Rapid Genetic Assessment of Carrot Varieties Based on AFLP Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shim, S.I.; Jørgensen, R.B. Genetic structure in cultivated and wild carrots (Daucus carota L.) revealed by AFLP analysis. Theor. Appl. Genet. 2000, 101, 227–233. [Google Scholar] [CrossRef]
- Grzebelus, D.; Iorizzo, M.; Senalik, D.; Ellison, S.; Cavagnaro, P.; Macko-Podgorni, A.; Heller-Uszynska, K.; Kilian, A.; Nothnagel, T.; Allender, C.; et al. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Mol. Bred. 2014, 33, 625–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemann, M.; Westphal, L.; Wricke, G. Analysis of microsatellite markers in carrot (Daucus carota L. sativus). J. Appl. Genet. A 1997, 38, 20–27. [Google Scholar]
- Clotault, J.; Geoffriau, E.; Linneton, E.; Briard, M.; Peltier, D. Carotenoid biosynthesis genes provide evidence of geographical subdivision and extensive linkage disequilibriumin the carrot. Theor. Appl. Genet. 2010, 121, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Baranski, R.; Maksylewicz-Kaul, A.; Nothnagel, T.; Cavagnaro, P.F.; Simon, P.W.; Grzebelus, D. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Gen. Res. Crop Evol. 2012, 59, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Cavagnaro, P.F.; Chung, S.M.; Manin, S.; Yildiz, M.; Ali, A.; Alessandro, M.S.; Iorizzo, M.; Senalik, D.A.; Simon, P.W. Microsatellite isolation and marker development in carrot—Genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genom. 2011, 12, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorizzo, M.; Senalik, D.A.; Grzebelus, D.; Bowman, M.; Cavagnaro, P.F.; Matvienko, M.; Ashrafi, H.; Van Deynze, A.; Simon, P.W. De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genom. 2011, 12, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iorizzo, M.; Senalik, D.A.; Ellison, S.L.; Grzebelus, D.; Cavagnaro, P.F.; Allender, C.; Brunet, J.; Spooner, D.M.; Van Deynze, A.; Simon, P.W. Genetic Structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Amer. J. Bot. 2013, 100, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Stelmach, K.; Macko-Podgórni, A.; Allender, C.; Grzebelus, D. Genetic diversity structure of western-type carrots. BMC Plant Biol. 2021, 21, 200. [Google Scholar] [CrossRef] [PubMed]
- Vos, P.; Hogers, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.; Frijters, A.; Pot, J.; Peleman, J.; Kuiper, M. AFLP: A new technique for DNA fingerprinting. Nuc. Acid. Res. 1995, 23, 4407–4414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. iMEC: Online Marker Efficiency Calculator. Appl. Plant Sci. 2018, 6, e1159. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of Estimated Phylogenetic Trees from Molecular Data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranski, R.; Allender, C.; Klimek-Chodacka, M. Towards better tasting and more nutritious carrots: Carotenoid and sugar content variation in carrot genetic resources. Food Res. Inter. 2012, 47, 182–187. [Google Scholar] [CrossRef]
- Vavilov, N.I. The origin, variation, immunity and breeding of cultivated plants. Chr. Bot. 1951, 72, 482. [Google Scholar] [CrossRef]
- Morales, R.G.F.; Resende, J.T.V.; Resende, F.V.; Delatorre, C.A.; Figueiredo, A.S.T.; Da-Silva, P.R. Genetic divergence among Brazilian garlic cultivars based on morphological characters and AFLP markers Genetic divergence among Brazilian garlic cultivars based on morphological characters and AFLP markers. Genet. Mol. Res. 2013, 12, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Vuylsteke, M.; Peleman, J.; van Eijk, M. AFLP technology for DNA fingerprinting. Nat. Prot. 2007, 2, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Grzebelus, D.; Senalik, D.; Jagosz, B.; Simon, P.; Michalik, B. The use of AFLP markers for the identification of carrot breeding lines and F1 hybrids. Plant Bred. 2008, 120, 526–528. [Google Scholar] [CrossRef]
- Ranamukhaarachchi, D.G.; Kane, M.E.; Guy, C.L.; Li, Q.B. Modified AFLP technique for rapid genetic characterization in plants. Biotechniques 2000, 29, 858–866. [Google Scholar] [CrossRef] [PubMed]
Accession | Flowers | Root Shape | Root Color | Origin |
---|---|---|---|---|
Berlicum | Sterile | Berlicum | Orange | FSBSI FSVC |
Berlicum | Sterile | Berlicum | Orange | FSBSI FSVC |
Chantenay Coeur Rouge | Fertile | Chantenay | Orange | Graines Baumaux |
Colmar a Coeur Rouge | Fertile | Flakkee | Orange | Graines Baumaux |
Purple Dragon | Fertile | Danvers | Purple | Graines Baumaux |
Gelber Goliath | Fertile/Sterile | Half-long | Yellow | Graines Baumaux |
Saint Valery | Fertile | Flakkee | Orange | Graines Baumaux |
Deep Purple F1 | Sterile | Imperator | Purple | Bejo |
Primer Pair 1 | HE | PIC | E | Havp | MI | D | Rp |
---|---|---|---|---|---|---|---|
P-AGA/M-CAG | 0.49 | 0.34 | 17.5 | 0.002 | 0.035 | 0.66 | 15 |
P-ATA/M-CTC | 0.49 | 0.34 | 18.9 | 0.002 | 0.035 | 0.67 | 11.3 |
P-AAT/T-CAA | 0.32 | 0.41 | 23.3 | 0.001 | 0.032 | 0.36 | 5.5 |
Accession 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
2 | 0.09 | 0 | |||||
3 | 0.26 | 0.27 | 0 | ||||
4 | 0.24 | 0.27 | 0.12 | 0 | |||
5 | 0.31 | 0.30 | 0.27 | 0.31 | 0 | ||
6 | 0.28 | 0.27 | 0.22 | 0.26 | 0.23 | 0 | |
7 | 0.21 | 0.18 | 0.21 | 0.17 | 0.34 | 0.27 | 0 |
8 | 0.30 | 0.29 | 0.16 | 0.20 | 0.23 | 0.26 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domblides, A.; Domblides, E. Rapid Genetic Assessment of Carrot Varieties Based on AFLP Analysis. Horticulturae 2023, 9, 298. https://doi.org/10.3390/horticulturae9030298
Domblides A, Domblides E. Rapid Genetic Assessment of Carrot Varieties Based on AFLP Analysis. Horticulturae. 2023; 9(3):298. https://doi.org/10.3390/horticulturae9030298
Chicago/Turabian StyleDomblides, Arthur, and Elena Domblides. 2023. "Rapid Genetic Assessment of Carrot Varieties Based on AFLP Analysis" Horticulturae 9, no. 3: 298. https://doi.org/10.3390/horticulturae9030298
APA StyleDomblides, A., & Domblides, E. (2023). Rapid Genetic Assessment of Carrot Varieties Based on AFLP Analysis. Horticulturae, 9(3), 298. https://doi.org/10.3390/horticulturae9030298