High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural and Morphological Characterization of the as Prepared SC-Powder
2.2. Electrochemical Tests
3. Materials and Methods
3.1. Solution Combustion Synthesis of Na0.44MnO2
3.2. Morphological and Structural Characterization of SC-NMO
3.3. Casting of the Electrodes
3.4. Cell Assembly and Electrochemical Tests
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L.F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem. Int. Ed. 2015, 54, 3432–3448. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [PubMed]
- Kubota, K.; Komaba, S. Review—Practical Issues and Future Perspective for Na-Ion Batteries. J. Electrochem. Soc. 2015, 162, A2538–A2550. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.; Ding, Z.; Lee, M.H.; Lim, K.; Yoon, G.; Kang, K. Recent Progress in Electrode Materials for Sodium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1600943. [Google Scholar]
- Xiang, X.; Zhang, K.; Chen, J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries. Adv. Mater. 2015, 27, 5343–5364. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xiao, L.; Wang, W.; Choi, D.; Nie, Z.; Yu, J.; Saraf, L.V.; Yang, Z.; Liu, J. Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life. Adv. Mater. 2011, 23, 3155–3160. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.F.; Lan, W.H.; Yeh, Y.W.; Chang, W.S.; Yang, C.C.; Lin, J.C. Hydrothermal Synthesis of Sodium Titanium Phosphate Nanoparticles as Efficient Anode Materials for Aqueous Sodium-Ion Batteries. ACS Sustain. Chem. Eng. 2016, 4, 7074–7079. [Google Scholar] [CrossRef]
- Li, Z.; Young, D.; Xiang, K.; Carter, W.C.; Chiang, Y.M. Towards High Power High Energy Aqueous Sodium-Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System. Adv. Energy Mater. 2013, 3, 290–294. [Google Scholar] [CrossRef]
- Ma, G.; Zhao, Y.; Huang, K.; Ju, Z.; Liu, C.; Hou, Y.; Xing, Z. Effects of the Starting Materials of Na0.44MnO2 Cathode Materials on Their Electrochemical Properties for Na-Ion Batteries. Electrochim. Acta 2016, 222, 36–43. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.J.; Seo, D.H.; Yeom, M.S.; Kang, K.; Kim, D.K.; Jung, Y. Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion Battery. Chem. Mater. 2012, 24, 1205–1211. [Google Scholar] [CrossRef]
- Zhou, X.; Guduru, R.K.; Mohanty, P. Synthesis and Characterization of Na0.44MnO2 from Solution Precursors. J. Mater. Chem. A 2013, 1, 2757–2761. [Google Scholar] [CrossRef]
- Sauvage, F.; Laffont, L.; Tarascon, J.M.; Baudrin, E. Study of the Insertion/deinsertion Mechanism of Sodium into Na0.44MnO2. Inorg. Chem. 2007, 46, 3289–3294. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ni, J.; Wang, H.; Gao, L. Na0.44MnO2–CNT Electrodes for Non-Aqueous Sodium Batteries. RSC Adv. 2013, 3, 6650–6655. [Google Scholar] [CrossRef]
- Wang, C.H.; Yeh, Y.W.; Wongittharom, N.; Wang, Y.C.; Tseng, C.J.; Lee, S.W.; Chang, W.S.; Chang, J.K. Rechargeable Na/Na0.44MnO2 Cells with Ionic Liquid Electrolytes Containing Various Sodium Solutes. J. Power Sources 2015, 274, 1016–1023. [Google Scholar] [CrossRef]
- Xu, M.; Niu, Y.; Chen, C.; Song, J.; Bao, S.; Li, C.M. Synthesis and Application of Ultra-Long Na0.44MnO2 Submicron Slabs as a Cathode Material for Na-Ion Batteries. RSC Adv. 2014, 4, 38140–38143. [Google Scholar] [CrossRef]
- Kim, D.J.; Ponraj, R.; Kannan, A.G.; Lee, H.W.; Fathi, R.; Ruffo, R.; Mari, C.M.; Kim, D.K. Diffusion Behavior of Sodium Ions in Na0.44MnO2 in Aqueous and Non-Aqueous Electrolytes. J. Power Sources 2013, 244, 758–763. [Google Scholar] [CrossRef]
- Ruffo, R.; Fathi, R.; Kim, D.J.; Jung, Y.H.; Mari, C.M.; Kim, D.K. Impedance Analysis of Na0.44MnO2 Positive Electrode for Reversible Sodium Batteries in Organic Electrolyte. Electrochim. Acta 2013, 108, 575–582. [Google Scholar] [CrossRef]
- Shen, K.Y.; Miklos, L.; Wang, L.; Axelbaum, R.L. Spray Pyrolysis and Electrochemical Performance of Na0.44MnO2 for Sodium-Ion Battery Cathodes. MRS Commun. 2017, 7, 74–77. [Google Scholar] [CrossRef]
- Qiao, R.; Dai, K.; Mao, J.; Weng, T.C.; Sokaras, D.; Nordlund, D.; Song, X.; Battaglia, V.S.; Hussain, Z.; Liu, G.; et al. Revealing and Suppressing Surface Mn(II) Formation of Na0.44MnO2 Electrodes for Na-Ion Batteries. Nano Energy 2015, 16, 186–195. [Google Scholar] [CrossRef]
- Dai, K.; Mao, J.; Song, X.; Battaglia, V.; Liu, G. Na0.44MnO2 with Very Fast Sodium Diffusion and Stable Cycling Synthesized via Polyvinylpyrrolidone-Combustion Method. J. Power Sources 2015, 285, 161–168. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, S.; Yuan, Y.; Jiao, K.; Jiao, S. Facile Synthesis of Nanorod-like Single Crystalline Na0.44MnO2 for High Performance Sodium-Ion Batteries. J. Electrochem. Soc. 2015, 162, A1028–A1032. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Chen, M.; Gu, Q.; Dou, Y.; Sun, Z.; Chou, S.; Dou, S.X. Multiangular Rod-Shaped Na0.44MnO2 as Cathode Materials with High Rate and Long Life for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 3644–3652. [Google Scholar] [CrossRef] [PubMed]
- Hosono, E.; Matsuda, H.; Honma, I.; Fujihara, S.; Ichihara, M.; Zhou, H. Synthesis of Single Crystalline Electro-Conductive Na0.44MnO2 Nanowires with High Aspect Ratio for the Fast Charge-Discharge Li Ion Battery. J. Power Sources 2008, 182, 349–352. [Google Scholar] [CrossRef]
- Hosono, E.; Saito, T.; Hoshino, J.; Okubo, M.; Saito, Y.; Nishio-Hamane, D.; Kudo, T.; Zhou, H. High Power Na-Ion Rechargeable Battery with Single-Crystalline Na0.44MnO2 Nanowire Electrode. J. Power Sources 2012, 217, 43–46. [Google Scholar] [CrossRef]
- Li, F.; Ran, J.; Jaroniec, M.; Qiao, S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 2015, 7, 17590–17610. [Google Scholar] [CrossRef] [PubMed]
- Aruna, S.T.; Mukasyan, A.S. Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 2008, 12, 44–50. [Google Scholar] [CrossRef]
- Mumme, W. The Structure of Na4Mn4Ti5O18. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 1968, 24, 1114–1120. [Google Scholar] [CrossRef]
- Dall’Asta, V.; Buchholz, D.; Chagas, L.G.; Dou, X.; Ferrara, C.; Quartarone, E.; Tealdi, C.; Passerini, S. Aqueous Processing of Na0.44MnO2 Cathode Material for the Development of Greener Na-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 34891–34899. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Swihart, M.T. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Adv. Coll. Interface Sci. 2017, 244, 199–266. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Zhou, X.; Wang, Y. High-Rate Performance Electrospun Na0.44MnO2 Nanofibers as Cathode Material for Sodium-Ion Batteries. J. Power Sources 2016, 310, 102–108. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M.C.; Liu, H.; Gallash, T.; et al. Durable High-Rate Capability Na0.44MnO2 Cathode Material for Sodium-Ion Batteries. Nano Energy 2016, 27, 602–610. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, C.; Tealdi, C.; Dall’Asta, V.; Buchholz, D.; Chagas, L.G.; Quartarone, E.; Berbenni, V.; Passerini, S. High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis. Batteries 2018, 4, 8. https://doi.org/10.3390/batteries4010008
Ferrara C, Tealdi C, Dall’Asta V, Buchholz D, Chagas LG, Quartarone E, Berbenni V, Passerini S. High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis. Batteries. 2018; 4(1):8. https://doi.org/10.3390/batteries4010008
Chicago/Turabian StyleFerrara, Chiara, Cristina Tealdi, Valentina Dall’Asta, Daniel Buchholz, Luciana G. Chagas, Eliana Quartarone, Vittorio Berbenni, and Stefano Passerini. 2018. "High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis" Batteries 4, no. 1: 8. https://doi.org/10.3390/batteries4010008
APA StyleFerrara, C., Tealdi, C., Dall’Asta, V., Buchholz, D., Chagas, L. G., Quartarone, E., Berbenni, V., & Passerini, S. (2018). High-Performance Na0.44MnO2 Slabs for Sodium-Ion Batteries Obtained through Urea-Based Solution Combustion Synthesis. Batteries, 4(1), 8. https://doi.org/10.3390/batteries4010008