Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = zinc bioavailability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1007 KB  
Perspective
Is There Sufficient Local Evidence to Inform Biofortification Policies Against Micronutrient Deficiencies? A Global Concern for Food Security and Human Health
by Johan Camilo Vergara-Rios, Ivan David Lozada-Martinez, Juan David Reyes-Duque and Maria Trinidad Plaza Gómez
Int. J. Environ. Res. Public Health 2026, 23(2), 261; https://doi.org/10.3390/ijerph23020261 - 19 Feb 2026
Viewed by 89
Abstract
Micronutrient deficiencies remain a persistent challenge to global health and food security, particularly in low- and middle-income countries where evidence-based strategies are urgently needed. Biofortification of staple crops has been promoted as a complementary intervention to supplementation and food fortification, but its effective [...] Read more.
Micronutrient deficiencies remain a persistent challenge to global health and food security, particularly in low- and middle-income countries where evidence-based strategies are urgently needed. Biofortification of staple crops has been promoted as a complementary intervention to supplementation and food fortification, but its effective implementation requires locally relevant studies. Such evidence is essential because the performance and adoption of biofortified crops depend on context-specific factors, including crop varieties, soil micronutrient dynamics, dietary patterns, cultural acceptability, and bioavailability, which limit the transferability of findings across settings. This perspective examines whether countries with the highest micronutrient burdens generate sufficient local research to inform biofortification policy decisions. We conducted a bibliometric mapping of peer-reviewed literature indexed in Scopus and compared country-level publication counts with indicators of iodized salt coverage, zinc deficiency, and childhood anemia, which were selected because they are prioritized metrics in global health and food security. From 776 eligible articles, most publications originated from a small group of high- and middle-income countries, whereas regions facing the greatest nutritional burdens, including parts of Sub-Saharan Africa and South Asia, contributed little to the scientific output. Countries with low iodized-salt coverage, high zinc deficiency, or childhood anemia above 40% frequently showed zero or minimal publications. This misalignment suggests that countries facing the greatest nutritional vulnerabilities may be underrepresented in the indexed scientific literature. These findings highlight the value of further strengthening research participation and visibility in high-burden settings to ensure that the evidence base more accurately reflects global needs. Full article
Show Figures

Figure 1

23 pages, 1379 KB  
Article
Identification of Enhanced Cyclooxygenase-2 (COX-2) Inhibitors Beyond Curcumin Through Virtual Screening to Target Inflammation-Related Metabolic Complications
by Marakiya T. Moetlediwa, Rudzani Ramashia, Mpatla B. Mangale, Carmen Pheiffer, Babalwa U. Jack, Elliasu Y. Salifu and Pritika Ramharack
Int. J. Mol. Sci. 2026, 27(4), 1624; https://doi.org/10.3390/ijms27041624 - 7 Feb 2026
Viewed by 335
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme in inflammatory pathways and serves as a therapeutic target in the treatment of inflammation-related diseases. Curcumin, a bioactive polyphenol from turmeric, has gained scientific attention due to its potent anti-inflammatory properties, largely mediated through COX-2 inhibition. However, [...] Read more.
Cyclooxygenase-2 (COX-2) is a key enzyme in inflammatory pathways and serves as a therapeutic target in the treatment of inflammation-related diseases. Curcumin, a bioactive polyphenol from turmeric, has gained scientific attention due to its potent anti-inflammatory properties, largely mediated through COX-2 inhibition. However, the poor solubility and limited bioavailability of Curcumin limit its potential as a therapeutic agent targeting inflammatory diseases. We used an in silico approach to identify Curcumin-like scaffolds as novel COX-2 inhibitors with improved drug-like properties and therapeutic potential. A pharmacophore model derived from the key binding moieties of Curcumin was used to virtually screen the ZINC-22 database, identifying 237 candidate compounds for further evaluation. Molecular docking further prioritized these compounds to 10 candidates with the highest binding affinities. Most hits obeyed Lipinski’s rules, except for ZINC32605424 and ZINC47133707, which exhibited high LogP and molecular weight, respectively. Toxicity screening indicated that ZINC47133693 and ZINC09499196 exhibited high safety profiles, with ZINC15942488 being highly toxic. Furthermore, certain hits such as ZINC32605424 and ZINC15942488 were predicted to be P-glycoprotein substrates and potential inhibitors of cytochrome P450. Molecular dynamics simulations confirmed the stability of COX-2–ligand complexes, with critical interactions observed at conserved residues Tyr323 and Leu320. Binding energy calculations identified ZINC32605424 as the strongest COX-2 binder, mainly stabilized by Van der Waals forces. Overall, compounds such as ZINC32605424, ZINC08644750, ZINC47133693, and ZINC09499196 demonstrated potent COX-2 inhibition. These candidates show strong potential for further preclinical validation in studies investigating inflammation-related metabolic complications. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulation of Biomolecules)
Show Figures

Figure 1

40 pages, 2561 KB  
Review
LncRNAs at the Crossroads of Precision Nutrition and Cancer Chemoprevention
by Camelia Munteanu, Revathy Nadhan, Sabina Turti, Eftimia Prifti, Larisa Achim, Sneha Basu, Alessandra Ferraresi, Ji Hee Ha, Ciro Isidoro and Danny N. Dhanasekaran
Cancers 2026, 18(3), 430; https://doi.org/10.3390/cancers18030430 - 29 Jan 2026
Viewed by 470
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, and effective strategies for cancer prevention are urgently needed to complement therapeutic advances. While dietary factors are known to influence cancer risk, the molecular mechanisms that mediate inter-individual responses to nutritional exposures remain [...] Read more.
Cancer remains a leading cause of morbidity and mortality worldwide, and effective strategies for cancer prevention are urgently needed to complement therapeutic advances. While dietary factors are known to influence cancer risk, the molecular mechanisms that mediate inter-individual responses to nutritional exposures remain poorly defined. Emerging evidence identifies long non-coding RNAs (lncRNAs) as pivotal regulators of gene expression, chromatin organization, metabolic homeostasis, immune signaling, and cellular stress responses, the core processes that drive cancer initiation and progression and are highly sensitive to nutritional status. In parallel, advances in precision nutrition have highlighted how variability in genetics, metabolism, microbiome composition, and epigenetic landscapes shape dietary influences on cancer susceptibility. This review integrates these rapidly evolving fields by positioning lncRNAs as molecular conduits that translate dietary exposures into transcriptional and epigenetic programs governing cancer development, progression, and therapeutic vulnerability. We provide mechanistic evidence demonstrating how dietary bioactive compounds and micronutrients, including polyphenols [such as curcumin, resveratrol, epigallocatechin gallate (EGCG)], flavonoids, alkaloids such as berberine, omega-3 (ω-3) fatty acids, folate, vitamin D, probiotic metabolites (such as butyrate and propionate), and trace elements (such as selenium and zinc), modulate oncogenic and tumor-suppressive lncRNAs. These nutrient–lncRNA interactions influence cancer-relevant pathways controlling proliferation, epithelial–mesenchymal transition (EMT), inflammation, oxidative stress, and metabolic rewiring. We further discuss emerging lncRNA signatures that reflect nutritional and metabolic states, their potential utility as biomarkers for individualized dietary interventions, and their integration into liquid biopsy platforms. Leveraging multi-omics datasets and systems biology, we outline AI-driven frameworks to map nutrient–lncRNA regulatory networks and identify targetable nodes for cancer chemoprevention. Finally, we address translational challenges, including compound bioavailability, inter-individual variability, and limited clinical validation, and propose future directions for incorporating lncRNA profiling into precision nutrition-guided cancer prevention trials. Together, these insights position lncRNAs at the nexus of diet and cancer biology and establish a foundation for mechanistically informed precision nutrition strategies in cancer chemoprevention. Full article
(This article belongs to the Special Issue Cancer Causes and Control)
Show Figures

Graphical abstract

15 pages, 563 KB  
Article
Assessment of Juniper Ash Elemental Composition for Potential Use in a Traditional Indigenous Dietary Pattern
by Julie M. Hess, Madeline E. Comeau, Derek D. Bussan, Kyra Schwartz and Claudia PromSchmidt
Nutrients 2026, 18(2), 260; https://doi.org/10.3390/nu18020260 - 14 Jan 2026
Viewed by 416
Abstract
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether [...] Read more.
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether juniper ash could serve as a safe source of non-dairy Ca in an intervention study. Methods: Branches from two varieties of Juniper (Rocky Mountain Juniper, or Juniperus scopulorum and Eastern Red Cedar, or Juniperus virginiana) were harvested and burned to ash in a laboratory setting. Juniper ash from the southwestern U.S. available for retail purchase was used for comparison. All samples were tested for content of 10 nutritive elements (Ca, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, selenium, and zinc) and 20 potentially toxic elements (silver, aluminum, arsenic, barium, beryllium, cadmium, cobalt, chromium, mercury, lithium, molybdenum, nickel, lead, antimony, tin, strontium, thallium, uranium, and vanadium) as well as n = 576 pesticide residues. Results: All samples contained both nutritive and potentially toxic elements. Each teaspoon of ash contained an average of 445 ± 141 mg Ca. However, the samples also contained lead in amounts ranging from 1.09 ppm to 15 ppm. Conclusions: Information on the nutritive and potentially toxic elemental content of juniper ash and how it may interact within a food matrix is insufficient to determine its safety as a Ca source. Further investigation is needed on the bioavailability of calcium oxide and its interaction with other dietary components to clarify the potential role of juniper ash in contemporary food patterns. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease—2nd Edition)
Show Figures

Figure 1

23 pages, 25274 KB  
Article
EDDS-Enhanced Phytoremediation of Cd–Zn Co-Contaminated Soil by Sedum lineare: Mechanisms of Metal Uptake, Soil Improvement, and Microbial Community Modulation
by Haochen Shen, Ziyi Liu, Chen Wang, Ying Chu, Chuhan Zhang, Yang Yu and Shaohui Yang
Plants 2026, 15(2), 231; https://doi.org/10.3390/plants15020231 - 12 Jan 2026
Viewed by 290
Abstract
Soil co-contamination with cadmium (Cd) and zinc (Zn) poses serious threats to environmental safety and public health. This study investigates the enhancement effect and underlying mechanism of the biodegradable chelator Ethylenediamine-N,N′-disuccinic acid (EDDS) on phytoremediation of Cd-Zn contaminated soil using Sedum lineare. [...] Read more.
Soil co-contamination with cadmium (Cd) and zinc (Zn) poses serious threats to environmental safety and public health. This study investigates the enhancement effect and underlying mechanism of the biodegradable chelator Ethylenediamine-N,N′-disuccinic acid (EDDS) on phytoremediation of Cd-Zn contaminated soil using Sedum lineare. The results demonstrate that EDDS application (3.65 g·L−1) effectively alleviated metal-induced phytotoxicity by enhancing chlorophyll synthesis, activating antioxidant enzymes (catalase and dismutase), regulating S-nitrosoglutathione reductase activity, and promoting leaf protein synthesis, thereby improving photosynthetic performance and cellular integrity. The combined treatment significantly increased the bioavailability of Cd and Zn in soil, promoted their transformation into exchangeable fraction, and resulted in removal rates of 30.8% and 28.9%, respectively. EDDS also modified the interaction patterns between heavy metals and essential nutrients, particularly the competitive relationships through selective chelation between Cd/Zn and Fe/Mn during plant uptake. Soil health was substantially improved, as evidenced by reduced electrical conductivity, enhanced cation exchange capacity, and enriched beneficial microbial communities including Sphingomonadaceae. Based on the observed ion antagonism during metal uptake and translocation, this study proposes a novel “Nutrient Regulation Assisted Remediation” strategy to optimize heavy metal accumulation and improve remediation efficiency through rhizosphere nutrient management. These findings confirm the EDDS–S. lineare system as an efficient and sustainable solution for remediation of Cd–Zn co-contaminated soils. Full article
Show Figures

Figure 1

15 pages, 1111 KB  
Article
Color Assessments and Glycolysis of Cetylpyridinium Chloride-Containing Aqueous Solutions and Commercial Mouthwashes
by Robert L. Karlinsey and Tamara R. Karlinsey
Methods Protoc. 2026, 9(1), 10; https://doi.org/10.3390/mps9010010 - 11 Jan 2026
Viewed by 411
Abstract
Background: Effective cetylpyridinium chloride (CPC)-based mouthwashes critically depend on maintaining maximum levels of bioavailable CPC to deliver optimum antimicrobial benefits. While this is traditionally assessed using cellulose-based methods, from economic and efficiency perspectives, there remains a need to identify other potential methods [...] Read more.
Background: Effective cetylpyridinium chloride (CPC)-based mouthwashes critically depend on maintaining maximum levels of bioavailable CPC to deliver optimum antimicrobial benefits. While this is traditionally assessed using cellulose-based methods, from economic and efficiency perspectives, there remains a need to identify other potential methods of assessing bioavailable CPC. Here, we explored whether quaternary ammonium compound (QAC) test strips are sensitive to CPC-based formulations, and if so, whether there might exist a possible correlation with glycolysis outcomes. Methods: Quantitative color parameters were obtained using spectrophotometric assessments of QAC test strips immersed in simple CPC solutions and eight commercial CPC-based mouthwashes available in the USA. Then, using our established glycolysis model, we assessed the glycolytic response of both the simple CPC solutions and commercial CPC-based mouthwashes, and compared these data sets. Results: Significant differences (p < 0.05) among the CPC simple solutions were found. Importantly, spectrophotometric assessments and glycolysis trials produced good correlations. Evaluations of the commercial mouthwashes further underlined this correlation, even though those that comprise zinc salts may impact QAC-based color. Conclusions: Based on these results, we believe the use of QAC test strips provides an attractive option to formulators and brands specializing in the development and/or testing of CPC-based oral care formulations. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

16 pages, 284 KB  
Article
Nutritional Properties of Edible Flowers from Five Pumpkin (Cucurbita sp.) Species
by Małgorzata Stryjecka, Monika Jaroszuk-Sierocińska, Anna Kiełtyka-Dadasiewicz, Barbara Krochmal-Marczak and Tomasz Cebulak
Foods 2026, 15(2), 219; https://doi.org/10.3390/foods15020219 - 8 Jan 2026
Viewed by 431
Abstract
Edible pumpkin flowers represent a promising but still underutilized source of nutrients and bioactive compounds. Despite their traditional culinary use in various regions of the world, comprehensive studies comparing the nutritional and chemical composition of flowers from different Cucurbita species are limited. This [...] Read more.
Edible pumpkin flowers represent a promising but still underutilized source of nutrients and bioactive compounds. Despite their traditional culinary use in various regions of the world, comprehensive studies comparing the nutritional and chemical composition of flowers from different Cucurbita species are limited. This study conducted a detailed chemical analysis of flowers from five pumpkin species: Cucurbita maxima (giant pumpkin), C. pepo (summer squash), C. moschata (butternut squash), C. ficifolia (fig-leaf gourd), and C. argyrosperma (cushaw squash). The analyses included the determination of basic nutritional components, amino acids, minerals, vitamins, and fatty acid profiles using standard analytical methods (AOAC, ISO, and HPLC). Significant interspecific differences were observed. The flowers of butternut squash exhibited the highest protein and fat contents, while the flowers of cushaw squash contained the largest amounts of dietary fiber and total sugars. Flowers of giant pumpkin were distinguished by their elevated contents of vitamin C and β-carotene. Amino acid analysis revealed a rich protein profile, particularly in cushaw squash, characterized by high lysine and cysteine levels, whereas fig-leaf gourd contained the greatest amounts of leucine and isoleucine. The fatty acid composition was dominated by oleic, stearic, and myristic acids, while a considerable proportion of linoleic acid (PUFA) indicated potential health benefits, such as anti-inflammatory effects. Mineral analysis showed that giant pumpkin was richest in potassium, summer squash in zinc, and butternut squash in calcium and sodium. The findings confirm that pumpkin flowers are a valuable source of nutrients and bioactive compounds. Their composition highlights their potential as functional food ingredients and as raw materials for use in the dietary, food, and pharmaceutical industries. Further studies on bioavailability and antioxidant capacity are recommended to better define their nutritional and functional value. Full article
22 pages, 740 KB  
Article
Influence of Diet on the Bioaccessibility of Zn from Dietary Supplements: Findings from an In Vitro Digestion Model and Analytical Determinations
by Joanna Tokarczyk, Agnieszka Jaworowska, Dawid Kowalczyk, Monika Kasprzak, Paweł Jagielski and Wojciech Koch
Nutrients 2026, 18(1), 94; https://doi.org/10.3390/nu18010094 - 27 Dec 2025
Viewed by 947
Abstract
Background: Zn is an essential mineral nutrient for human health. Its deficiency may result not only from insufficient intake but also from impaired absorption. Dietary components released from the food matrix during digestion can interact in ways that either enhance or inhibit mineral [...] Read more.
Background: Zn is an essential mineral nutrient for human health. Its deficiency may result not only from insufficient intake but also from impaired absorption. Dietary components released from the food matrix during digestion can interact in ways that either enhance or inhibit mineral bioavailability. Objectives: The primary aim of this study was to evaluate the bioaccessibility of Zn from dietary supplements, particularly in the context of diet type, chemical form, and pharmaceutical formulation effects. Methods: The experiment was conducted using an in vitro gastrointestinal digestion model with cellulose dialysis membranes. Zn content after digestion was determined using flame atomic absorption spectrometry (F-AAS). The method employed had been previously developed and validated for use in determining the bioaccessibility of mineral nutrients. Results: The bioaccessibility of Zn from the standard, basic, and high-fiber diets was 19.43, 16.18, and 8.12%, respectively. In the presence of a standard diet, the bioaccessibility of Zn from dietary supplements was within the range 1.77–36.09%, in the presence of a basic diet, 1.05–35.86%; and in the presence of a high-fiber diet, 1.37–35.94%. The highest values were observed for zinc picolinate, whereas the lowest were determined for zinc oxide. Conclusions: A high-fiber diet significantly reduced Zn bioaccessibility. Bioaccessibility is also strongly dependent on the chemical form of zinc. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

26 pages, 1385 KB  
Review
Effects of Micronutrients and Heavy Metals on Endothelial Function and Cardiovascular Risk in the Face of Environmental Changes
by Agata Doligalska-Dolina, Marcin Dolina, Amanda Zoń, Emilia Główczewska-Siedlecka, Karolina Osińska, Gary Andrew Margossian, Carla Liana Margossian and Katarzyna Napiórkowska-Baran
Curr. Issues Mol. Biol. 2026, 48(1), 41; https://doi.org/10.3390/cimb48010041 - 27 Dec 2025
Viewed by 630
Abstract
Dynamic environmental changes significantly affect trace element balance and exposure to toxic metals, influencing vascular homeostasis. The endothelium, as a key regulator of vascular tone and inflammation, is highly sensitive to fluctuations in micronutrient and heavy metal concentrations. This review summarizes current evidence [...] Read more.
Dynamic environmental changes significantly affect trace element balance and exposure to toxic metals, influencing vascular homeostasis. The endothelium, as a key regulator of vascular tone and inflammation, is highly sensitive to fluctuations in micronutrient and heavy metal concentrations. This review summarizes current evidence on the molecular mechanisms by which essential trace elements, such as zinc, selenium, copper, and magnesium, support endothelial function through antioxidant defense, nitric oxide regulation, and anti-inflammatory signaling. Conversely, exposure to heavy metals including cadmium, lead, mercury, and arsenic induces oxidative stress, disrupts nitric oxide bioavailability, and promotes endothelial dysfunction, accelerating the pathogenesis of many diseases. The paper examines how these alterations contribute to the development of major cardiovascular diseases and outlines preventive measures to reduce associated risks. Understanding these interactions is crucial for society’s health amid growing environmental challenges. Full article
Show Figures

Figure 1

12 pages, 2146 KB  
Article
The Influence of the Hydrogen Isotope Effect on the Kinetics of Amoxicillin and Essential Elements Interaction
by Daniil A. Sundukov, Olga V. Levitskaya, Tatiana V. Pleteneva and Anton V. Syroeshkin
Hydrogen 2026, 7(1), 2; https://doi.org/10.3390/hydrogen7010002 - 24 Dec 2025
Viewed by 437
Abstract
Chemical incompatibility between active pharmaceutical ingredients (APIs) and mineral supplements may affect their bioavailability and effectiveness. Water, as the main component of physiological fluids, plays a crucial role in these interactions. Natural waters vary in the deuterium. Estimation of the kinetic isotope effect [...] Read more.
Chemical incompatibility between active pharmaceutical ingredients (APIs) and mineral supplements may affect their bioavailability and effectiveness. Water, as the main component of physiological fluids, plays a crucial role in these interactions. Natural waters vary in the deuterium. Estimation of the kinetic isotope effect (KIE) provides valuable information on reaction mechanisms in solvents with different D/H ratios and with the replacement of protium with deuterium in API molecules. Studies of the kinetics of interactions between zinc ions and amoxicillin in water with a natural isotopic composition (D/H = 145 ppm) and in heavy water (99.9% D2O) offer a model for predicting similar interactions in vivo. The presence of chiral centers in the amoxicillin molecule allowed the use of polarimetry to study the influence of the solvent isotopic composition, temperature, and pH on the rate of interaction. In heavy water, a twofold decrease in the rate of amoxicillin binding to hydrated zinc ions was observed compared to natural water at 20 °C. Arrhenius kinetics confirmed the observed KIE: Ea = 112.5 ± 1.3 kJ/mol for D2O and 96.0 ± 2.1 kJ/mol for H2O. For the first time, kinetic polarimetric studies demonstrated differences in the mechanisms of binding of d- and s-element cations to amoxicillin. Full article
Show Figures

Graphical abstract

17 pages, 1926 KB  
Article
The Antagonistic Influence of Phytic Acid on Zinc Absorption: An In Vitro Comparison of Inorganic and Chelated Trace Mineral Sources
by Niamh Rock, Martin Clynes, Karina Horgan, Richard Murphy, Finbarr O’Sullivan and Joanne Keenan
Nutrients 2026, 18(1), 46; https://doi.org/10.3390/nu18010046 - 22 Dec 2025
Cited by 1 | Viewed by 903
Abstract
Background/Objectives: Zinc, an important trace metal, requires daily intake but dietary antagonists including phytic acid reduce its absorption. It is unclear if phytic acid affects zinc absorption at the level of bioaccessibility (how much soluble zinc is available from digestion) or bioavailability (how [...] Read more.
Background/Objectives: Zinc, an important trace metal, requires daily intake but dietary antagonists including phytic acid reduce its absorption. It is unclear if phytic acid affects zinc absorption at the level of bioaccessibility (how much soluble zinc is available from digestion) or bioavailability (how much zinc is absorbed by the intestine). This study investigates at which level this occurs at and if the zinc source alters the response. Methods: Following a standardised in vitro digestion (INFOGEST), the yield of soluble zinc was measured as the bioaccessible fraction from inorganic and chelated zinc sources, with and without phytic acid. Bioavailability was assessed by measuring cellular zinc uptake in intestinal cell lines (Caco-2 and IPEC-J2). Results: Phytic acid affected the bioaccessibility of zinc, with varying impacts depending on the zinc source. Zinc proteinate had the highest bioaccessibility (42%) without phytic acid, while inorganic zinc sulphate (24%) and zinc bisglycinate (27%) were lower. ZnSO4 was more susceptible to phytic acid antagonism than chelated zinc sources (from 2:100 molar ratio of phytic acid: zinc), while the chelated zinc sources were only affected at a molar ratio of 4:100, with zinc bisglycinate being more susceptible than zinc proteinate. Cellular zinc uptake (bioavailability) and toxicity at equimolar concentrations were unaffected by phytic acid. Conclusions: This study found that phytic acid affected bioaccessibility, not bioavailability. The zinc source impacts the response. Zinc proteinate was consistently more bioaccessible while both chelated zinc sources were less susceptible to phytic acid than inorganic zinc. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

15 pages, 285 KB  
Review
Nutrient Equivalence of Plant-Based and Cultured Meat: Gaps, Bioavailability, and Health Perspectives
by Jean Demarquoy
Nutrients 2025, 17(24), 3860; https://doi.org/10.3390/nu17243860 - 10 Dec 2025
Viewed by 1322
Abstract
Meat provides high-quality protein and essential micronutrients such as vitamin B12, heme iron, zinc, and selenium, along with conditionally essential compounds including creatine, carnitine, and taurine. Growing concerns over environmental sustainability, animal welfare, and potential health risks associated with excessive meat consumption have [...] Read more.
Meat provides high-quality protein and essential micronutrients such as vitamin B12, heme iron, zinc, and selenium, along with conditionally essential compounds including creatine, carnitine, and taurine. Growing concerns over environmental sustainability, animal welfare, and potential health risks associated with excessive meat consumption have spurred the development of plant-based and cultured alternatives intended to replicate the nutritional and sensory attributes of meat. This review critically examines the extent to which these emerging products achieve nutrient equivalence with conventional meat, focusing on essential and conditionally essential nutrients, their bioavailability, and implications for human health. After outlining the physiological importance of nutrients characteristically supplied by meat, the review compares the composition of plant-based meat analogs (PBMAs) and cultured meat prototypes. Differences in fortification strategies, ingredient formulation, and the presence of anti-nutritional factors are discussed in relation to nutrient absorption and utilization. Current PBMAs can approximate protein content but generally provide lower levels and reduced bioavailability of vitamin B12, heme iron, creatine, taurine, and long-chain omega-3 fatty acids unless fortified. Cultured meat offers theoretical potential for compositional optimization through cellular engineering but remains limited by scarce empirical data. Achieving nutrient equivalence with conventional meat thus represents a major scientific, technological, and regulatory challenge. Future progress will depend on integrating nutritional design into product development, validating bioavailability in human studies, and implementing transparent labeling to ensure that next-generation meat alternatives meet both health and sustainability goals. Full article
(This article belongs to the Section Nutrition and Metabolism)
28 pages, 1342 KB  
Article
Biofortification of Durum Wheat Grain: Interactions Between Micronutrients as Affected by Potential Biofortification Enhancers and Surfactants
by Despina Dimitriadi, Georgios P. Stylianidis, Ioannis Tsirogiannis, Styliani Ν. Chorianopoulou and Dimitris L. Bouranis
Plants 2025, 14(24), 3759; https://doi.org/10.3390/plants14243759 - 10 Dec 2025
Viewed by 447
Abstract
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at [...] Read more.
Wheat possesses inherently low concentrations and bioavailability of the essential micronutrients (EMis) zinc (Zn), iron (Fe), manganese (Mn), and copper (Cu), limiting its capacity to sufficiently address human nutritional requirements. Biofortification of wheat with EMis through agricultural methods is a strategy aimed at addressing EMi deficiencies in human populations that emphasize cost-effectiveness and sustainability. All EMis are usually applied foliarly as sulfates, which indicates sulfur (S)-assisted biofortification. The formation of EMi complexes provides solubility as well as protection during long-distance transport. Several small molecules are possible candidates as ligands—the S-containing amino acids cysteine and methionine among them—linking EMi homeostasis to S homeostasis, which represents another aspect of S-assisted biofortification. In this study, we delve into the S-assisted agronomic biofortification strategy by applying sulfate micronutrients coupled with a sulfur-containing amino acid and we explore the effect of the selected accompanying cation (Zn, Fe, Mn, or Cu) on the EMi metallome of the grain, along with the biofortification effectiveness, whilst the type of the incorporated surface active agent seems to affect this approach. A field experiment was conducted for two years with durum wheat cultivation subjected to various interventions at the initiation of the dough stage, aiming to biofortify the grain with EMis provided as sulfate salts coupled with cysteine or methionine as potential biofortification enhancers. The mixtures were applied alone or in combination with commercial surfactants of the organosilicon ethoxylate (SiE) type or the alcohol ethoxylate (AE) type. The performance of two relevant preparations, FytoAmino-Bo (FABo) and Phillon, has been studied, too. The interventions affected the accumulation of the EMi metallome into the grains, along with the interactions of the EMis within this metallome. Several interventions increased the EMi metallome of the grain and affected the contribution of each EMi to this metallome. Many interventions have increased Zn and Fe, while they have decreased Mn and Cu. An increase in Zn corresponded (i) to a decrease in Cu, (ii) to an increase or no increase in Fe, and (iii) to a variable change in Mn. Cys increased the metallome by 34% and Zn and Fe within it. ZnSO4 and FeSO4 increased the metallome by 5% and 9%, whilst MnSO4 and CuSO4 increased the metallome by 36% and 33%, respectively. The additives improved the contribution to increasing the metallome in most cases. Without surfactant, the efficacy ranking proved to be MnSO4 > CuSO4 > ZnSO4 > FeSO4. The use of SW7 sustained the order CuSO4 > MnSO4 > ZnSO4 > FeSO4. The use of Saldo switched the order to CuSO4 > ZnSO4 > FeSO4 > MnSO4. In the case of Phillon, the order was CuSO4 > FeSO4 > ZnSO4 > MnSO4. The effect of Cys or Met was case-specific. The differentiations in the intensity of both the agronomic performance (grain weight, grain weight per spike, and yield) and the biofortification performance (concentrations vs. accumulations of each EMi within the grain) among the various combinations of EMis and additives are depicted by adopting a grading scale, which highlighted the intensity of the acclimation reaction of the biofortified grain to the applied intervention. Full article
Show Figures

Figure 1

21 pages, 1204 KB  
Review
From Nature to Nanomedicine: Green-Synthesized Metal Oxide Nanoparticles for Oral Cancer Drug Delivery
by Doaa S. R. Khafaga, Youssef Basem, Mariam Mohamed Ali, Rawan S. Elsharkawy, Ayda H. El-Gouhari and Shimaa S. Attia
Nanomaterials 2025, 15(23), 1767; https://doi.org/10.3390/nano15231767 - 25 Nov 2025
Cited by 1 | Viewed by 996
Abstract
Oral cancer represents one of the most prevalent malignancies worldwide, characterized by high morbidity and mortality rates primarily due to late diagnosis, limited therapeutic efficacy, systemic toxicity, and recurrence following conventional treatments. Traditional chemotherapeutic drugs, while effective to a certain extent, often suffer [...] Read more.
Oral cancer represents one of the most prevalent malignancies worldwide, characterized by high morbidity and mortality rates primarily due to late diagnosis, limited therapeutic efficacy, systemic toxicity, and recurrence following conventional treatments. Traditional chemotherapeutic drugs, while effective to a certain extent, often suffer from poor bioavailability, nonspecific targeting, and multidrug resistance, highlighting the importance of innovative therapeutic strategies. Nanomedicine has emerged as a promising alternative, providing site-specific delivery, enhanced drug stability, and improved therapeutic outcomes. Among various nanoparticles (NPs), metal oxide nanoparticles (MONPs), such as zinc oxide, titanium dioxide, and copper oxide, have demonstrated potent anticancer activity due to their high surface area, tunable physicochemical properties, and ability to generate reactive oxygen species (ROS). Recent progress in green synthesis approaches, employing plant extracts, microbes, and biopolymers as reducing and stabilizing agents, has further advanced the development of biocompatible and eco-friendly NPs. These green-synthesized NPs minimize toxic byproducts and allow their functionalization with herbal compounds and conventional drugs, offering synergistic effects against oral cancer. This review highlights the limitations of traditional treatments, examines the role of nanomedicine, and discusses the application of green-synthesized MONPs as drug delivery platforms for oral cancer management. It also addresses challenges such as standardization, scalability, safety concerns, and regulatory barriers, while outlining future perspectives that integrate green nanotechnology with precision medicine. Collectively, green nanomedicine offers a sustainable and innovative paradigm with the potential to revolutionize oral cancer therapy. Full article
(This article belongs to the Special Issue Advances in Nanomedicine Biotechnologies (Second Edition))
Show Figures

Graphical abstract

16 pages, 749 KB  
Review
Aeronutrient Therapy: A New Frontier in Systemic Drug Delivery
by Stephen R. Robinson, Malav S. Trivedi and Flávia Fayet-Moore
Biomedicines 2025, 13(11), 2788; https://doi.org/10.3390/biomedicines13112788 - 14 Nov 2025
Viewed by 1294
Abstract
Background: Although the micronutrients (vitamins and trace minerals) essential for growth and normal physiological function are obtained from the diet, a substantial fraction of the human population is deficient in one or more micronutrients due to inadequate nutrition and/or malabsorption. Methods: This narrative [...] Read more.
Background: Although the micronutrients (vitamins and trace minerals) essential for growth and normal physiological function are obtained from the diet, a substantial fraction of the human population is deficient in one or more micronutrients due to inadequate nutrition and/or malabsorption. Methods: This narrative review examines evidence that airborne micronutrients (‘aeronutrients’) are readily absorbed by the lungs, and preclinical and clinical evidence that inhaled iodine and vitamins A, B12 and D can enter the bloodstream. Results: Inhaled vitamin B12 resolves the symptoms and haematological features of pernicious anaemia with a bioavailability comparable to intramuscular injections and superior to oral formulations. Inhaled nebulised vitamin A restores serum levels in children with retinol deficiency. Randomised controlled trials have reported that inhalation of nebulised preparations of vitamins A, B12, magnesium and zinc are well tolerated and not associated with adverse health effects. Aeronutrient formulations have untapped potential for the therapeutic treatment of nutritional deficits, particularly in individuals with malabsorption or a low tolerance of injections. Aeronutrient therapy should be regarded as a medical intervention and be regulated accordingly, with efficacy and safety supported by scientific evidence, unlike the ‘vitamin vapes’ marketed by the wellness industry. Conclusions: Before this potential can be realised, a regulatory framework will need to be developed for aeronutrients. The high effectiveness of the pulmonary route introduces concerns regarding overdosing and toxicity which can best be addressed by categorising these formulations as prescription drugs that require regular monitoring of nutritional and health status. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Graphical abstract

Back to TopTop