Effect of Fertilization Level on the Yield, Carotenoids, and Phenolic Content of Orange- and Purple-Fleshed Sweet Potato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorology Data
2.2. Field Experiment
2.3. Laboratory Experiment
2.3.1. Samples
2.3.2. Chemicals Used
2.3.3. Extraction of Carotenoids
2.3.4. HPLC Determination of Phenolics
2.3.5. HPLC Instrument and Conditions
2.4. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Different Fertilizer Dosages on the Yield of Beauregard
3.2. Influence of Different K2O Predominant Fertilizer Treatments on the Carotenoids
3.3. Root Yield Results of Stokes Purple
3.4. Total Anthocyanin Content and Yield of the Stokes Purple
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food Agriculture Organization of the United Nations, F.A.O.S.T.A.T. Available online: https://www.fao.org/statistics/data-collection/en/ (accessed on 2 March 2023).
- Hungarian Chamber of Agriculture. Available online: https://www.nak.hu/nyitolap (accessed on 2 March 2023).
- Degras, L. Sweet Potato. The Tropical Agriculturalist; Macmillan Publishers Ltd.: London, UK, 2003. [Google Scholar]
- Rengel, Z.; Damon, M. Crops and genotypes differ in efficiency of potassium uptake and use. Physiol. Plant. 2008, 13, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture– status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Römheld, V.; Kirkby, A. Research on potassium in agriculture: Needs and prospects. Plant Soil 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Zhang, A.-J.; Wei, M.; Chen, X.-G.; Liu, Z.-H.; Li, H.-M.; Ding, Y.-F. Physiological response to potassium deficiency in three sweet potato (Ipomoea batatas [L.] Lam.) genotypes differing in potassium utilization efficiency. Acta Physiol. Plant. 2015, 37, 184. [Google Scholar] [CrossRef]
- Rolston, L.H.; Clark, C.A.; Cannon, J.M.; Randle, W.M.; Riley, E.G.; Wilson, P.W.; Robbins, M.L. Beauregard’ Sweet Potato. Hortscience 1987, 22, 1338–1339. [Google Scholar] [CrossRef]
- Tang, Z.H.; Zhang, Y.G.; Wei, M.; Chen, X.G.; Shi, X.M.; Zhang, A.J.; Li, H.M.; Ding, Y.F. Screening and evaluation indicators for low potassium-tolerant and potassium efficient sweetpotato (Ipomoea batatas L.) varieties (lines). Acta Agron. Sin. 2014, 40, 542–549. (In Chinese) [Google Scholar] [CrossRef]
- Reddy, K.; Zhao, D.L. Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Res. 2005, 94, 201–213. [Google Scholar] [CrossRef]
- Wang, N.; Hua, H.; Eneji, A.E.; Li, Z.; Duan, L.; Tian, X. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J. Photochem. Photobiol. B Biol. 2012, 110, 1–8. [Google Scholar] [CrossRef]
- George, M.S.; Lu, G.; Zhou, W. Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatas L.). Field Crop. Res. 2002, 77, 7–15. [Google Scholar] [CrossRef]
- Wang, J.D.; Wang, H.Y.; Zhang, Y.C.; Zhou, J.M.; Chen, X.Q. Intraspecific variation in potassium uptake and utilization among sweetpotato (Ipomoea batatas L.) genotypes. Field Crop Res. 2015, 170, 76–82. [Google Scholar] [CrossRef]
- Wang, X.-G.; Zhao, X.-H.; Jiang, C.-J.; Li, C.-H.; Cong, S.; Wu, D.; Chen, Y.-Q.; Yu, H.-Q.; Wang, C.-Y. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J. Integr. Agric. 2015, 14, 856–863. [Google Scholar] [CrossRef]
- Hwang, Y.P.; Choi, J.H.; Choi, J.M.; Chung, Y.C.; Jeong, H.G. Protective mechanisms of anthocyanins from purple sweet potato against tert-butyl hydroperoxide-induced hepatotoxicity. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2011, 49, 2081–2089. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, J.; Zheng, Y.; Hu, B.; Fan, S.; Wu, D.; Liu, C. Purple sweet potato color protects mouse liver against d-galactose-induced apoptosis via inhibiting caspase-3 activation and enhancing PI3K/Akt pathway. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010, 48, 2500–2507. [Google Scholar] [CrossRef]
- Lu, D.; Wu, Y.; Zheng, B.; Hu, W.; Cheng, Z. Zhang Purple sweet potato color attenuates domoic acid-induced cognitive deficits by promoting estrogen receptor-α-mediated mitochondrial biogenesis signaling in mice. Free. Radic. Biol. Med. 2012, 52, 646–659. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Sampaio, S.L.; Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Ferreira, I. Grown to be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants 2019, 8, 617. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Guan, Q.; Koubaa, M.; Barba, F.J.; Roohinejad, S.; Cravotto, G.; Yang, X.; Li, S.; He, J. He-HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chem. 2017, 215, 391–400. [Google Scholar] [CrossRef]
- de Aguiar Cipriano, P.; Ekici, R.C.; Barnes, C.; Gomes, S.T. Talcott Pre-heating and polyphenol oxidase inhibition impact on extraction of purple sweet potato anthocyanins. Food Chem. 2015, 180, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Bridgers, E.N.; Chinn, M.S.; Truong, V.-D. Extraction of anthocyanins from industrial purple-fleshed sweet potatoes and en-zymatic hydrolysis of residues for fermentable sugars. Ind. Crops Prod. 2010, 32, 613–620. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Putnik, P.; Dragović-Uzelac, V.; Pedisić, S.; Jambrak, A.R.; Herceg, Z. Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem. 2016, 190, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 26, 68–87. [Google Scholar] [CrossRef]
- Koubaa, M.; Roselló-Soto, E.; Žlabur, J.Š.; Jambrak, A.R.; Brnčić, M.; Grimi, N.; Barba, F.J. Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. J. Agric. Food Chem. 2015, 63, 6835–6846. [Google Scholar] [CrossRef]
- Jiao, Y.; Jiang, Y.; Zhai, W.; Yang, Z. Studies on antioxidant capacity of anthocyanin extract from purple sweet potato (Ipomoea batatas L.). Afr. J. Biotechnol. 2012, 11, 7046–7054. [Google Scholar]
- Ginting, E.; Yulifianti, R.; Jusuf, M.; Mejaya, M.J. Identifikasi Sifat Fisik, Kimia, dan Sensoris Klon-klon Harapan Ubijalar Kaya Antosianin. J. Penelit. Pertan. Tanam. Pangan 2015, 34, 69–78. [Google Scholar] [CrossRef]
- Padda, M.S.; Picha, D.H. Phenolic composition and antioxidant capacity of different heat-processed forms of sweetpotato cv. Beauregard. Int. J. Food Sci. Technol. 2008, 43, 1404–1409. [Google Scholar] [CrossRef]
- Truong, V.-D.; Deighton, N.; Thompson, R.T.; McFeeters, R.F.; Dean, L.O.; Pecota, K.V.; Yencho, G.C. Characterization of Anthocyanins and Anthocyanidins in Purple-Fleshed Sweetpotatoes by HPLC-DAD/ESI-MS/MS. J. Agric. Food Chem. 2009, 58, 404–410. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, S.; Zhao, G.; Ye, F. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci. Technol. 2021, 116, 1141–1154. [Google Scholar] [CrossRef]
- Su, X.; Griffin, J.; Xu, J.; Ouyang, P.; Zhao, Z.; Wang, W. Identification and quantification of anthocyanins in purple-fleshed sweet potato leaves. Heliyon 2019, 5, e01964. [Google Scholar] [CrossRef]
- Picha, D.H. Carbohydrate Changes in Sweet Potatoes During Curing and Storage. J. Am. Soc. Hortic. Sci. 1987, 112, 89–92. [Google Scholar] [CrossRef]
- Daood, H.G.; Bencze Gy Palotás, G.; Pék, Z.; Sidikov, A.; Helyes, L. HPLC analysis of carotenoids from tomatoes using cross-linked C18 column and MS detection. J. Chromatogr. Sci. 2014, 52, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chen, B.H. Determination of carotenoids in tomato juice by liquid chromatography. J. Chromatogr. A 2003, 1012, 103–109. [Google Scholar] [CrossRef] [PubMed]
- de Rosso, V.V.; Mercadante, A.Z. Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J. Agric. Food Chem. 2007, 55, 5062–5072. [Google Scholar] [CrossRef]
- de Faria, A.F.; de Rosso, V.V.; Mercadante, A.Z. Carotenoid composition of jackfruit (Artocarpus heterophyllus), determined by HPLC-PDA-MS/MS. Plant Foods Hum. Nutr. 2009, 64, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Filho, A.B.C.; Mc Nascimento, S.; Silva, A.S.; Vargas, P.F. Agronomic performance of sweet potato with different potassium fertilization rates. Hortic. Bras. 2016, 34, 588–592. [Google Scholar] [CrossRef]
- Abd El-Baky, A.; Ahmed, A.A.; El-Nemr, M.A.; Zaki, M.F. Effect of potassium fertilizer and foliar zinc application on yield and quality of sweet potato. Res. J. Agric. Biol. Sci. 2010, 6, 386–394. [Google Scholar]
- da Silva, L.D.; Oliveira, A.P.D.; Cruz, J.M.D.L.; Sousa, V.F.D.O.; Silva, A.J.D.; Silva, M.C.D. Sweet potato yield in response to different potassium sources and splitting of fertilization. Rev. Bras. De Eng. Agrícola E Ambient. 2022, 26, 527–532. [Google Scholar] [CrossRef]
- Harvey, L.M.; Shankle, M.W.; Morris, C.J.; Hall, M.A.; Chatterjee, A.; Harvey, K.M. Sweet Potato (Ipomoea batatas L.) Response to Incremental Application Rates of Potassium Fertilizer in Mississippi. Horticulturae 2022, 8, 831. [Google Scholar] [CrossRef]
- Laveriano-Santos, E.P.; López-Yerena, A.; Jaime-Rodríguez, C.; González-Coria, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Romanyà, J.; Pérez, M. Sweet Potato Is Not Simply an Abundant Food Crop: A Comprehensive Review of Its Phytochemical Constituents, Biological Activities, and the Effects of Processing. Antioxidants 2022, 11, 1648. [Google Scholar] [CrossRef]
- Ishiguro, K.; Yoshinaga, M.; Kai, Y.; Maoka, T.; Yoshimoto, M. Composition, content and antioxidative activity of the carotenoids in yellow-fleshed sweetpotato (Ipomoea batatas L.). Breed. Sci. 2010, 60, 324–329. [Google Scholar] [CrossRef]
- Lauriea, S.M.; Faber, M.; van Jaarsveldb, P.J.; Lauriea, R.N.; du Plooya, C.P.; Modisanea, P.C. β-Carotene yield and productivity of orange-fleshed sweet potato (Ipomoea batatas L. Lam.) as influenced by irrigation and fertilizer application treatments. Sci. Hortic. 2012, 142, 180–184. [Google Scholar] [CrossRef]
- Drapal, M.; Fraser, P.D. Determination of carotenoids in sweet potato (Ipomoea batatas L., Lam) tubers: Implications for accurate provitamin A determination in staple sturdy tuber crops. Phytochemistry 2019, 167, 112102. [Google Scholar] [CrossRef] [PubMed]
- Teow, C.C.; Truong, V.D.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103, 829–838. [Google Scholar] [CrossRef]
- Lu J-w Chen, F.; Xu Y-s Wan, Y.-f.; Liu, D.-b. Sweet potato response to potassium. Better Crops Int. 2001, 15, 10–12. [Google Scholar]
- Su, L.; Yin, J.J.; Charles, D.; Zhou, X.R. Antioxidant properties, phenolic profiles and anthocyanin contents of purple sweet potato (Ipomoea batatas L.) as affected by hot-air drying and two different storage modes. Food Chem. 2019, 294, 18–27. [Google Scholar]
- Kim, H.W.; Kim, J.B.; Cho, S.M.; Chung, M.N.; Lee, Y.M.; Chu, S.M.; Che, J.H.; Kim, S.N.; Kim, S.Y.; Cho, Y.S.; et al. Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem. 2012, 130, 966–972. [Google Scholar] [CrossRef]
- Peng, J.; Wang, K.; Ma, C.; Long, J.; Tu, K.; Pan, L. Determination of anthocyanin and moisture content of purple sweet potatoes during drying process by their optical properties in the 400–1050 nm range. Food Chem. 2021, 359, 129811. [Google Scholar] [CrossRef] [PubMed]
- Im, Y.R.; Kim, I.; Lee, J. Phenolic Composition and Antioxidant Activity of Purple Sweet Potato (Ipomoea batatas (L.) Lam.): Varietal Comparisons and Physical Distribution. Antioxidants 2021, 10, 462. [Google Scholar] [CrossRef]
- Zheng, S.H.; Yamazaki, N.; Nakamoto, H.; Yoshikado, T.; Arima, S. Relationship between polyphenol content of tubers and cultivating conditions in sweet potato (Iponomea batatas). Coast. Bioenviron.-Saga Univ. (Jpn.) 2008, 37–42, ISSN: 1348-7175. [Google Scholar]
- Tang, W.; Zhang, Y.G.; Liu, Y.J.; Wang, X.; Kou, M.; Yan, H.; Ma, D.F.; Li, Q. Quantifying cultivation technique and growth dynamics of purple-fleshed sweetpotato (Ipomoea batatas L.) in China. Field Crops Res. 2018, 227, 41–48. [Google Scholar] [CrossRef]
Parameter | Dimension | Measured Amount |
---|---|---|
pH | KCl (1:2.5) | 6.1 |
organic matter | m m−1 (%) | 0.5 |
N (NO2− + NO3−) | mg kg−1 | 7 |
P2O5 | mg kg−1 | 290 |
K2O | mg kg−1 | 198 |
Mg | mg kg−1 | 208 |
S | mg kg−1 | 17.8 |
Field Experiment | Code | Pre-Planting Fertilizer (Total kg ha−1) | Liquid Fertilizer (Total kg ha−1) | ||||
---|---|---|---|---|---|---|---|
Sweet Potato Variety | K2O | N | P2O5 | K2O | MgSO4 | SO3 | |
Experiment I | |||||||
Beauregard | BP-I | 119.7 | 33.3 | 45.8 | 0 | 0 | 0 |
Beauregard | BL-I | 119.7 | 33.3 | 45.8 | 796.5 | 32.8 | 69.9 |
Beauregard | BC | 0 | 0 | 0 | 0 | 0 | 0 |
Experiment II | |||||||
Beauregard | BP-II | 263.4 | 73.3 | 100.8 | 0 | 0 | 0 |
Beauregard | BL-II | 263.4 | 73.3 | 100.8 | 796.5 | 32.8 | 69.9 |
Beauregard | BC | 0 | 0 | 0 | 0 | 0 | 0 |
Experiment III | |||||||
Stokes Purple | LP-I | 119.7 | 33.3 | 45.8 | 0 | 0 | 0 |
Stokes Purple | LL-I | 119.7 | 33.3 | 45.8 | 796.5 | 32.8 | 69.9 |
Stokes Purple | LC | 0 | 0 | 0 | 0 | 0 | 0 |
Experiment IV | |||||||
Stokes Purple | LP-II | 263.4 | 73.3 | 100.8 | 0 | 0 | 0 |
Stokes Purple | LL-II | 263.4 | 73.3 | 100.8 | 796.5 | 32.8 | 69.9 |
Stokes Purple | LC | 0 | 0 | 0 | 0 | 0 | 0 |
Experiment I | Experiment II | |||||
---|---|---|---|---|---|---|
Component (µg g−1) | BP-I | BL-I | BC | BP-II | BL-II | BC |
ß-carotene | 121.3 ± 3.7 “a” | 188.5 ± 15 “b” | 129.7 ± 12.6 “a” | 142.1 ± 9.4 “a” | 154.1 ± 33.4 “a” | 129.7 ± 12.6 “a” |
cis-ß-carotene | 4.9 ± 1.6 “a” | 4.8 ± 1.2 “a” | 5.5 ± 0.8 “a” | 5.4 ± 1.2 “a” | 6.6 ± 4.1 “a” | 5.5 ± 0.8 “a” |
ß-cryptoxanthin | 2.1 ± 0.1 “b” | 0.9 ± 0.1 “a” | 1.1 ± 0.1 “a” | 2.8 ± 2.9 “a” | 1 ± 0 “a” | 1.1 ± 0.1 “a” |
α-cryptoxanthin | 5.8 ± 0.3 “a” | 8.8 ± 0.7 “b” | 6.6 ± 1.3 “a” | 7.8 ± 0.5 “a” | 7.7 ± 1.4 “a” | 6.6 ± 1.3 “a” |
luteo-chrome | 2.6 ± 0.1 “b” | 1.8 ± 0.1 “a” | 1.8 ± 0.1 “a” | 1.8 ± 0.1 “a” | 1.8 ± 0.1 “a” | 1.8 ± 0.1 “a” |
cis-luteo-chrome | 0.9 ± 0.4 “a” | 0.7 ± 0 “a” | 0.7 ± 0 “a” | 0.7 ± 0 “a” | 0.7 ± 0.1 “a” | 0.7 ± 0 “a” |
ß-carotene-epoxide | 1.9 ± 0 “a” | 3 ± 0.2 “b” | 2.3 ± 0.4 “a” | 2.8 ± 0.3 “a” | 2.8 ± 0.9 “a” | 2.3 ± 0.4 “a” |
Mutatochrome | 1.4 ± 0.3 “a” | 1.4 ± 0.1 “a” | 1 ± 0.1 “a” | 1.1 ± 0.1 “a” | 1.1 ± 0.1 “a” | 1 ± 0.1 “a” |
Experiment I | Experiment II | |||||
---|---|---|---|---|---|---|
Component (µg g−1) | BP-I | BL-I | BC | BP-II | BL-II | BC |
ß-carotene | 142.2 ± 5.2 “a” | 142.1 ± 13.6 “a” | 127.2 ± 41.3 “a” | 105.2 ± 15.8 “a” | 186 ± 17.2 “b” | 127.2 ± 41.3 “ab” |
cis-ß-carotene | 2.1 ± 0.5 “a” | 4 ± 0.7 “a” | 2.8 ± 0.2 “a” | 4.1 ± 1.6 “a” | 10.4 ± 7.7 “a” | 2.8 ± 0.2 “a” |
ß-cryptoxanthin | 0.8 ± 0 “b” | 0.8 ± 0 “b” | 0.3 ± 0.2 “a” | 1.8 ± 2.2 “a” | 0.9 ± 0 “a” | 0.3 ± 0.2 “a” |
α-cryptoxanthin | 0.9 ± 0.1 “a” | 1 ± 0.1 “a” | 0.7 ± 0.1 “a” | 0.7 ± 0.2 “a” | 0.9 ± 0.1 “ab” | 0.7 ± 0.1 “a” |
luteo-chrome | 5.4 ± 0.6 “a” | 6.3 ± 0.3 “a” | 6.5 ± 0.5 “a” | 4.9 ± 0.6 “a” | 7 ± 0.5 “b” | 6.5 ± 0.5 “b” |
cis-luteo-chrome | 1.8 ± 0.6 “a” | 1.9 ± 0.5 “a” | 3 ± 0.1 “a” | 1.8 ± 0.7 “a” | 2.8 ± 0.2 “a” | 3 ± 0.1 “a” |
ß-carotene-epoxide | 1.9 ± 0.3 “ab” | 2.3 ± 0.5 “b” | 0.9 ± 0.2 “a” | 1.3 ± 0.9 “a” | 1.9 ± 0.2 “a” | 0.9 ± 0.2 “a” |
Mutatochrome | 0.7 ± 0.3 “a” | 0.8 ± 0.2 “a” | 1 ± 0.2 “a” | 0.6 ± 0.3 “a” | 0.9 ± 0.2 “a” | 1 ± 0.2 “a” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balázs, V.; Helyes, L.; Daood, H.G.; Pék, Z.; Neményi, A.; Égei, M.; Takács, S. Effect of Fertilization Level on the Yield, Carotenoids, and Phenolic Content of Orange- and Purple-Fleshed Sweet Potato. Horticulturae 2023, 9, 523. https://doi.org/10.3390/horticulturae9050523
Balázs V, Helyes L, Daood HG, Pék Z, Neményi A, Égei M, Takács S. Effect of Fertilization Level on the Yield, Carotenoids, and Phenolic Content of Orange- and Purple-Fleshed Sweet Potato. Horticulturae. 2023; 9(5):523. https://doi.org/10.3390/horticulturae9050523
Chicago/Turabian StyleBalázs, Viktor, Lajos Helyes, Hussein G. Daood, Zoltán Pék, András Neményi, Márton Égei, and Sándor Takács. 2023. "Effect of Fertilization Level on the Yield, Carotenoids, and Phenolic Content of Orange- and Purple-Fleshed Sweet Potato" Horticulturae 9, no. 5: 523. https://doi.org/10.3390/horticulturae9050523
APA StyleBalázs, V., Helyes, L., Daood, H. G., Pék, Z., Neményi, A., Égei, M., & Takács, S. (2023). Effect of Fertilization Level on the Yield, Carotenoids, and Phenolic Content of Orange- and Purple-Fleshed Sweet Potato. Horticulturae, 9(5), 523. https://doi.org/10.3390/horticulturae9050523