fuel cell using neutron radiography: Part 2—Transient water accumulation in an interdigitated cathode flow field. Int. J. Heat Mass Transf. 2006, 49, 4721–4731. [Google Scholar] [CrossRef]
- Geiger, A.; Tsukada, A.; Lehmann, E.; Vontobel, P.; Wokaun, A.; Scherer, G. In situ investigation of two-phase flow patterns in flow fields of pefc’s using neutron radiography. Fuel Cells 2002, 2, 92–98. [Google Scholar] [CrossRef]
- Hussey, D.S.; Jacobson, D.L.; Arif, M.; Owejan, J.P.; Gagliardo, J.J.; Trabold, T.A. Neutron images of the through-plane water dis-tribution of an operating PEM fuel cell. J. Power Sources 2007, 172, 225–228. [Google Scholar] [CrossRef]
- Mukherjee, P.P.; Mukundan, R.; Spendelow, J.S.; Davey, J.R.; Borup, R.; Hussey, D.S.; Jacobson, D.L.; Arif, M. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane. ECS Trans. 2009, 25, 505–512. [Google Scholar] [CrossRef]
- Schröder, A.; Wippermann, K.; Lehnert, W.; Stolten, D.; Sanders, T.; Baumhöfer, T.; Kardjilov, N.; Hilger, A.; Banhart, J.; Manke, I. The influence of gas diffusion layer wettability on direct methanol fuel cell performance: A combined local current distribution and high resolution neutron radiography study. J. Power Sources 2010, 195, 4765–4771. [Google Scholar] [CrossRef]
- Schröder, A.; Wippermann, K.; Arlt, T.; Sanders, T.; Baumhöfer, T.; Markötter, H.; Mergel, J.; Lehnert, W.; Stolten, D.; Manke, I.; et al. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells. Electrochem. Commun. 2009, 11, 1606–1609. [Google Scholar] [CrossRef]
- Clement, J.T. Investigation of Localized Performance and Gas Evolution in all-Vanadium Redox Flow Batteries Via In-Situ Dis-tributed Diagnostic Techniques. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2016. [Google Scholar]
- Watkins, T.S.; Sarbapalli, D.; Counihan, M.J.; Danis, A.S.; Zhang, J.; Zhang, L.; Zavadil, K.R.; Rodríguez-López, J. A combined SECM and electrochemical AFM approach to probe interfacial processes affecting molecular reactivity at redox flow battery electrodes. J. Mater. Chem. A 2020, 8, 15734–15745. [Google Scholar] [CrossRef]
- Steimecke, M.; Rümmler, S.; Kühhirt, M.; Bron, M. A linear sweep voltammetric procedure applied to scanning electrochemical microscopy for the characterization of carbon materials towards the vanadium (IV)/(V) redox system. ChemElectroChem 2016, 3, 318–322. [Google Scholar] [CrossRef]
- Steimecke, M.; Rümmler, S.; Schuhmacher, N.-F.; Lindenberg, T.; Hartmann, M.; Bron, M. A Comparative Study of Functionalized High-Purity Carbon Nanotubes towards the V(IV)/V(V) Redox Reaction Using Cyclic Voltammetry and Scanning Electrochemical Microscopy. Electroanalysis 2017, 29, 1056–1061. [Google Scholar] [CrossRef]
- Akter, M.P.; Li, Y.; Bao, J.; Skyllas-Kazacos, M. The Effects of Ripple Current on Vanadium Redox Flow Batteries. In Proceedings of the International Flow Battery Forum, Lyon, France, 9–11 July 2019. [Google Scholar]
Electrochemical Technique | Physical and Spectroscopic |
---|---|
Cell charging and discharging | Reference electrode configuration |
Polarization test | Current and voltage mapping |
Electrochemical impendence spectroscopy | Pressure drop measurement |
X-ray imaging | |
Neutron imaging | |
Scanning electrochemical microscopy | |
X-ray near absorption spectroscopy |
Type of Loss | Origin | Dominant Region | Minimization Techniques |
---|---|---|---|
Activation | - Energy needed to overcome the activation energy associated with charge transfer process | - At low current density | - Electrode pre-treatment procedures (thermal, chemical, catalyst etc.) |
Ohmic | - Voltage loss associated with ionic resistance of membrane, resistance of cell component and contact resistance | - Dominant in the linear portion of the curve | - Decrease in contact resistance by electrode compression - Use of thinner membranes - Binding of porous electrode with bipolar plates |
Concentration | - associated with mass transport limitation i.e., insufficient supply of electrolyte at higher current | - At higher current | - Maintaining adequate flow rate of electrolyte |
Technique | Mechanism | Hardware | Advantages and Limitations |
---|---|---|---|
Resistor | - Measurement of drop in voltage across the resistor | - Full segmentation of the flow field - Wired connection - Multi-channel potentiostat | - Simple implementation - Low spatial resolution - Higher contact resistance |
Hall sensor | - Measurement of magnetic induction due to electric current to determine the local current density | - Fully segmented flow field required - Wired connection to each segment | - Measurement of high current possible - Size limits the units in given area |
Printed circuit board | - Measurement of drop in voltage across shunt resistor | - Wireless connection - Connection build in PCB itself | - High resolution - Segmentation of flow field not required - Can be implement in various flow fields - Higher cost of production |
Technique | Advantages | Limitations |
---|---|---|
Cell charging and discharging | - Straightforward and convenient - Information on efficiencies, capacity and current density | - No information on the type of losses - Cannot specifically provide information on loss mechanism with change in material type and parameter |
Polarization test | - Interpretive tool - Information on type of losses and maximum current density | - No insight to the c efficiency, therefore used in combination with the cell cycling |
Electrochemical impendence spectroscopy | - Provides information on electrochemical interphase | - Highly sensitive technique - To be carried out precisely - Challenging to get stable reference electrode - Interpretation of result is difficult |
Reference electrode configuration | - Information on potential and overpotential in each half of the cell - Information on potential distribution | - Reference electrode adjustment is complicated - Stability of reference electrode over long run is questionable |
Current and voltage mapping | - Information on electrolyte distribution, electrolyte utilization, SOC conversion, flow uniformity etc. | - Highly sophisticated technique requiring complex setup (segmented cell, multichannel potentiostat, electrical arrangement etc.) |
Pressure drop measurement | - Simple and easy technique - Ensures the component are within given pressure range and quantification of pumping energy | - Clearly identifying the problem by itself is difficult - Transducers are sensitive to minor oscillations |
Imaging technique | - Effectiveness depends upon the cell material compatibility | - Sophisticated technique to collect the high resolution of image |
Spectroscopic measurement technique | - Quantitative determination of the concentration of electrolyte | - Complicated setup requiring customized setup for in-situ measurement |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghimire, P.C.; Bhattarai, A.; Lim, T.M.; Wai, N.; Skyllas-Kazacos, M.; Yan, Q. In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review. Batteries 2021, 7, 53. https://doi.org/10.3390/batteries7030053
Ghimire PC, Bhattarai A, Lim TM, Wai N, Skyllas-Kazacos M, Yan Q. In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review. Batteries. 2021; 7(3):53. https://doi.org/10.3390/batteries7030053
Chicago/Turabian StyleGhimire, Purna C., Arjun Bhattarai, Tuti M. Lim, Nyunt Wai, Maria Skyllas-Kazacos, and Qingyu Yan. 2021. "In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review" Batteries 7, no. 3: 53. https://doi.org/10.3390/batteries7030053
APA StyleGhimire, P. C., Bhattarai, A., Lim, T. M., Wai, N., Skyllas-Kazacos, M., & Yan, Q. (2021). In-Situ Tools Used in Vanadium Redox Flow Battery Research—Review. Batteries, 7(3), 53. https://doi.org/10.3390/batteries7030053