Free Volatile Compounds as Chemophenetic Markers—Comparison with ITS2 and ITS1-5.8S-ITS2 Sequence Data for 18 Species of the Genus Veronica
Abstract
:1. Introduction
2. Materials and Methods
2.1. ITS2 and ITS1-5.8S-ITS2 Sequencing
2.1.1. DNA Extractions
2.1.2. PCR Amplification and Sequencing by Sanger
2.1.3. Sequence Analysis
2.1.4. NGS (Illumina Sequencing) of ITS2 Region and Data Analyses
2.2. Review Protocol
2.3. Statistical Analyses
Cluster Analyses Based on Free Volatile Compounds
3. Results
3.1. ITS2 and ITS1_5.8S-ITS2 Data Analyses
3.2. Statistical Analyses
3.2.1. Cluster Analyses Based on Free Volatile Compounds
3.2.2. Mantel Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albach, D.C.; Martínez-Ortega, M.M.; Fischer, M.A.; Chase, M.W. A New Classification of the Tribe Veroniceae-Problems and a Possible Solution. Taxon 2004, 53, 429–452. [Google Scholar] [CrossRef]
- Albach, D.C.; Martínez-Ortega, M.M.; Chase, M.W. Veronica: Parallel Morphological Evolution and Phylogeography in the Mediterranean. Plant Syst. Evol. 2004, 246, 177–194. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Tayeboon, G.S.; Sharifi-Rad, J.; Iriti, M.; Varoni, E.M.; Razazi, S. Inhibitory Activity on Type 2 Diabetes and Hypertension Key-Enzymes, and Antioxidant Capacity of Veronica Persica Phenolic-Rich Extracts. Cell Mol. Biol. 2016, 62, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Grayer-Barkmeijer, R.J. A Chemosystematic Study of Veronica: Iridoid Glucosides. Biochem. Syst. Ecol. 1973, 1, 101–110. [Google Scholar] [CrossRef]
- Grayer, R.J.; Chase, M.W.; Simmonds, M.S.J. A Comparison between Chemical and Molecular Characters for the Determination of Phylogenetic Relationships among Plant Families: An Appreciation of Hegnauer’s “Chemotaxonomie Der Pflanzen”. Biochem. Syst. Ecol. 1999, 27, 369–393. [Google Scholar] [CrossRef]
- Albach, D.C.; Meudt, H.M.; Oxelman, B. Piecing Together the “New” Plantaginaceae. Am. J. Bot. 2005, 92, 297–315. [Google Scholar] [CrossRef]
- Albach, D.C.; Grayer, R.J.; Jensen, S.R.; Özgökce, F.; Veitch, N.C. Acylated Flavone Glycosides from Veronica. Phytochemistry 2003, 64, 1295–1301. [Google Scholar] [CrossRef]
- Albach, D.C.; Jensen, S.R.; Özgökce, F.; Grayer, R.J. Veronica: Chemical Characters for the Support of Phylogenetic Relationships Based on Nuclear Ribosomal and Plastid DNA Sequence Data. Biochem. Syst. Ecol. 2005, 33, 1087–1106. [Google Scholar] [CrossRef]
- Jensen, S.R.; Albach, D.C.; Ohno, T.; Grayer, R.J. Veronica: Iridoids and Cornoside as Chemosystematic Markers. Biochem. Syst. Ecol. 2005, 33, 1031–1047. [Google Scholar] [CrossRef]
- Taskova, R.M.; Albach, D.C.; Grayer, R.J. Phylogeny of Veronica—A Combination of Molecular and Chemical Evidence. Plant Biol. 2004, 6, 673–682. [Google Scholar] [CrossRef]
- Reynolds, T. The Evolution of Chemosystematics. Phytochemistry 2007, 68, 2887–2895. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Loizzo, M.; Menichini, F.; Statti, G.; Menichini, F. Biological and Pharmacological Activities of Iridoids: Recent Developments. Mini-Rev. Med. Chem. 2008, 8, 399–420. [Google Scholar] [CrossRef] [PubMed]
- Harput, U.S.; Saracoglu, I.; Inoue, M.; Ogihara, Y. Phenylethanoid and Iridoid Glycosides from Veronica persica. Chem. Pharm. Bull. 2002, 50, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Harput, U.S.; Saracoglu, I.; Nagatsu, A.; Ogihara, Y. Iridoid Glucosides from Veronica hederifolia. Chem. Pharm. Bull. 2002, 50, 1106–1108. [Google Scholar] [CrossRef]
- Crişan, G.; Vlase, L.; Balica, G.; Muntean, D.; Ştefǎnescu, C.; Pǎltinean, R.; Tǎmaş, M.; Leucuţa, S. LC /MS Analysis of Aucubin and Catalpol of Some Veronica Species. Farmacia 2010, 58, 237–242. [Google Scholar]
- Taskova, R.; Peev, D.; Handjieva, N. Iridoid Glucosides of the Genus Veronica s.l. and Their Systematic Significance. Plant Syst. Evol. 2002, 231, 1–17. [Google Scholar] [CrossRef]
- Saeidi Mehrvarz, S.; Mahmoodi, N.O.; Asadian, R.; Bakhshi Khaniki, G. Iridoid and Flavonoid Patterns of the Genus Veronica Sect. Alsinebe Subsect. Agrestis (Benth.) Stroh (Lamiales) and Their Systematic Significance. Aust. J. Crop. Sci. 2008, 1, 1–5. [Google Scholar] [CrossRef]
- Albach, D.C.; Held Gotfredsen, C.; Jensen, S.R. Iridoid Glucosides of Paederota Lutea and the Relationships between Paederota and Veronica. Phytochemistry 2004, 65, 2129–2134. [Google Scholar] [CrossRef]
- Saracoǧlu, I.; Harput, Ü.Ş.; Ogihara, Y. Acylated Flavone Glycosides from Veronica pectinata var. glandulosa and V. persica. Turk. J. Chem. 2004, 28, 751–759. [Google Scholar]
- Li, F. Analysis of Chemical Constituents of Essential Oil in Veronica linariifolia by Gas Chromatography-Mass Spectrometry. Chin. J. Anal. Chem. 2002, 822–825. [Google Scholar]
- Kwak, J.H.; Kim, H.J.; Lee, K.H.; Kang, S.C.; Zee, O.P. Antioxidative Iridoid Glycosides and Phenolic Compounds from Veronica peregrina. Arch. Pharm. Res. 2009, 32, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Çelik, E.; Yuvali Çelik, G.; Meysun, A. Essential Oil Composition and Antibacterial Activity of Some Plant Species. J. Appl. Biol. Sci. 2010, 1, 45–48. [Google Scholar] [CrossRef]
- Ertas, A.; Boga, M.; Kizil, M.; Ceken, B.; Goren, A.C.; Hasimi, N.; Demirci, S.; Topcu, G.; Kolak, U. Chemical Profile and Biological Activities of Veronica thymoides Subsp. pseudocinerea. Pharm. Biol. 2015, 53, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Dunkić, V.; Nazlić, M.; Ruščić, M.; Vuko, E.; Akrap, K.; Topić, S.; Milović, M.; Vuletić, N.; Puizina, J.; Jurišić Grubešić, R.; et al. Hydrodistillation and Microwave Extraction of Volatile Compounds: Comparing Data for Twenty-One Veronica Species from Different Habitats. Plants 2022, 11, 902. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Andrés, B.M.; Low, E.; Albach, D.C.; Prebble, J.M.; Meudt, H.M.; Garnock-Jones, P.J. Is Genome Downsizing Associated with Diversification in Polyploid Lineages of Veronica? Bot. J. Linn. Soc. 2015, 178, 243–266. [Google Scholar] [CrossRef]
- Albach, D.C.; Meudt, H.M. Phylogeny of Veronica in the Southern and Northern Hemispheres Based on Plastid, Nuclear Ribosomal and Nuclear Low-Copy DNA. Mol. Phylogenet. Evol. 2010, 54, 457–471. [Google Scholar] [CrossRef]
- Bardy, K.E.; Albach, D.C.; Schneeweiss, G.M.; Fischer, M.A.; Schönswetter, P. Disentangling Phylogeography, Polyploid Evolution and Taxonomy of a Woodland Herb (Veronica chamaedrys Group, Plantaginaceae s.l.) in Southeastern Europe. Mol. Phylogenet. Evol. 2010, 57, 771–786. [Google Scholar] [CrossRef]
- Albach, D.C.; Von Sternburg, M.; Scalone, R.; Bardy, K.E. Phylogenetic Analysis and Differentiation of Veronica Subgenus Stenocarpon in the Balkan Peninsula. Bot. J. Linn. Soc. 2009, 159, 616–636. [Google Scholar] [CrossRef]
- Bardy, K.E.; Schönswetter, P.; Schneeweiss, G.M.; Fischer, M.A.; Albach, D.C. Extensive Gene Flow Blurs Species Boundaries among Veronica barrelieri, V. orchidea and V. spicata (Plantaginaceae) in Southeastern Europe. Taxon 2011, 60, 108–121. [Google Scholar] [CrossRef]
- Batovska, J.; Cogan, N.O.I.; Lynch, S.E.; Blacket, M.J. Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in ITS2. G3 Genes Genomes Genet. 2017, 7, 19–29. [Google Scholar] [CrossRef]
- Matyášek, R.; Renny-Byfield, S.; Fulneček, J.; Macas, J.; Grandbastien, M.A.; Nichols, R.; Leitch, A.; Kovařík, A. Next Generation Sequencing Analysis Reveals a Relationship between RDNA Unit Diversity and Locus Number in Nicotiana Diploids. BMC Genom. 2012, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Tejedor, A.; Leekitcharoenphon, P.; Aarestrup, F.M.; Otani, S. Evaluating the Usefulness of Next-Generation Sequencing for Herb Authentication. Food Chem. Mol. Sci. 2021, 3, 100044. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 2010, 5, e8432. [Google Scholar] [CrossRef] [PubMed]
- Bezić, N.; Šamanić, I.; Dunkić, V.; Besendorfer, V.; Puizina, J. Essential Oil Composition and Internal Transcribed Spacer (ITS) Sequence Variability of Four South-Croatian Satureja Species (Lamiaceae). Molecules 2009, 14, 925–938. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Albach, D.C.; Chase, M.W. Paraphyly of Veronica (Veroniceae; Scrophulariaceae): Evidence from the Internal Transcribed Spacer (ITS) Sequences of Nuclear Ribosomal DNA. J. Plant Res. 2001, 114, 9–18. [Google Scholar] [CrossRef]
- Muñoz-Centeno, L.M.; Albach, D.C.; Sánchez-Agudo, J.A.; Martínez-Ortega, M.M. Systematic Significance of Seed Morphology in Veronica (Plantaginaceae): A Phylogenetic Perspective. Ann. Bot. 2006, 98, 335–350. [Google Scholar] [CrossRef]
- Wagstaff, S.J.; Garnock-Jones, P.J. Evolution and Biogeography of the Hebe Complex (Scrophulariaceae) Inferred from ITS Sequences. N. Z. J. Bot. 1998, 36, 425–437. [Google Scholar] [CrossRef]
- Surina, B.; Pfanzelt, S.; Einzmann, H.J.R.; Albach, D.C. Bridging the Alps and the Middle East: Evolution, Phylogeny and Systematics of the Genus Wulfenia (Plantaginaceae). Taxon 2014, 63, 843–858. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Institute: Cambridge, UK, 2018. [Google Scholar]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Abarenkov, K.; Zirk, A.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Nilsson, R.H.; Kõljalg, U. UNITE General FASTA Release for Eukaryotes 2; Version 16.10.2022; UNITE Community; Available online: https://doi.org/10.15156/BIO/2483914 (accessed on 14 March 2023).
- Kopylova, E.; Noé, L.; Touzet, H. SortMeRNA: Fast and Accurate Filtering of Ribosomal RNAs in Metatranscriptomic Data. Bioinformatics 2012, 28, 3211–3217. [Google Scholar] [CrossRef] [PubMed]
- Chevreux, B.; Pfisterer, T.; Drescher, B.; Driesel, A.J.; Müller, W.E.G.; Wetter, T.; Suhai, S. Using the MiraEST Assembler for Reliable and Automated MRNA Transcript Assembly and SNP Detection in Sequenced ESTs. Genome Res. 2004, 14, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Craft, J.D.; Satyal, P.; Setzer, W.N. The Chemotaxonomy of Common Sage (Salvia officinalis) Based on the Volatile Constituents. Medicines 2017, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Lim Ah Tock, M.J.; Kamatou, G.P.P.; Combrinck, S.; Sandasi, M.; Viljoen, A.M. A Chemometric Assessment of Essential Oil Variation of Three Salvia Species Indigenous to South Africa. Phytochemistry 2020, 172, 112249. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, J.S.; Zlatković, B.K.; Jovanović, S.Č.; Stojanović, G.S.; Marin, P.D.; Mitić, Z.S. Needle Volatiles as Chemophenetic Markers in Differentiation of Natural Populations of Abies alba, A. x Borisii-Regis, and A. cephalonica. Phytochemistry 2021, 183, 112612. [Google Scholar] [CrossRef]
- Kremer, D.; Dunkić, V.; Radosavljević, I.; Bogunić, F.; Ivanova, D.; Ballian, D.; Stešević, D.; Matevski, V.; Ranđelović, V.; Eleftheriadou, E.; et al. Phytochemicals and Their Correlation with Molecular Data in Micromeria and Clinopodium (Lamiaceae) Taxa. Plants 2022, 11, 3407. [Google Scholar] [CrossRef]
- Niederbacher, B.; Winkler, J.B.; Schnitzler, J.P. Volatile Organic Compounds as Non-Invasive Markers for Plant Phenotyping. J. Exp. Bot. 2015, 66, 5403–5416. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 14 March 2023).
- Kimura, M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Doostmohammadi, M.; Bordbar, F.; Albach, D.C.; Mirtadzadini, M. Phylogeny and Historical Biogeography of Veronica Subgenus Pentasepalae (Plantaginaceae): Evidence for Its Origin and Subsequent Dispersal. Biol. 2022, 11, 639. [Google Scholar] [CrossRef]
- Albach, D.C.; Martınez-Ortega, M.M.; Fischer, M.A.; Chase, M.W. Evolution of Veroniceae: A Phylogenetic Perspective. Ann. Mo. Bot. Gard. 2004, 91, 275–302. [Google Scholar]
- Hammami, S.; Debbabi, H.; Jlassi, I.; Joshi, R.K.; Mokni, R. El Chemical Composition and Antimicrobial Activity of Essential Oil from the Aerial Parts of Plantago afra L. (Plantaginaceae) Growing Wild in Tunisia. South Afr. J. Bot. 2020, 132, 410–414. [Google Scholar] [CrossRef]
- Al-Mazroa, S.A.; Al-Wahaibi, L.H.; Mousa, A.A.; Al-Khathlan, H.Z. Essential Oil of Some Seasonal Flowering Plants Grown in Saudi Arabia. Arab. J. Chem. 2015, 8, 212–217. [Google Scholar] [CrossRef]
- De Lima, E.J.; Fontes, S.S.; Nogueira, M.L.; Silva, V.R.; Santos, L.D.S.; D’Elia, G.M.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.R.; Bezerra, D.P.; et al. Essential Oil from Leaves of Conobea scoparioides (Cham. & Schltdl.) Benth. (Plantaginaceae) Causes Cell Death in HepG2 Cells and Inhibits Tumor Development in a Xenograft Model. Biomed. Pharmacother. 2020, 129, 110402. [Google Scholar] [CrossRef]
- Brandão, C.M.; Cavalcante, K.S.B.; de M. Teles, R.; Georgiana, G.E.; Monteiro, O.S.; Andrade, E.H.A.; Maia, J.G.S. Composition and Larvicidal Activity of the Oil of Dizygostemon riparius (Plantaginaceae), a New Aromatic Species Occurring in Maranhão, Brazil. Chem. Biodivers. 2020, 17, e2000462. [Google Scholar] [CrossRef]
- Bajer, T.; Janda, V.; Bajerová, P.; Kremr, D.; Eisner, A.; Ventura, K. Chemical Composition of Essential Oils from Plantago lanceolata L. Leaves Extracted by Hydrodistillation. J. Food Sci. Technol. 2016, 53, 1576–1584. [Google Scholar] [CrossRef]
- Haghighi, S.R.; Yazdinezhad, A.; Bagheri, K.; Sharafi, A.; Haghighi, S.R.; Sharafi, A. Original Article Volatile Constituents and Toxicity of Essential Oils Extracted from Aerial Parts of Plantago lanceolata and Plantago major Growing in Iran. Pharm. Biomed. Res. 2022, 8, 205–224. [Google Scholar]
- Fons, F.; Rapior, S.; Gargadennec, A.; Andary, C.; Bessière, J.M. Volatile Components of Plantago lanceolata (Plantaginaceae). Acta Bot. Gall. 1998, 145, 265–269. [Google Scholar] [CrossRef]
- Roudbaraki, S.J.; Nori-Shargh, D. The Volatile Constituent Analysis of Digitalis nervosa Steud. & Hochst. Ex Benth. from Iran. Russ. Chem. Bull. 2016, 65, 1148–1150. [Google Scholar] [CrossRef]
- Seifi, H.; Masoum, S.; Seifi, S.; Ebrahimabadi, E.H. Chemometric Resolution Approaches in Characterisation of Volatile Constituents in Plantago ovata Seeds Using Gas Chromatography-Mass Spectrometry: Methodology and Performance Assessment. Phytochem. Anal. 2014, 25, 273–281. [Google Scholar] [CrossRef]
- Taskova, R.M.; Kokubun, T.; Ryan, K.G.; Garnock-Jones, P.J.; Jensen, S.R. Phenylethanoid and Iridoid Glycosides in the New Zealand Snow Hebes (Veronica, Plantaginaceae). Chem. Pharm. Bull. 2010, 58, 703–711. [Google Scholar] [CrossRef] [PubMed]
Taxa | Locality | Latitude | Longitude | Altitude a.s.l. (m) | Voucher no. |
---|---|---|---|---|---|
V. austriaca L. ssp. jacquini i | Brač Island | 43°19′07.3″ N | 16°36′08.5″ E | 564 | CROVeS-02-2021 |
V. cymbalaria | Murter Island | 43°48′36.6″ N | 15°35′07.4″ E | 37 | CROVeS-03-2021 |
V. dalmatica | Dubrovnik | 42°39′19.1″ N | 18°04′56.9″ E | 58 | CROVeS-04-2021 |
V. saturejoides ssp. saturejoides | Dinara Mt | 44°03′11.3″ N | 16°23′29.7″ E | 1697 | CROVeS-05-2021 |
V. anagallis-aquatica | Split | 43°31′43.5″ N | 16°28′45.2″ E | 22 | CROVeS-06-2021 |
V. anagalloides | Čikola River | 43°49′36.2″ N | 16°01′19.4″ E | 45 | CROVeS-07-2021 |
V. beccabunga | Baške Oštarije | 44°31′32.1″ N | 15°10′34.2″ E | 908 | CROVeS-08-2021 |
V. catenata | Trakošćan | 45°15′30.3″ N | 15°56′25.2″ E | 240 | CROVeS-09-2021 |
V. longifolia | Oštarije | 45°13′36.1″ N | 15°16′18.2″ E | 311 | CROVeS-10-2021 |
V. acinifolia | Donji Karin | 44°07′18.1″ N | 15°36′13.7″ E | 119 | CROVeS-11-2021 |
V. arvensis | Hvar Island | 43°10′42.3″ N | 16°36′43.6″ E | 38 | CROVeS-12-2021 |
V. chamaedrys | Radoboj | 46°09′49.4″ N | 15°55′36.1″ E | 260 | CROVeS-13-2021 |
V. hederifolia | Zagreb | 45°49′40.4″ N | 15°58′59.6″ E | 192 | CROVeS-14-2021 |
V. montana | Papuk Mt | 45°30′38.1″ N | 17°39′57.2″ E | 761 | CROVeS-15-2021 |
V. officinalis | Kamešnica Mt | 43°42′38.7″ N | 16°50′47.9″ E | 1225 | CROVeS-16-2021 |
V. persica | Samoborsko gorje | 45°49′41.6″ N | 15°40′32.9″ E | 301 | CROVeS-18-2021 |
V. polita | Kaštel Žegarski | 44°09′26.1″ N | 15°51′56.0″ E | 53 | CROVeS-19-2021 |
V. serpyllifolia | Zagreb | 45°49′40.3″ N | 15°58′59.5″ E | 192 | CROVeS-20-2021 |
Subgenus/Species | Hexahydrofarnesyl Acetone | Hexadecanoic Acid | Caryophyllene Oxide | (E)-Caryophyllene | Phytol | Pentacosane | Germacrene D | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HD | MW | HD | MW | HD | MW | HD | MW | HD | MW | HD | MW | HD | MW | |
Pentasepalae | ||||||||||||||
V. austriaca ssp. jacquinii | 17.12 | 8.61 | 32.17 | 22.17 | 13.98 | 6.64 | 8.01 | 1.79 | 4.58 | 6.58 | 1.03 | 5.91 | - | 0.68 |
V. dalmatica | 7.72 | 3.44 | 1.13 | 2.65 | 0.52 | 7.52 | 3.48 | 39.53 | 41.22 | 2.75 | 0.25 | 0.35 | 3.87 | 1.89 |
Pseudolysimachium | ||||||||||||||
V. longifolia | 9.08 | 9.28 | 9.74 | 6.14 | 5.58 | 1.53 | 4.13 | 1.43 | 13.63 | 37.18 | 6.81 | 4.71 | 3.87 | - |
Beccabunga | ||||||||||||||
V. acinifolia | 15.37 | 16.17 | 3.35 | 4.52 | 7.71 | 5.52 | 4.46 | 6.51 | 15.63 | 39.88 | - | 5.75 | 0.43 | 1.83 |
V. anagallis-aquatica | 27.17 | 25.97 | 4.65 | 4.77 | 4.36 | 2.55 | 5.49 | 3.29 | 9.42 | 14.56 | - | - | 1.28 | 0.88 |
V. beccabunga | 6.13 | 9.56 | 2.72 | 4.74 | 4.22 | 1.62 | 2.75 | 2.95 | 27.31 | 34.54 | 0.51 | 1.13 | 0.42 | 0.42 |
V. catenata | 17.75 | 17.22 | 10.02 | 5.81 | 1.55 | 6.52 | 4.11 | 2.48 | 29.92 | 42.26 | 0.28 | - | - | - |
V. serpyllifolia | 7.92 | 6.54 | 12.28 | 7.71 | 4.19 | 14.74 | 2.11 | 6.83 | 39.79 | 18.72 | 0.98 | 0.18 | 0.67 | 3.24 |
V. anagalloides | 14.33 | 19.12 | 13.67 | 9.17 | 4.91 | 8.58 | 4.07 | 4.01 | 9.58 | 14.88 | 2.01 | 5.43 | 2.22 | 3.07 |
Veronica | ||||||||||||||
V. montana | 6.86 | 9.17 | 9.24 | 5.81 | 7.28 | 2.61 | 0.13 | 0.44 | 18.53 | 37.03 | 10.47 | 14.90 | - | - |
V. officinalis | 3.25 | 6.82 | 13.21 | 12.40 | 4.65 | 4.15 | 3.12 | 3.12 | 32.61 | 16.89 | 11.89 | 0.15 | - | - |
Stenocarpon | ||||||||||||||
V. saturejoides | 6.88 | 17.72 | 6.14 | 6.64 | 34.53 | 8.43 | 9.43 | 8.49 | - | 22.47 | - | 0.48 | 2.61 | 5.11 |
Chamaedrys | ||||||||||||||
V. arvensis | 6.35 | 17.55 | 3.17 | 17.42 | 14.11 | 7.11 | 6.21 | 3.25 | 7.54 | 22.57 | 0.71 | - | 1.25 | 2.45 |
V. chamaedrys | 10.82 | 16.69 | 5.73 | 15.83 | 6.25 | 1.22 | 2.43 | 1.05 | 31.66 | 18.88 | 0.56 | 8.36 | 1.02 | 0.12 |
Pocilla | ||||||||||||||
V. persica | 10.31 | 18.47 | 7.35 | 5.31 | 10.11 | 3.14 | 9.29 | 2.62 | 20.21 | 23.71 | - | 5.27 | 0.75 | 0.35 |
V. polita | 10.28 | 10.82 | 6.75 | 5.69 | 7.55 | 1.48 | 6.57 | 4.17 | 31.18 | 19.88 | 0.36 | 1.76 | 1.06 | 0.07 |
Cochlidiosperma | ||||||||||||||
V. cymbalaria | 36.33 | 13.35 | 0.75 | 15.72 | 10.92 | 32.72 | 3.95 | 6.13 | - | 3.71 | 0.71 | 0.49 | 1.42 | 2.34 |
V. hederifolia | 28.85 | 59.15 | 7.25 | 1.57 | 4.59 | 0.51 | 4.11 | 1.10 | 18.53 | 14.58 | 0.21 | - | 1.47 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazlić, M.; Kremer, D.; Fredotović, Ž.; Trumbić, Ž.; Dunkić, V.; Puizina, J. Free Volatile Compounds as Chemophenetic Markers—Comparison with ITS2 and ITS1-5.8S-ITS2 Sequence Data for 18 Species of the Genus Veronica. Horticulturae 2023, 9, 524. https://doi.org/10.3390/horticulturae9050524
Nazlić M, Kremer D, Fredotović Ž, Trumbić Ž, Dunkić V, Puizina J. Free Volatile Compounds as Chemophenetic Markers—Comparison with ITS2 and ITS1-5.8S-ITS2 Sequence Data for 18 Species of the Genus Veronica. Horticulturae. 2023; 9(5):524. https://doi.org/10.3390/horticulturae9050524
Chicago/Turabian StyleNazlić, Marija, Dario Kremer, Željana Fredotović, Željka Trumbić, Valerija Dunkić, and Jasna Puizina. 2023. "Free Volatile Compounds as Chemophenetic Markers—Comparison with ITS2 and ITS1-5.8S-ITS2 Sequence Data for 18 Species of the Genus Veronica" Horticulturae 9, no. 5: 524. https://doi.org/10.3390/horticulturae9050524
APA StyleNazlić, M., Kremer, D., Fredotović, Ž., Trumbić, Ž., Dunkić, V., & Puizina, J. (2023). Free Volatile Compounds as Chemophenetic Markers—Comparison with ITS2 and ITS1-5.8S-ITS2 Sequence Data for 18 Species of the Genus Veronica. Horticulturae, 9(5), 524. https://doi.org/10.3390/horticulturae9050524