Phytochemical Profile and Biological Activities of Extracts Obtained from Young Shoots of Blackcurrant (Ribes nigrum L.), European Blueberry (Vaccinium myrtillus L.), and Mountain Cranberry (Vaccinium vitis-idaea L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Plant Material
2.3. Preparation of Plant Extracts and Investigation of Optimal Experimental Conditions to Obtain Extracts Rich in Phytochemicals
2.4. Quantitative Determinations of Total Bioactive Compounds
2.4.1. Total Phenolic Content
2.4.2. Total Flavonoid Content
2.4.3. Condensed Tannin Content
2.5. Determination of the Antioxidant Activity
2.6. Phytochemical Analysis by LC–MS
2.6.1. Identification and Quantification of Polyphenolic Compounds
2.6.2. Identification and Quantification of Procyanidins
2.7. In Vitro Biological Activity on Cell Lines
2.7.1. Cell Culture
2.7.2. Preparation of Extract Solutions
2.7.3. Viability Assays
2.7.4. Dichloro-Fluorescein Diacetate Assay
2.8. Statistical Analysis
3. Results
3.1. Outcomes of the Experimental Runs and Fitting the Data with the Models
3.1.1. The Influence of Experimental Conditions on Dependent Variables
3.1.2. Investigation of Optimal Experimental Conditions to Obtain Extracts Rich in Phytochemicals for RNYSs
3.2. Quantitative Determinations of Total Bioactive Compounds and Antioxidant Activity
3.3. Phytochemical Analysis by LC–MS
3.4. Biological Activities of the Young Shoot Extracts
3.4.1. Cytotoxic Potential
3.4.2. Antioxidant Activity
4. Discussion
4.1. Fitting the Experimental Data with the Models
4.2. The Influence of Experimental Conditions on Dependent Variables
4.3. Quantitative Determinations of Total Bioactive Compounds and Antioxidant Activity
4.4. Phytochemical Analysis by LC–MS
4.5. Biological Activities of the Young Shoot Extracts
4.5.1. Cytotoxic Potential
4.5.2. Antioxidant Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant Flavonoids in Cancer Chemoprevention: Role in Genome Stability. J. Nutr. Biochem. 2017, 45, 1–14. [Google Scholar] [CrossRef]
- Ancillotti, C.; Ciofi, L.; Pucci, D.; Sagona, E.; Giordani, E.; Biricolti, S.; Gori, M.; Petrucci, W.A.; Giardi, F.; Bartoletti, R.; et al. Polyphenolic Profiles and Antioxidant and Antiradical Activity of Italian Berries from Vaccinium myrtillus L. and Vaccinium uliginosum L. subsp. gaultherioides (Bigelow) S.B. Young. Food Chem. 2016, 204, 176–184. [Google Scholar] [CrossRef]
- Staszowska-Karkut, M.; Materska, M. Phenolic Composition, Mineral Content, and Beneficial Bioactivities of Leaf Extracts from Black Currant (Ribes nigrum L.), Raspberry (Rubus idaeus), and Aronia (Aronia melanocarpa). Nutrients 2020, 12, 463. [Google Scholar] [CrossRef]
- Martini, D.; Marino, M.; Venturi, S.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M.; Del Bo’, C. Blueberries and Their Bioactives in the Modulation of Oxidative Stress, Inflammation and Cardio/Vascular Function Markers: A Systematic Review of Human Intervention Studies. J. Nutr. Biochem. 2023, 111, 109154. [Google Scholar] [CrossRef]
- Duan, Y.; Tarafdar, A.; Chaurasia, D.; Singh, A.; Bhargava, P.C.; Yang, J.; Li, Z.; Ni, X.; Tian, Y.; Li, H.; et al. Blueberry Fruit Valorization and Valuable Constituents: A Review. Int. J. Food Microbiol. 2022, 381, 109890. [Google Scholar] [CrossRef]
- Kowalska, K. Lingonberry (Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects—A Review. Int. J. Mol. Sci. 2021, 22, 5126. [Google Scholar] [CrossRef]
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E.; Vodnar, D.C. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28, 1533. [Google Scholar] [CrossRef]
- Aaby, K.; Grimmer, S.; Holtung, L. Extraction of Phenolic Compounds from Bilberry (Vaccinium myrtillus L.) Press Residue: Effects on Phenolic Composition and Cell Proliferation. LWT-Food Sci. Technol. 2013, 54, 257–264. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Čanadanović-Brunet, J.; Ćetković, G.; Djilas, S.; Četojević-Simin, D. Dried Bilberry (Vaccinium myrtillus L.) Extract Fractions as Antioxidants and Cancer Cell Growth Inhibitors. LWT-Food Sci. Technol. 2015, 61, 615–621. [Google Scholar] [CrossRef]
- Schantz, M.; Mohn, C.; Baum, M.; Richling, E. Antioxidative Efficiency of an Anthocyanin Rich Bilberry Extract in the Human Colon Tumor Cell Lines Caco-2 and HT-29. J. Berry Res. 2010, 1, 25–33. [Google Scholar] [CrossRef]
- Mauramo, M.; Onali, T.; Wahbi, W.; Vasara, J.; Lampinen, A.; Mauramo, E.; Kivimäki, A.; Martens, S.; Häggman, H.; Sutinen, M.; et al. Bilberry (Vaccinium myrtillus L.) Powder Has Anticarcinogenic Effects on Oral Carcinoma In Vitro and In Vivo. Antioxidants 2021, 10, 1319. [Google Scholar] [CrossRef]
- Georgescu, C.; Frum, A.; Virchea, L.-I.; Sumacheva, A.; Shamtsyan, M.; Gligor, F.-G.; Olah, N.K.; Mathe, E.; Mironescu, M. Geographic Variability of Berry Phytochemicals with Antioxidant and Antimicrobial Properties. Molecules 2022, 27, 4986. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, P.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; Sneha, K.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. [Google Scholar] [CrossRef]
- Jia, N.; Xiong, Y.L.; Kong, B.; Liu, Q.; Xia, X. Radical Scavenging Activity of Black Currant (Ribes nigrum L.) Extract and Its Inhibitory Effect on Gastric Cancer Cell Proliferation via Induction of Apoptosis. J. Funct. Foods 2012, 4, 382–390. [Google Scholar] [CrossRef]
- Miladinovic, B.; Faria, M.Â.; Ribeiro, M.; Sobral, M.M.C.; Ferreira, I.M.P.L.V.O. Delphinidin-3-Rutinoside from Blackcurrant Berries (Ribes nigrum): In Vitro Antiproliferative Activity and Interactions with Other Phenolic Compounds. Molecules 2023, 28, 1286. [Google Scholar] [CrossRef]
- Diaconeasa, Z.; Leopold, L.; Rugină, D.; Ayvaz, H.; Socaciu, C. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice. Int. J. Mol. Sci. 2015, 16, 2352–2365. [Google Scholar] [CrossRef]
- Bishayee, A.; Háznagy-Radnai, E.; Mbimba, T.; Sipos, P.; Morazzoni, P.; Darvesh, A.; Bhatia, D.; Hohmann, J. Anthocyanin-Rich Black Currant Extract Suppresses the Growth of Human Hepatocellular Carcinoma Cells. Nat. Prod. Commun. 2010, 5, 1613–1618. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Antioxidant Capacity of Black Currant Varies with Organ, Season, and Cultivar. J. Agric. Food Chem. 2006, 54, 6271–6276. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of Cytotoxicity and Antioxidant Properties of Berry Leaves as By-Products with Potential Application in Cosmetic and Pharmaceutical Products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef] [PubMed]
- Ștefănescu, R.; Laczkó-Zöld, E.; Ősz, B.-E.; Vari, C.-E. An Updated Systematic Review of Vaccinium myrtillus Leaves: Phytochemistry and Pharmacology. Pharmaceutics 2022, 15, 16. [Google Scholar] [CrossRef]
- Téglás, T.; Mihok, E.; Cziáky, Z.; Oláh, N.-K.; Nyakas, C.; Máthé, E. The Flavonoid Rich Black Currant (Ribes nigrum) Ethanolic Gemmotherapy Extract Elicits Neuroprotective Effect by Preventing Microglial Body Swelling in Hippocampus and Reduces Serum TNF-α Level: Pilot Study. Molecules 2023, 28, 3571. [Google Scholar] [CrossRef] [PubMed]
- Magnavacca, A.; Piazza, S.; Cammisa, A.; Fumagalli, M.; Martinelli, G.; Giavarini, F.; Sangiovanni, E.; Dell’Agli, M. Ribes nigrum Leaf Extract Preferentially Inhibits IFN-γ-Mediated Inflammation in HaCaT Keratinocytes. Molecules 2021, 26, 3044. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A. Comparison of Phenolic Compounds and Antioxidant Potential between Selected Edible Fruits and Their Leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- European Directorate for the Quality of Medicines & Health Care. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2005; Volume 2, ISBN 978-92-871-5281-7. [Google Scholar]
- Picot-Allain, C.; Mahomoodally, M.F.; Ak, G.; Zengin, G. Conventional versus Green Extraction Techniques—A Comparative Perspective. Curr. Opin. Food Sci. 2021, 40, 144–156. [Google Scholar] [CrossRef]
- Martinović, M.; Krgović, N.; Nešić, I.; Žugić, A.; Tadić, V.M. Conventional vs. Green Extraction Using Natural Deep Eutectic Solvents—Differences in the Composition of Soluble Unbound Phenolic Compounds and Antioxidant Activity. Antioxidants 2022, 11, 2295. [Google Scholar] [CrossRef] [PubMed]
- José Aliaño González, M.; Carrera, C.; Barbero, G.F.; Palma, M. A Comparison Study between Ultrasound–Assisted and Enzyme–Assisted Extraction of Anthocyanins from Blackcurrant (Ribes nigrum L.). Food Chem. X 2022, 13, 100192. [Google Scholar] [CrossRef] [PubMed]
- Marzullo, L.; Ochkur, O.; Orlandini, S.; Renai, L.; Gotti, R.; Koshovyi, O.; Furlanetto, S.; Del Bubba, M. Quality by Design in Optimizing the Extraction of (Poly)Phenolic Compounds from Vaccinium myrtillus Berries. J. Chromatogr. A 2022, 1677, 463329. [Google Scholar] [CrossRef]
- Rusu, M.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef] [PubMed]
- Vlase, A.-M.; Toiu, A.; Tomuță, I.; Vlase, L.; Muntean, D.; Casian, T.; Fizeșan, I.; Nadăș, G.C.; Novac, C.Ș.; Tămaș, M.; et al. Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants 2022, 12, 91. [Google Scholar] [CrossRef]
- Rusu, M.E.; Fizeșan, I.; Pop, A.; Gheldiu, A.-M.; Mocan, A.; Crișan, G.; Vlase, L.; Loghin, F.; Popa, D.S.; Tomuta, I. Enhanced Recovery of Antioxidant Compounds from Hazelnut (Corylus avellana L.) Involucre Based on Extraction Optimization: Phytochemical Profile and Biological Activities. Antioxidants 2019, 8, 460. [Google Scholar] [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Domínguez, J.M.; Sineiro, J.; Domínguez, H.; José Núñez, M.; Parajó, J.C. Natural Antioxidants from Residual Sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Raiciu, A.D.; Mihele, D.E.; Ionita, C.; Nistorica, V.; Manea, S. Antimicrobial Activity of Ribes Nigrum, Rosmarinus Officinalis, Betula Pubescens, Salix Alba, Vaccinium myrtillus Gemoderivatives. Farmacia 2010, 58, 735–748. [Google Scholar]
- Rusu, M.E.; Fizesan, I.; Pop, A.; Mocan, A.; Gheldiu, A.-M.; Babota, M.; Vodnar, D.C.; Jurj, A.; Berindan-Neagoe, I.; Vlase, L.; et al. Walnut (Juglans regia L.) Septum: Assessment of Bioactive Molecules and In Vitro Biological Effects. Molecules 2020, 25, 2187. [Google Scholar] [CrossRef] [PubMed]
- Epure, A.; Pârvu, A.E.; Vlase, L.; Benedec, D.; Hanganu, D.; Gheldiu, A.-M.; Toma, V.A.; Oniga, I. Phytochemical Profile, Antioxidant, Cardioprotective and Nephroprotective Activity of Romanian Chicory Extract. Plants 2020, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Toiu, A.; Vlase, L.; Gheldiu, A.-M.; Vodnar, D.; Oniga, I. Evaluation of the Antioxidant and Antibacterial Potential of Bioactive Compounds from Ajuga Reptans Extracts. Farmacia 2017, 65, 351–355. [Google Scholar]
- Rauca, V.-F.; Vlase, L.; Casian, T.; Sesarman, A.; Gheldiu, A.-M.; Mocan, A.; Banciu, M.; Toiu, A. Biologically Active Ajuga Species Extracts Modulate Supportive Processes for Cancer Cell Development. Front. Pharmacol. 2019, 10, 334. [Google Scholar] [CrossRef]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.-M.; Nadăș, G.C.; Matei, I.A.; Filip, G.A.; Vlase, L.; Crișan, G. The Effect of Extraction Methods on Phytochemicals and Biological Activities of Green Coffee Beans Extracts. Plants 2023, 12, 712. [Google Scholar] [CrossRef]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.-M.; Nadăș, G.C.; Filip, G.A.; Vlase, L.; Crișan, G. Influences of Different Extraction Techniques and Their Respective Parameters on the Phytochemical Profile and Biological Activities of Xanthium spinosum L. Extracts. Plants 2022, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.-M.; Moldovan, C.; Oniga, I. Comparative Phytochemical Profile, Antioxidant, Antimicrobial and In Vivo Anti-Inflammatory Activity of Different Extracts of Traditionally Used Romanian Ajuga genevensis L. and A. reptans L. (Lamiaceae). Molecules 2019, 24, 1597. [Google Scholar] [CrossRef]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.-M.; Moldovan, C.; Oniga, I. Phytochemical Composition, Antioxidant, Antimicrobial and in Vivo Anti-Inflammatory Activity of Traditionally Used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s Beard”—Barba Împăratului). Front. Pharmacol. 2018, 9, 7. [Google Scholar] [CrossRef]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.-M.; Nadăș, G.C.; Novac, C.Ș.; Filip, G.A.; Vlase, L.; Crișan, G. Red Clover and the Importance of Extraction Processes—Ways in Which Extraction Techniques and Parameters Affect Trifolium pratense L. Extracts’ Phytochemical Profile and Biological Activities. Processes 2022, 10, 2581. [Google Scholar] [CrossRef]
- Pop, A.; Bogdan, C.; Fizesan, I.; Iurian, S.; Carpa, R.; Bacali, C.; Vlase, L.; Benedec, D.; Moldovan, M.L. In Vitro Evaluation of Biological Activities of Canes and Pomace Extracts from Several Varieties of Vitis vinifera L. for Inclusion in Freeze-Drying Mouthwashes. Antioxidants 2022, 11, 218. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, M.L.; Carpa, R.; Fizeșan, I.; Vlase, L.; Bogdan, C.; Iurian, S.M.; Benedec, D.; Pop, A. Phytochemical Profile and Biological Activities of Tendrils and Leaves Extracts from a Variety of Vitis vinifera L. Antioxidants 2020, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.-M.; Gouda, M.; Ye, X.-Q.; Shao, Z.-P.; Chen, J.-C. Evaluation of Proanthocyanidins from Kiwi Leaves (Actinidia chinensis) against Caco-2 Cells Oxidative Stress through Nrf2-ARE Signaling Pathway. Antioxidants 2022, 11, 1367. [Google Scholar] [CrossRef] [PubMed]
- Pop, A.; Fizeșan, I.; Vlase, L.; Rusu, M.E.; Cherfan, J.; Babota, M.; Gheldiu, A.-M.; Tomuta, I.; Popa, D.-S. Enhanced Recovery of Phenolic and Tocopherolic Compounds from Walnut (Juglans regia L.) Male Flowers Based on Process Optimization of Ultrasonic Assisted-Extraction: Phytochemical Profile and Biological Activities. Antioxidants 2021, 10, 607. [Google Scholar] [CrossRef]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic Compounds in Blackcurrant (Ribes nigrum L.) Leaves Relative to Leaf Position and Harvest Date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Evers, D.; Dommes, J. Ascorbic Acid, Phenolic Acid, Flavonoid, and Carotenoid Profiles of Selected Extracts from Ribes nigrum. J. Agric. Food Chem. 2011, 59, 4763–4770. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Zunin, P.; Pittaluga, A.; Boggia, R. Pulsed Ultrasound-Assisted Extraction as an Alternative Method to Conventional Maceration for the Extraction of the Polyphenolic Fraction of Ribes Nigrum Buds: A New Category of Food Supplements Proposed by The Finnover Project. Foods 2019, 8, 466. [Google Scholar] [CrossRef]
- Cvetanović, A.; Zengin, G.; Zeković, Z.; Švarc-Gajić, J.; Ražić, S.; Damjanović, A.; Mašković, P.; Mitić, M. Comparative in Vitro Studies of the Biological Potential and Chemical Composition of Stems, Leaves and Berries Aronia Melanocarpa’s Extracts Obtained by Subcritical Water Extraction. Food Chem. Toxicol. 2018, 121, 458–466. [Google Scholar] [CrossRef]
- Bujor, O.-C.; Le Bourvellec, C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal Variations of the Phenolic Constituents in Bilberry (Vaccinium myrtillus L.) Leaves, Stems and Fruits, and Their Antioxidant Activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef]
- Bujor, O.-C.; Ginies, C.; Popa, V.I.; Dufour, C. Phenolic Compounds and Antioxidant Activity of Lingonberry (Vaccinium vitis-Idaea L.) Leaf, Stem and Fruit at Different Harvest Periods. Food Chem. 2018, 252, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Ștefănescu, B.-E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. Chemical Composition and Biological Activities of the Nord-West Romanian Wild Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.) Leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef] [PubMed]
- Dragana, M.V.; Miroslav, R.P.; Branka, B.R.G.; Olgica, D.S.; Sava, M.V.; Ljiljana, R.Č. Antibacterial and Antioxidant Activities of Bilberry (Vaccinium myrtillus L.) in Vitro. Afr. J. Microbiol. Res. 2013, 7, 5130–5136. [Google Scholar] [CrossRef]
- Charpentier, T.; Boisard, S.; Le Ray, A.-M.; Bréard, D.; Chabrier, A.; Esselin, H.; Guilet, D.; Ripoll, C.; Richomme, P. A Descriptive Chemical Composition of Concentrated Bud Macerates through an Optimized SPE-HPLC-UV-MS2 Method—Application to Alnus glutinosa, Ribes nigrum, Rosa canina, Rosmarinus officinalis and Tilia tomentosa. Plants 2022, 11, 144. [Google Scholar] [CrossRef]
- Donno, D.; Beccaro, G.L.; Mellano, M.G.; Cerruti, A.K.; Bounous, G. Medicinal Plants, Chemical Composition and Quality: May Blackcurrant Buds and Blackberry Sprouts Be a New Polyphenol Source for Herbal Preparations? J. Appl. Bot. Food Qual. 2013, 86, 79–89. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Boggia, R.; Beccaro, G.L.; Zunin, P.; Leardi, R.; Pittaluga, A.M. An Innovative Green Extraction and Re-Use Strategy to Valorize Food Supplement by-Products: Castanea Sativa Bud Preparations as Case Study. Food Res. Int. 2019, 115, 276–282. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Schmitzer, V.; Slatnar, A.; Stampar, F.; Veberic, R. A Comparison of Fruit Quality Parameters of Wild Bilberry (Vaccinium Myrtillus L.) Growing at Different Locations: Fruit Quality Parameters of Wild Bilberry. J. Sci. Food Agric. 2015, 95, 776–785. [Google Scholar] [CrossRef]
- Hohtola, A.; Jaakola, L.; Maatta-Riihinen, K.; Karenlampi, S. Activation of Flavonoid Biosynthesis by Solar Radiation in Bilberry (Vaccinium Myrtillus L.) Leaves. Planta 2004, 218, 721–728. [Google Scholar] [CrossRef]
- Szakiel, A.; Pączkowski, C.; Koivuniemi, H.; Huttunen, S. Comparison of the Triterpenoid Content of Berries and Leaves of Lingonberry Vaccinium vitis-idaea from Finland and Poland. J. Agric. Food Chem. 2012, 60, 4994–5002. [Google Scholar] [CrossRef]
- Spitaler, R.; Winkler, A.; Lins, I.; Yanar, S.; Stuppner, H.; Zidorn, C. Altitudinal Variation of Phenolic Contents in Flowering Heads of Arnica Montana Cv. ARBO: A 3-Year Comparison. J. Chem. Ecol. 2008, 34, 369–375. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as Potential Antioxidant Therapeutic Agents: Mechanism and Actions. Mutat. Res. Mol. Mech. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Raudsepp, P.; Kaldmäe, H.; Kikas, A.; Libek, A.-V.; Püssa, T. Nutritional Quality of Berries and Bioactive Compounds in the Leaves of Black Currant (Ribes nigrum L.) Cultivars Evaluated in Estonia. J. Berry Res. 2010, 1, 53–59. [Google Scholar] [CrossRef]
- Mateș, L.; Rusu, M.E.; Popa, D.-S. Phytochemicals and Biological Activities of Walnut Septum: A Systematic Review. Antioxidants 2023, 12, 604. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, G.; Montoro, P.; Piacente, S. Detection and Comparison of Phenolic Compounds in Different Extracts of Black Currant Leaves by Liquid Chromatography Coupled with High-Resolution ESI-LTQ-Orbitrap MS and High-Sensitivity ESI-Qtrap MS. J. Pharm. Biomed. Anal. 2020, 179, 112926. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Lindstedt, A.; Markkinen, N.; Sinkkonen, J.; Suomela, J.-P.; Yang, B. Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.). J. Agric. Food Chem. 2014, 62, 12015–12026. [Google Scholar] [CrossRef] [PubMed]
- Shamilov, A.A.; Olennikov, D.N.; Pozdnyakov, D.I.; Bubenchikova, V.N.; Garsiya, E.R.; Larskii, M.V. Caucasian Blueberry: Comparative Study of Phenolic Compounds and Neuroprotective and Antioxidant Potential of Vaccinium myrtillus and Vaccinium arctostaphylos Leaves. Life 2022, 12, 2079. [Google Scholar] [CrossRef]
- Hokkanen, J.; Mattila, S.; Jaakola, L.; Pirttilä, A.M.; Tolonen, A. Identification of Phenolic Compounds from Lingonberry (Vaccinium vitis-idaea L.), Bilberry (Vaccinium myrtillus L.) and Hybrid Bilberry (Vaccinium × Intermedium Ruthe L.) Leaves. J. Agric. Food Chem. 2009, 57, 9437–9447. [Google Scholar] [CrossRef]
- Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic Distribution in Liquid Preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef]
- Mourabit, Y.; El Hajjaji, S.; Taha, D.; Badaoui, B.; El Yadini, M.; Rusu, M.E.; Lee, L.-H.; Bouyahya, A.; Bourais, I. HPLC-DAD-ESI/MS Phytochemical Investigation, Antioxidant, and Antidiabetic Activities of Moroccan Rosa canina L. Extracts. Biocatal. Agric. Biotechnol. 2023, 52, 102817. [Google Scholar] [CrossRef]
- Ginovyan, M.; Bartoszek, A.; Koss-Mikołajczyk, I.; Kusznierewicz, B.; Andreoletti, P.; Cherkaoui-Malki, M.; Sahakyan, N. Growth Inhibition of Cultured Cancer Cells by Ribes nigrum Leaf Extract. AIMS Biophys. 2022, 9, 282–293. [Google Scholar] [CrossRef]
- Ribera-Fonseca, A.; Jiménez, D.; Leal, P.; Riquelme, I.; Roa, J.C.; Alberdi, M.; Peek, R.M.; Reyes-Díaz, M. The Anti-Proliferative and Anti-Invasive Effect of Leaf Extracts of Blueberry Plants Treated with Methyl Jasmonate on Human Gastric Cancer In Vitro Is Related to Their Antioxidant Properties. Antioxidants 2020, 9, 45. [Google Scholar] [CrossRef]
- Krauze-Baranowska, M.; Głód, D.; Kula, M.; Majdan, M.; Hałasa, R.; Matkowski, A.; Kozłowska, W.; Kawiak, A. Chemical Composition and Biological Activity of Rubus Idaeus Shoots—A Traditional Herbal Remedy of Eastern Europe. BMC Complement. Altern. Med. 2014, 14, 480. [Google Scholar] [CrossRef] [PubMed]
- Debnath-Canning, M.; Unruh, S.; Vyas, P.; Daneshtalab, N.; Igamberdiev, A.U.; Weber, J.T. Fruits and Leaves from Wild Blueberry Plants Contain Diverse Polyphenols and Decrease Neuroinflammatory Responses in Microglia. J. Funct. Foods 2020, 68, 103906. [Google Scholar] [CrossRef]
- Kellett, M.E.; Greenspan, P.; Pegg, R.B. Modification of the Cellular Antioxidant Activity (CAA) Assay to Study Phenolic Antioxidants in a Caco-2 Cell Line. Food Chem. 2018, 244, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-H.; Ma, S.-X.; Ko, Y.-H.; Seo, J.-Y.; Lee, B.-R.; Lee, T.H.; Kim, S.Y.; Lee, S.-Y.; Jang, C.-G. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells. Biomol. Ther. 2016, 24, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.-H.; Zhao, T.-R.; Liu, Y.-P.; Wang, Y.-F.; Cheng, G.-G.; Cao, J.-X. Phenolic Constituents, Antioxidant Activity and Neuroprotective Effects of Ethanol Extracts of Fruits, Leaves and Flower Buds from Vaccinium dunalianum Wight. Food Chem. 2022, 374, 131752. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-S.; Gu, Q.-H.; Zhang, J.-K.; Tao, J.-H.; Zhao, T.-R.; Cao, J.-X.; Cheng, G.-G.; Lai, G.-F.; Liu, Y.-P. Phenolic Constituents, Antioxidant and Cytoprotective Activities, Enzyme Inhibition Abilities of Five Fractions from Vaccinium dunalianum Wight. Molecules 2022, 27, 3432. [Google Scholar] [CrossRef]
- Yao, J.; Peng, S.; Xu, J.; Fang, J. Reversing ROS-mediated Neurotoxicity by Chlorogenic Acid Involves Its Direct Antioxidant Activity and Activation of Nrf2-ARE Signaling Pathway. BioFactors 2019, 45, 616–626. [Google Scholar] [CrossRef]
- Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R. Chlorogenic Acid, a Polyphenol from Prunus domestica (Mirabelle), with Coupled Anxiolytic and Antioxidant Effects. J. Neurol. Sci. 2007, 262, 77–84. [Google Scholar] [CrossRef]
- Shah, M.-A.; Kang, J.-B.; Park, D.-J.; Kim, M.-O.; Koh, P.-O. Chlorogenic Acid Alleviates Neurobehavioral Disorders and Brain Damage in Focal Ischemia Animal Models. Neurosci. Lett. 2021, 760, 136085. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.E.; Simedrea, R.; Gheldiu, A.-M.; Mocan, A.; Vlase, L.; Popa, D.-S.; Ferreira, I.C.F.R. Benefits of Tree Nut Consumption on Aging and Age-Related Diseases: Mechanisms of Actions. Trends Food Sci. Technol. 2019, 88, 104–120. [Google Scholar] [CrossRef]
- Tabart, J.; Franck, T.; Kevers, C.; Pincemail, J.; Serteyn, D.; Defraigne, J.-O.; Dommes, J. Antioxidant and Anti-Inflammatory Activities of Ribes nigrum Extracts. Food Chem. 2012, 131, 1116–1122. [Google Scholar] [CrossRef]
Harvested Species | Location | GPS Position |
---|---|---|
Ribes nigrum L. | Obcinile Bucovinei, Suceava county, Romania | 47°53′23″ N 25°17′21″ E |
Vaccinium myrtillus L. | ||
Vaccinium vitis-idaea L. |
Sample Code | Extraction Method (X1) | Stirring Time (X2) | Extraction Solvent (X3) | Solvent Apparent pH (X4) | Solvent + Vegetal Product (X5) |
---|---|---|---|---|---|
N6 | UAE * | 20 min | 70% acetone in 1% acetic acid | 3.7 | 20 mL + 1 g |
N1 | UTE ** | 1 min | 50% ethanol in 1% acetic acid | 3.4 | 20 mL + 1 g |
N10 | UAE | 10 min | 50% ethanol in 1% acetic acid | 3.4 | 20 mL + 2 g |
N13 | UTE | 1 min | 70% acetone in 1% acetic acid | 3.7 | 20 mL + 1 g |
N3 | UTE | 3 min | 50% ethanol in water | 6.8 | 20 mL + 1 g |
N16 | UAE | 20 min | 70% acetone in 1% acetic acid | 3.7 | 20 mL + 2 g |
N5 | UTE | 1 min | 70% acetone in water | 6.4 | 20 mL + 1 g |
N11 | UTE | 3 min | 50% ethanol in 1% acetic acid | 3.4 | 20 mL + 2 g |
N2 | UAE | 10 min | 50% ethanol in water | 6.8 | 20 mL + 1 g |
N14 | UAE | 10 min | 70% acetone in water | 6.4 | 20 mL + 2 g |
N9 | UTE | 1 min | 50% ethanol in water | 6.8 | 20 mL + 2 g |
N19 | UTE | 2 min | 50% ethanol in water | 6.8 | 20 mL + 1.5 g |
N17 | UTE | 2 min | 50% ethanol in water | 6.8 | 20 mL + 1.5 g |
N7 | UTE | 3 min | 70% acetone in 1% acetic acid | 3.7 | 20 mL + 1 g |
N18 | UTE | 2 min | 50% ethanol in water | 6.8 | 20 mL + 1.5 g |
N8 | UAE | 20 min | 70% acetone in water | 6.4 | 20 mL + 1 g |
N15 | UTE | 3 min | 70% acetone in water | 6.4 | 20 mL + 2 g |
N12 | UAE | 20 min | 50% ethanol in water | 6.8 | 20 mL + 2 g |
N4 | UAE | 20 min | 50% ethanol in 1% acetic acid | 3.4 | 20 mL + 1.5 g |
Variables | Level | ||
---|---|---|---|
−1 | 0 | 1 | |
Independent variables (factors) | |||
Extraction method (X1) | UAE | - | UTE |
Stirring time (X2) | |||
| 10 | - | 20 |
| 1 | 2 | 3 |
Extraction solvent (X3) | 50% ethanol | - | 70% acetone |
Solvent apparent pH (X4) | neutral | - | 1% acetic acid |
Solvent (mL):vegetal product (g) ratio (X5) | 20:1 | 20:1.5 | 20:2 |
Dependent variables (responses) | |||
Total phenolic content (TPC, mg GAE/g dw 1) (Y1) | |||
Total flavonoid content (TFC, mg QE/g dw 2) (Y2) | |||
Condensed tannin content (CTC, mg CE/g dw 3) (Y3) | |||
Total antioxidant activity (TAA, mg TE/g dw 4) (Y4) |
Sample Code | Run Order | Factorial Design with Coded Values | Determination (Experimental Results) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | Y1 (TPC) | Y2 (TFC) | Y3 (CTC) | Y4 (TAA) | ||
N1 | 2 | UTE 1 | 1 min | EtOH50 3 | 3.4 | 20:1 | 59.28 ± 0.61 | 5.25 ± 0.00 | 105.61 ± 5.35 | 1048.03 ± 39.08 |
N2 | 9 | UAE 2 | 10 min | EtOH50 | 6.8 | 20:1 | 53.52 ± 1.69 | 5.84 ± 0.06 | 63.16 ± 3.57 | 923.80 ± 95.87 |
N3 | 5 | UTE | 3 min | EtOH50 | 6.8 | 20:1 | 68.41 ± 0.61 | 6.04 ± 0.00 | 109.39 ± 3.57 | 1147.71 ± 59.79 |
N4 | 19 | UAE | 20 min | EtOH50 | 3.4 | 20:1.5 | 50.10 ± 1.23 | 5.28 ± 0.14 | 94.78 ± 0.00 | 820.03 ± 42.30 |
N5 | 7 | UTE | 1 min | Ace70 4 | 6.4 | 20:1 | 79.71 ± 4.00 | 6.76 ± 0.13 | 161.93 ± 2.97 | 1341.28 ± 72.39 |
N6 | 1 | UAE | 20 min | Ace70 | 3.7 | 20:1 | 48.41 ± 1.84 | 4.77 ± 0.00 | 79.55 ± 1.78 | 906.46 ± 68.84 |
N7 | 14 | UTE | 3 min | Ace70 | 3.7 | 20:1 | 77.97 ± 4.61 | 6.96 ± 0.11 | 195.97± 17.83 | 1310.94 ± 19.86 |
N8 | 16 | UAE | 20 min | Ace70 | 6.4 | 20:1 | 47.00 ± 0.77 | 4.92 ± 0.21 | 90.06 ± 3.57 | 903.58 ± 31.25 |
N9 | 11 | UTE | 1 min | EtOH50 | 6.8 | 20:2 | 53.39 ± 0.54 | 5.72 ± 0.07 | 117.74 ± 5.94 | 874.32 ± 33.85 |
N10 | 3 | UAE | 10 min | EtOH50 | 3.4 | 20:2 | 51.48 ± 0.31 | 5.31 ± 0.14 | 104.92 ± 6.84 | 786.93 ± 16.41 |
N11 | 8 | UTE | 3 min | EtOH50 | 3.4 | 20:2 | 64.85 ± 0.77 | 5.57 ± 0.30 | 170.28 ± 9.51 | 890.94 ± 27.09 |
N12 | 18 | UAE | 20 min | EtOH50 | 6.8 | 20:2 | 37.79 ± 0.46 | 4.03 ± 0.01 | 54.07 ± 2.67 | 625.86 ± 8.76 |
N13 | 4 | UTE | 1 min | Ace70 | 3.7 | 20:1 | 80.25 ± 3.84 | 6.16 ± 0.06 | 197.24 ± 23.18 | 1488.62 ± 4.33 |
N14 | 10 | UAE | 10 min | Ace70 | 6.4 | 20:2 | 43.33 ± 0.00 | 4.54 ± 0.04 | 86.22 ± 3.57 | 747.20 ± 17.65 |
N15 | 17 | UTE | 3 min | Ace70 | 6.4 | 20:2 | 76.81 ± 2.00 | 7.22 ± 0.23 | 242.36 ± 5.65 | 982.67 ± 0.00 |
N16 | 6 | UAE | 20 min | Ace70 | 3.7 | 20:2 | 59.47 ± 0.69 | 6.20 ± 0.07 | 138.97 ± 0.89 | 917.66 ± 5.73 |
N17 | 13 | UTE | 2 min | EtOH50 | 6.8 | 20:1.5 | 62.56 ± 1.02 | 6.08 ± 0.05 | 118.32 ± 4.76 | 959.67 ± 6.01 |
N18 | 15 | UTE | 2 min | EtOH50 | 6.8 | 20:1.5 | 62.63 ± 1.33 | 6.55 ± 0.09 | 120.84 ± 7.53 | 977.01 ± 21.68 |
N19 | 12 | UTE | 2 min | EtOH50 | 6.8 | 20:1.5 | 63.57 ± 1.43 | 6.25 ± 0.01 | 115.52 ± 10.30 | 1038.64 ± 5.78 |
No | Species | TPC 1 | TFC 2 | CTC 3 | TAA 4 |
---|---|---|---|---|---|
1 | R. nigrum L. | 263.86 ± 18.47 | 41.49 ± 1.65 | 131.81 ± 7.90 | 3.66 ± 0.40 |
2 | V. myrtillus L. | 105.25 ± 7.36 | 43.17 ± 3.02 | 18.80 ± 1.88 | 3.45 ± 0.24 |
3 | V. vitis-idaea L. | 114.43 ± 5.72 | 38.06 ± 4.18 | 25.99 ± 1.03 | 3.41 ± 0.17 |
Compounds/Plant Species | R. nigrum L. | V. myrtillus L. | V. vitis-idaea L. | |
---|---|---|---|---|
Hydroxycinnamic Acids (μg/g plant product) | Chlorogenic acid | 321.09 ± 28.89 | 4455.11 ± 356.40 | 238.05 ± 11.90 |
4-O-Caffeoylquinic acid | 64.48 ± 5.15 | 4.78 ± 0.43 | 44.58 ± 3.56 | |
p-coumaric acid | 4.41 ± 0.26 | 49.55 ± 4.45 | - | |
Hydroxybenzoic Acids (μg/g plant product) | Gallic acid | 2.42 ± 0.12 | 24.82 ± 0.99 | - |
Protocatechuic acid | - | 8.21 ± 0.57 | 4.43 ± 0.17 | |
Flavanols (μg/g plant product) | (+)-Epicatechin | 4.63 ± 0.37 | 17.92 ± 0.71 | 29.67 ± 1.18 |
(−)-Catechin | 3.71 ± 0.25 | 2.44 ± 0.09 | 94.76 ± 7.58 | |
Epigallocatechin gallate | 38.11 ± 1.90 | 33.20 ± 2.32 | - | |
Procyanidin A1 | - | - | 357.62 ± 21.45 | |
Procyanidin B1 | 4.86 ± 0.19 | 3.68 ± 0.33 | 53.31 ± 2.66 | |
Procyanidin B2 | 2.01 ± 0.12 | 42.22 ± 3.79 | 8.94 ± 0.62 | |
Procyanidin B3 | 11.93 ± 1.19 | - | 148.73 ± 8.92 | |
Procyanidin B4 | 16.79 ± 1.17 | 12.73 ± 1.27 | 40.67 ± 2.44 | |
Procyanidin C1 | - | 38.61 ± 3.08 | 8.77 ± 0.87 | |
Procyanidin C2 | - | 74.56 ± 7.45 | 6.28 ± 0.56 | |
Flavonols (μg/g plant product) | Hyperoside | 58.97 ± 3.53 | 644.65 ± 25.78 | 588.68 ± 29.43 |
Isoquercitrin | 280.91 ± 14.04 | 42.03 ± 4.20 | 111.38 ± 11.13 | |
Rutoside | 433.13 ± 21.66 | - | 165.93 ± 11.61 | |
Quercitrin | 106.48 ± 8.51 | 9.26 ± 0.64 | 9.26 ± 0.46 | |
Kaempferitrin | - | - | 25.57 ± 1.02 | |
Quercetol | 8.89 ± 0.71 | 5.59 ± 0.39 | 3.94 ± 0.23 | |
Kaempferol-3-rhamnoside | - | - | 2.97 ± 0.24 |
IC50 (µg/mL) | |||
---|---|---|---|
Plant species | V. myrtillus L. | R. nigrum L. | V. vitis-idaea L. |
A549 cell line | >800 | 162.9 | 360.1 |
Caco-2 cell line | >800 | 302.7 | 336.1 |
BJ cell line | >800 | 618.9 | ≈800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solcan, M.-B.; Fizeșan, I.; Vlase, L.; Vlase, A.-M.; Rusu, M.E.; Mateș, L.; Petru, A.-E.; Creștin, I.-V.; Tomuțǎ, I.; Popa, D.-S. Phytochemical Profile and Biological Activities of Extracts Obtained from Young Shoots of Blackcurrant (Ribes nigrum L.), European Blueberry (Vaccinium myrtillus L.), and Mountain Cranberry (Vaccinium vitis-idaea L.). Horticulturae 2023, 9, 1163. https://doi.org/10.3390/horticulturae9111163
Solcan M-B, Fizeșan I, Vlase L, Vlase A-M, Rusu ME, Mateș L, Petru A-E, Creștin I-V, Tomuțǎ I, Popa D-S. Phytochemical Profile and Biological Activities of Extracts Obtained from Young Shoots of Blackcurrant (Ribes nigrum L.), European Blueberry (Vaccinium myrtillus L.), and Mountain Cranberry (Vaccinium vitis-idaea L.). Horticulturae. 2023; 9(11):1163. https://doi.org/10.3390/horticulturae9111163
Chicago/Turabian StyleSolcan, Maria-Beatrice, Ionel Fizeșan, Laurian Vlase, Ana-Maria Vlase, Marius Emil Rusu, Letiția Mateș, Andreea-Elena Petru, Ionuț-Valentin Creștin, Ioan Tomuțǎ, and Daniela-Saveta Popa. 2023. "Phytochemical Profile and Biological Activities of Extracts Obtained from Young Shoots of Blackcurrant (Ribes nigrum L.), European Blueberry (Vaccinium myrtillus L.), and Mountain Cranberry (Vaccinium vitis-idaea L.)" Horticulturae 9, no. 11: 1163. https://doi.org/10.3390/horticulturae9111163
APA StyleSolcan, M. -B., Fizeșan, I., Vlase, L., Vlase, A. -M., Rusu, M. E., Mateș, L., Petru, A. -E., Creștin, I. -V., Tomuțǎ, I., & Popa, D. -S. (2023). Phytochemical Profile and Biological Activities of Extracts Obtained from Young Shoots of Blackcurrant (Ribes nigrum L.), European Blueberry (Vaccinium myrtillus L.), and Mountain Cranberry (Vaccinium vitis-idaea L.). Horticulturae, 9(11), 1163. https://doi.org/10.3390/horticulturae9111163