Previous Issue
Volume 11, August
 
 

Magnetochemistry, Volume 11, Issue 9 (September 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
26 pages, 4255 KiB  
Review
Application Progress of Magnetic Chitosan in Heavy Metal Wastewater Treatment
by Xiaotian Wang, Yan Zhuang, Kinjal J. Shah and Yongjun Sun
Magnetochemistry 2025, 11(9), 71; https://doi.org/10.3390/magnetochemistry11090071 - 22 Aug 2025
Abstract
Wastewater containing heavy metals can come from a variety of sources and is extremely toxic and hard to break down. Conventional treatment methods can easily result in secondary pollution and are expensive. The research on magnetic chitosan composites, a new adsorbent in the [...] Read more.
Wastewater containing heavy metals can come from a variety of sources and is extremely toxic and hard to break down. Conventional treatment methods can easily result in secondary pollution and are expensive. The research on magnetic chitosan composites, a new adsorbent in the treatment of heavy metal wastewater, is methodically reviewed in this paper. It offers a theoretical foundation for the creation of more environmentally friendly and effective wastewater treatment technology by examining its preparation and modification technology, adsorption mechanism, and application performance. This paper provides a summary of the technology used to prepare and modify magnetic chitosan composites. Both the cross-linking and co-precipitation methods are thoroughly examined. A summary of the fundamental process of heavy metal ion adsorption is provided, along with information on the chemical and physical impacts. Of these, chemical adsorption has been shown to work well with the majority of heavy metal adsorption systems. According to application research, magnetic chitosan exhibits good adaptability in real-world industrial wastewater treatment and has outstanding adsorption performance for various heavy metal ion types and multi-metal coexistence systems (including synergistic/competitive effects). Lastly, the optimization of the material preparation and modification process, the mechanism influencing the various coexisting ion types, and the improvement of regeneration ability should be the main areas of future development. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

16 pages, 1626 KiB  
Article
Enhanced Magnetocaloric Effect and Single-Molecule Magnet Behavior in a Series of Sulfur-Containing Ligand-Based Ln9 Clusters (Ln = Gd, Tb, and Dy)
by Ya-Wei Geng, Tong Guo, Xiao-Qin Wang and Tian Han
Magnetochemistry 2025, 11(9), 70; https://doi.org/10.3390/magnetochemistry11090070 - 22 Aug 2025
Abstract
As an important branch of lanthanide-based complexes, clusters show unique properties in magnetocaloric effect (MCE) and single-molecule magnets (SMMs) using O/N ligands, while research on heavy p-block elements (e.g., S atom) with larger atomic radii and more diffuse p valence orbitals as coordinating [...] Read more.
As an important branch of lanthanide-based complexes, clusters show unique properties in magnetocaloric effect (MCE) and single-molecule magnets (SMMs) using O/N ligands, while research on heavy p-block elements (e.g., S atom) with larger atomic radii and more diffuse p valence orbitals as coordinating atoms remains relatively scarce. Herein, using the sulfur-containing ligand of 2-pyridinethiol 1-oxide (HL), we successfully synthesized a series of hourglass-like Ln9 clusters [Ln9(L)17(μ3-OH)9(μ4-OH)]·nH2O (1: Ln = Gd, n = 3; 2: Ln = Tb, n = 3; 3: Ln = Dy, n = 1). Magnetic data analysis reveals that cluster 1 shows a significant MCE, with the entropy change (−ΔSm) reaching a maximum of 34.41 J kg−1 K−1 at 2 K under ΔH = 7 T. Cluster 3, meanwhile, exhibits distinct frequency- and temperature-dependent behavior, indicating its SMM characteristics. Interestingly, despite possessing the highest molar mass among reported Gd9 clusters with MCE, 1 exhibits a competitive −ΔSm value, highlighting the critical role of sulfur-containing ligand on the structure and even exchange interactions. This work offers new insights into synthesizing high-performance MCE materials and understanding magneto-structural relationships. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop