Soil Abandonment as a Trigger for Changes in Zn Fractionation in Afforested Former Vineyard Acidic Soils
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Soil Sampling
2.2. Soil General Characterization
2.3. Total and Potentially Available Zn
2.4. Zinc Fractionation
2.5. Statistical Analysis
3. Results
3.1. Total and Potentially Available Zn in Depth
3.2. Variations of Zn Fractionation with Soil Depth and Land Use
4. Discussion
4.1. Total and Available Zn Concentrations
4.2. Changes in Zn Fractionation after Abandonment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group LLC: Boca Raton, FL, USA, 2011; 520p. [Google Scholar]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Senesil, G.S.; Baldassarre, G.; Senesi, N.; Radina, B. Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 1999, 39, 343–377. [Google Scholar] [CrossRef] [PubMed]
- Kabala, C.; Singh, B.R. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter; 11285909. J. Environ. Qual. 2001, 30, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Korchagin, J.; Moterle, D.F.; Escosteguy, P.A.V.; Bortoluzzi, E.C. Distribution of copper and zinc fractions in a Regosol profile under centenary vineyard. Environ. Earth Sci. 2020, 79, 1–13. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, N. Zinc toxicity in plants: A review. Planta 2021, 253, 1–28. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Rodríguez-González, L.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Díaz-Raviña, M.; Arias-Estévez, M.; Fernández-Calviño, D. Soil Bacterial Community Tolerance to Three Tetracycline Antibiotics Induced by Ni and Zn. Span. J. Soil. Sci. 2023, 13, 10799. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Duplay, J.; Semhi, K.; Errais, E.; Imfeld, G.; Babcsanyi, I.; Perrone, T. Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils (Rouffach, France): The impact of cultural practices. Geoderma 2014, 230–231, 318–328. [Google Scholar] [CrossRef]
- Wieczorek, J.; Baran, A.; Bubak, A. Mobility, bioaccumulation in plants, and risk assessment of metals in soils; 37084910. Sci. Total Environ. 2023, 882, 163574. [Google Scholar] [CrossRef]
- Meite, F.; Granet, M.; Imfeld, G. Ageing of copper, zinc and synthetic pesticides in particle-size and chemical fractions of agricultural soils. Sci. Total Environ. 2022, 824, 153860. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Vázquez-Blanco, R.; González-Feijoo, R.; Campillo-Cora, C.; Fernández-Calviño, D.; Arenas-Lago, D. Risk Assessment and Limiting Soil Factors for Vine Production—Cu and Zn Contents in Vineyard Soils in Galicia (Rías Baixas D.O.). Agronomy 2023, 13, 309. [Google Scholar] [CrossRef]
- Fernández-Calviño, D.; Pateiro-Moure, M.; Nóvoa-Muñoz, J.C.; Garrido-Rodríguez, B.; Arias-Estévez, M. Zinc distribution and acid-base mobilisation in vineyard soils and sediments. Sci. Total Environ. 2012, 414, 470–479. [Google Scholar] [CrossRef] [PubMed]
- García-Navarro, F.J.; Jiménez-Ballesta, R.; Garcia-Pradas, J.; Amoros, J.A.; de los Reyes, C.P.; Bravo, S. Zinc concentration and distribution in vineyard soils and grapevine leaves from valdepeñas designation of origin (Central spain). Sustainability 2021, 13, 7390. [Google Scholar] [CrossRef]
- Beygi, M.; Jalali, M. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 2019, 337, 1009–1020. [Google Scholar] [CrossRef]
- Brunetto, G.; Schmitt, D.E.; Comin, J.J.; Miotto, A.; De Moraes, M.P.; Heinzen, J. Copper and zinc fractions in vineyard soils in the middle western of Santa Catarina. Rev. Bras. Eng. Agric. Ambient. 2014, 18, 805–810. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Botsou, F.; Patinha, C.; Argyraki, A.; Massas, I. Agricultural geochemistry in viticulture: An example of Cu accumulation and geochemical fractionation in Mediterranean calcareous soils (Nemea region, Greece). Appl. Geochem. 2018, 88, 23–39. [Google Scholar] [CrossRef]
- Vrščaj, B.; Česnik, H.B.; Velikonja Bolta, Š.; Radeka, S.; Lisjak, K. Pesticide Residues and Heavy Metals in Vineyard Soils of the Karst and Istria. Land 2022, 11, 2332. [Google Scholar] [CrossRef]
- Brunetto, G.; Miotto, A.; Ceretta, C.A.; Schmitt, D.E.; Heinzen, J.; de Moraes, M.P.; Canton, L.; Tiecher, T.L.; Comin, J.J.; Girotto, E. Mobility of copper and zinc fractions in fungicide-amended vineyard sandy soils. Arch. Agron. Soil. Sci. 2014, 60, 609–624. [Google Scholar] [CrossRef]
- Genova, G.; Della Chiesa, S.; Mimmo, T.; Borruso, L.; Cesco, S.; Tasser, E.; Matteazzi, A.; Niedrist, G. Copper and zinc as a window to past agricultural land-use. J. Hazard. Mater. 2022, 424, 126631. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Enaruvbe, G.O.; Harsányi, E. Assessment of soil micronutrient level for vineyard production in southern Syria. Model. Earth Syst. Environ. 2022, 8, 407–416. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid. Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Voegelin, A.; Tokpa, G.; Jacquat, O.; Barmettler, K.; Kretzschmar, R. Zinc fractionation in contaminated soils by sequential and single extractions: Influence of soil properties and zinc content. J. Environ. Qual. 2008, 37, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Gabarrón-Galeote, M.A.; Trigalet, S.; van Wesemael, B. Effect of land abandonment on soil organic carbon fractions along a Mediterranean precipitation gradient. Geoderma 2015, 249–250, 69–78. [Google Scholar] [CrossRef]
- Perpiña Castillo, C.; Kavalov, B.; Diogo, V.; Jacobs, C.; Batista e Silva, F.; Lavalle, C. Agricultural Land Abandonment in the EU within 2015–2030; No. JRC113718; Joint Research Centre (Seville site): Ispra, Italy, 2018. [Google Scholar]
- De Santiago-Martín, A.; Vaquero-Perea, C.; Valverde-Asenjo, I.; Quintana Nieto, J.R.; González-Huecas, C.; Lafuente, A.L.; Vázquez de la Cueva, A. Impact of vineyard abandonment and natural recolonization on metal content and availability in Mediterranean soils. Sci. Total Environ. 2016, 551–552, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Blanco, R.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Calviño, D.; Pérez-Rodríguez, P. Changes in Cu accumulation and fractionation along soil depth in acid soils of vineyards and abandoned vineyards (now forests). Agric. Ecosyst. Environ. 2022, 339, 108146. [Google Scholar] [CrossRef]
- Sciubba, L.; Mazzon, M.; Cavani, L.; Baldi, E.; Toselli, M.; Ciavatta, C.; Marzadori, C. Soil response to agricultural land abandonment: A case study of a vineyard in Northern Italy. Agronomy 2021, 11, 1841. [Google Scholar] [CrossRef]
- Iñigo, V.; Marín, A.; Andrades, M.; Jiménez-Ballesta, R. Evaluation of the copper and zinc contents of soils in the vineyards of la rioja (Spain). Environments 2020, 7, 55. [Google Scholar] [CrossRef]
- Sacchi, E.; Brenna, S.; Genot, S.F.; Leoni, A.; Sale, V.M.; Setti, M. Potentially toxic elements (Ptes) in cultivated soils from lombardy (northern Italy): Spatial distribution, origin, and management implications. Minerals 2020, 10, 298. [Google Scholar] [CrossRef]
- Lakanen, E.; Erviö, R. A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agric. Fenn. 1971, 123, 223–232. [Google Scholar]
- Arias, M.; López, E.; Fernández, D.; Soto, B. Copper distribution and dynamics in acid vineyard soils treated with copper-based fungicides. Soil Sci. 2004, 169, 796–805. [Google Scholar] [CrossRef]
- Campillo-Cora, C.; Fernández-Calviño, D.; Pérez-Rodríguez, P.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A.; Álvarez-Rodríguez, E.; Arias-Estévez, M.; Nóvoa-Muñoz, J.C. Copper and zinc in rhizospheric soil of wild plants growing in long-term acid vineyard soils. Insights on availability and metal remediation. Sci. Total Environ. 2019, 672, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Wightwick, A.M.; Mollah, M.R.; Partington, D.L.; Allinson, G. Copper fungicide residues in Australian vineyard soils. J. Agric. Food Chem. 2008, 56, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Van Eynde, E.; Fendrich, A.N.; Ballabio, C.; Panagos, P. Spatial assessment of topsoil zinc concentrations in Europe. Sci. Total Environ. 2023, 892, 164512. [Google Scholar] [CrossRef] [PubMed]
- Cicchella, D.; Giaccio, L.; Dinelli, E.; Albanese, S.; Lima, A.; Zuzolo, D.; Valera, P.; De Vivo, B. GEMAS: Spatial distribution of chemical elements in agricultural and grazing land soil of Italy. J. Geochem. Explor. 2015, 154, 129–142. [Google Scholar] [CrossRef]
- Macías-Vázquez, F.; De Anta, R.C. Niveles Genéricos de Referencia de Metales Pesados y Otros Elementos Traza en Suelos de Galicia; Conselleria de Medio Ambiente e Desenvolvemento Sostible: Santiago de Compostela, Spain, 2009. [Google Scholar]
- Bortoluzzi, E.C.; Korchagin, J.; Moterle, D.F.; dos Santos, D.R.; Caner, L. Accumulation and Precipitation of Cu and Zn in a Centenarian Vineyard. Soil Sci. Soc. Am. J. 2019, 83, 492–502. [Google Scholar] [CrossRef]
- Brunetto, G.; Comin, J.J.; Miotto, A.; de Moraes, M.P.; Sete, P.B.; Schmitt, D.E.; Gatiboni, L.C.; de Melo, G.W.B.; Morais, G.P. Copper and zinc accumulation, fractionation and migration in vineyard soils from Santa Catarina State, Brazil. Bragantia 2018, 77, 141–151. [Google Scholar] [CrossRef]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef]
- Hua, K.; Wang, T.; Guo, Z.; Zhan, L.; He, C.; Wang, D. Accumulation of potentially toxic elements under long-term application of different organic amendments. Nutr. Cycl. Agroecosyst. 2023, 126, 293–309. [Google Scholar] [CrossRef]
- Kumar, R.; Whelan, A.; Cannon, P.; Sheehan, M.; Reeves, L.; Antunes, E. Occurrence of emerging contaminants in biosolids in northern Queensland, Australia. Environ. Pollut. 2023, 330, 121786. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, H.; Yan, F.; Yi, K.; Zhu, Y. Molecular regulation of zinc deficiency responses in plants. J. Plant Physiol. 2021, 261, 153419. [Google Scholar] [CrossRef]
- Ots, K.; Mandre, M. Monitoring of heavy metals uptake and allocation in Pinus sylvestris organs in alkalised soil. Environ. Monit. Assess. 2012, 184, 4105–4117. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, U.; Uren, N.C. Remedial options for copper-contaminated vineyard soils. Soil. Res. 2011, 49, 44–55. [Google Scholar] [CrossRef]
- Barbosa, F.L.A.; da Silva, M.G.; Cavalcante, R.M.; de Freitas Sousa, H.H.; dos Santos Dias, C.T.; Escobar, M.E.O. Fe, Zn, and Cu in the Organic Fraction of Soils with Different Textures Under Intense Use of Agrochemicals in Flower Cultivation. Water Air Soil. Pollut. 2023, 234, 66. [Google Scholar] [CrossRef]
- Girotto, E.; Ceretta, C.A.; Brunetto, G.; Rheinheimer dos Santos, D.; Souza da Silva, L.; Lourenzi, C.R.; Lorensini, F.; Beber Vieira, R.C.; Schmatz, R. Copper and zinc forms and accumulation in soil after successive pig slurry applications. Rev. Bras. De Ciência Do Solo 2010, 34, 955–965. [Google Scholar] [CrossRef]
- Pham, N.T.H.; Babcsányi, I.; Balling, P.; Farsang, A. Accumulation patterns and health risk assessment of potentially toxic elements in the topsoil of two sloping vineyards (Tokaj-Hegyalja, Hungary). J. Soils Sediments 2022, 22, 2671–2689. [Google Scholar] [CrossRef]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 11. [Google Scholar] [CrossRef]
- Berg, B.; Laskowski, R. Litter decomposition: A guide to carbon and nutrient turnover. Adv. Ecol. Res. 2006, 38, 20–71. [Google Scholar]
- Swift, M.J.; Heal, O.W.; Anderson, J.M.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; University of California Press: Berkeley, CA, USA, 1979. [Google Scholar]
- Ramos, M.C.; López-Acevedo, M. Zinc levels in vineyard soils from the Alt Penedès-Anoia region (NE Spain) after compost application. Adv. Environ. Res. 2004, 8, 687–696. [Google Scholar] [CrossRef]
- Masullo, L.S.; Ferraz, A.d.V.; Rocha, J.H.T.; Valdo, G.d.C.; Ávila, P.A.d.; Florentino, A.L.; de Toledo, F.H.S.F.; Alleoni, L.R.F.; de Moraes Gonçalves, J.L. Soil Cu and Zn pools and their availability in response to forest residue management and micronutrient fertilization in a Eucalyptus grandis plantation. For. Ecol. Manag. 2022, 506, 119954. [Google Scholar] [CrossRef]
- Gómez-Armesto, A.; Carballeira-Díaz, J.; Pérez-Rodríguez, P.; Fernández-Calviño, D.; Arias-Estévez, M.; Nóvoa Muñoz, J.C.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Copper content and distribution in vineyard soils from Betanzos (A Coruña, Spain). Span. J. Soil Sci. 2015, 5, 60–71. [Google Scholar] [CrossRef]
- Zahedifar, M. Sequential extraction of zinc in the soils of different land use types as influenced by wheat straw derived biochar. J. Geochem. Explor. 2017, 182, 22–31. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, B.; Ma, Y. Aging of zinc added to soils with a wide range of different properties: Factors and modeling. Environ. Toxicol. Chem. 2017, 36, 2925–2933. [Google Scholar] [CrossRef] [PubMed]
- Khoshgoftarmanesh, A.H.; Afyuni, M.; Norouzi, M.; Ghiasi, S.; Schulin, R. Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma 2018, 309, 1–6. [Google Scholar] [CrossRef]
Depth (cm) | PM–AC | PM–AB | PT–AC | PT–AB | AR–AC | AR–AB |
---|---|---|---|---|---|---|
0–2 | 16 | 5 | 6 | 22 | 12 | 7 |
2–4 | 4 | 3 | 3 | 16 | 5 | 5 |
4–6 | 2 | 2 | 1 | 5 | 4 | 3 |
6–8 | 1 | 2 | 1 | 3 | 3 | 2 |
8–10 | 1 | 1 | 1 | 2 | 3 | 1 |
10–15 | 1 | 1 | 1 | 1 | 2 | 1 |
15–20 | 2 | 1 | 2 | 1 | 2 | 1 |
20–30 | 3 | 1 | 2 | 1 | 2 | 1 |
30–40 | 3 | 1 | 3 | 1 | 3 | 1 |
40–50 | 3 | 1 | 1 | 1 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Rodríguez, P.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Calviño, D. Soil Abandonment as a Trigger for Changes in Zn Fractionation in Afforested Former Vineyard Acidic Soils. Horticulturae 2023, 9, 1121. https://doi.org/10.3390/horticulturae9101121
Pérez-Rodríguez P, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Calviño D. Soil Abandonment as a Trigger for Changes in Zn Fractionation in Afforested Former Vineyard Acidic Soils. Horticulturae. 2023; 9(10):1121. https://doi.org/10.3390/horticulturae9101121
Chicago/Turabian StylePérez-Rodríguez, Paula, Juan Carlos Nóvoa-Muñoz, Manuel Arias-Estévez, and David Fernández-Calviño. 2023. "Soil Abandonment as a Trigger for Changes in Zn Fractionation in Afforested Former Vineyard Acidic Soils" Horticulturae 9, no. 10: 1121. https://doi.org/10.3390/horticulturae9101121
APA StylePérez-Rodríguez, P., Nóvoa-Muñoz, J. C., Arias-Estévez, M., & Fernández-Calviño, D. (2023). Soil Abandonment as a Trigger for Changes in Zn Fractionation in Afforested Former Vineyard Acidic Soils. Horticulturae, 9(10), 1121. https://doi.org/10.3390/horticulturae9101121