Comparative Analyses of 18 Complete Chloroplast Genomes from Eleven Mangifera Species (Anacardiaceae): Sequence Characteristics and Phylogenomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction and Genome Sequencing
2.3. Genome Assembly and Annotation
2.4. Chloroplast Genome Structural Analysis
2.5. Codon Usage Bias Analysis
2.6. Structural Analysis of Repeats
2.7. Genome Comparison
2.8. Phylogenetic Analyses
3. Results
3.1. Molecular Features of Various Chloroplast Genomes
3.2. Contraction and Expansion of the IR Regions
3.3. Codon Bias Analysis
3.4. SSR Analyses
3.5. Comparative Analysis of Chloroplast Genomes
3.6. Phylogenetic Analysis
4. Discussion
4.1. Chloroplast Genome of Mangifera
4.2. Codon Usage and SSR Analysis
4.3. Structural Variation
4.4. Phylogenetic Relationships
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.Y.; Dang, Z.G.; Lin, D.; Hu, M.J.; Huang, J.F.; Zhu, M.; Zhang, H.; Han, D.; Gao, A.; Gao, Z.Y.; et al. Mango scientific research in China in the past 70 years. Acta Hortic. Sin. 2020, 41, 2034–2044. [Google Scholar]
- Xin, Y.X.; Li, R.Z.; Li, X.; Chen, L.Q.; Tang, J.R.; Qu, Y.Y.; Yang, L.Y.; Xin, P.Y.; Li, Y.F. Analysis of codon usage bias of chloroplast genome in Mangifera indica. J. Cent. South Univ. For. Technol. 2021, 41, 148-156–165. [Google Scholar] [CrossRef]
- Fitmawati, F.; Ningrum, M.R.; Mahatma, R.; Suzanti, F. Phylogenetic study of genus Mangifera in southern Sumatera based on DNA Sequences of the internal transcribed spacer (ITS) region. IOP Conf. Ser. Mater. Sci. Eng. 2018, 197, 012013. [Google Scholar] [CrossRef]
- Kang, Z.M.; Huang, H.; Li, X.Y.; He, F.P.; Fan, J.X.; Zhang, Y.; Gong, D.Y.; Liu, Q.G.; Li, T.Y.; Huang, J.F.; et al. Quality analysis of Mango suitable for planting in Guizhou. Non-Wood For. Res. 2020, 38, 161–168. [Google Scholar] [CrossRef]
- Gu, H.; Fang, J.; Ye, J.M.; Yao, Q. Effect of Heat Treatment Composite Chitosan Coating on ‘Tainong No.1’ Mango Storage Quality at Room Temperature. Food Sci. Technol. 2022, 47, 37–43. [Google Scholar] [CrossRef]
- Lei, X.T.; Chen, Y.Y.; Zhang, J.B.; Jin, Z.Q. Advances in molecular markers of Mango germplasm resources. J. Anhui Agric. Sci. 2009, 37, 15722–15724+15850. [Google Scholar] [CrossRef]
- Nishiyama, K.; Choi, Y.A.; Honsho, C.; Eiadthong, W.; Yonemori, K. Application of genomic in situ hybridization for phylogenetic study between Mangifera indica L. and eight wild species of Mangifera. Sci. Hortic. 2006, 110, 114–117. [Google Scholar] [CrossRef]
- Sankaran, M.; Dinesh, M.R.; Chaitra, N.; Ravishankar, K.V. Morphological, cytological, palynological and molecular characterization of certain Mangifera species. Curr. Sci. 2018, 115, 1379–1386. [Google Scholar] [CrossRef]
- He, X.H.; Li, Y.R.; Guo, Y.Z.; Ou, S.J.; Li, R.B. Identification of closely related Mango cultivars by ISSR. Guihaia 2007, 27, 44–47. [Google Scholar]
- Xing, W.R.; Hou, B.W.; Guan, J.J.; Luo, J.; Ding, X.Y. Sequence analysis of LEAFY homologous gene from Dendrobium moniliforme and application for identification of medicinal Dendrobium. Acta Pharm. Sin. 2013, 48, 597–603. [Google Scholar]
- Wu, L.; Nie, L.; Xu, Z.; Li, P.; Wang, Y.; He, C.; Song, J.Y.; Yao, H. Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia section Moutan species (Paeoniaceae). Front. Genet. 2020, 11, 980. [Google Scholar] [CrossRef] [PubMed]
- Suparman, P.A.; Hidayat, T. Phylogenetic analysis of Mangifera based on rbcL sequences, chloroplast DNA. Sci. Papers Ser. B Hortic. 2013, 57, 235–240. [Google Scholar]
- Fitmawati, F.; Hayati, I.; Mahatma, R.; Suzanti, F. Phylogenetic study of Mangifera from Sumatra,Indonesia using nuclear and chloroplast DNA sequences. SABRAO J. Breed. Genet. 2018, 50, 295–312. [Google Scholar]
- Dinesh, M.R.; Ravishankar, K.V.; Nischita, P.; Sandya, B.S.; Padmakar, B.; Ganeshan, S.; Chithiraichelvan, R.; Sharma, T.V.R.S. Exploration, characterization and phylogenetic studies in wild Mangifera indica relatives. Am. J. Plant Sci. 2015, 6, 2151–2160. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Gao, C.; Liu, J. Comparative analysis of the complete plastid genomes of Mangifera species and gene transfer between plastid and mitochondrial genomes. PeerJ 2021, 9, e10774. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; DePamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; et al. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 2005, 395, 348–384. [Google Scholar] [CrossRef]
- Xing, S.C. Process in chloroplast genome analysis. Prog. Biochem. Biophys. 2008, 35, 21–28. [Google Scholar]
- Wang, L.; Dong, W.P.; Zhou, S.L. Structural mutations and reorganizations in chloroplast genomes of flowering plants. Acta Bot. Boreali-Occident Sin. 2012, 32, 1282–1288. [Google Scholar] [CrossRef]
- Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; et al. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef]
- Jiang, W.J.; Guo, M.Y.; Pang, X.H. Application of chloroplast genome in identification and phylogenetic analysis of medicinal plants. World J. Tradit. Chin. Med. 2020, 15, 702-708–716. [Google Scholar] [CrossRef]
- Yang, J.P.; Zhu, Z.L.; Fan, Y.J.; Zhu, F.; Chen, Y.J.; Niu, Z.T.; Ding, X.Y. Comparative plastomic analysis of three Bulbophyllum medicinal plants and its significance in species identification. Acta Pharm. Sin. 2020, 55, 2736–2745. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Wang, X.F.; Gao, J.; Liu, A.P.; Yan, Y.G.; Yang, X.J.; Zhang, G. Complete chloroplast genome of Paeonia mairei H. Lév.: Characterization and phylogeny. Acta Pharm. Sin. 2020, 55, 168–176. [Google Scholar] [CrossRef]
- Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesono, K.; Shiki, Y.; Takeuchi, M.; Chang, Z.; et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 1986, 322, 572–574. [Google Scholar] [CrossRef]
- Li, Q.L.; Yan, N.; Song, Q.; Guo, J. Complete chloroplast genome sequence and characteristics analysis of Morus multicaulis. Bull. Bot. 2018, 53, 94–103. [Google Scholar] [CrossRef]
- Yuan, X.L.; Liu, Y.; Kang, H.M.; Chen, Z.H. Analysis of codon usage bias in chloroplast genome of Malania oleifera. J. Southwest For. Univ. 2021, 41, 15–22. [Google Scholar]
- Xu, Y.J.; Zhang, Y.F.; Ren, Z.M. Complete chloroplast genome of Pistacia chinensis Bunge (Anacardiaceae: Rhoideae), an important economical and ornamental plant. Mitochondrial DNA Part B 2020, 5, 1931–1932. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry. 1987, 19, 11–15. [Google Scholar]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; de Pamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [Green Version]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2007, 15, 2583–2585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DNASP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; Pfeiffer, W.T.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. IEEE Comput. Soc. Bioinf. Conf. 2010, 1–8. [Google Scholar]
- Stamatakis, A. Using Raxml to infer phylogenies. Curr. Protoc. Bioinf. 2015, 51, 6141–6144. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P. Mebayes: Bayesian inference of phylogeney. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef]
- Kimura, M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 1981, 78, 454–458. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, J.; Huang, Y.; Fan, J.; Zhang, Y.; Zuo, L. Analysis of chloroplast genome of Pyrus betulaefolia. Acta Hortic. Sin. 2020, 47, 1021–1032. [Google Scholar] [CrossRef]
- Lu, H.; Dong, Z.H.; Qu, S.H.; Xia, M.T.; Wang, Z.D.; Shen, W.X.; Wang, H.Y.; Yu, Q.F.; Xin, P.Y. Sequencing and characteristics analysis of chloroplast genome of Pinus armandii. Mol. Plant Breed. 2021, 19, 3223–3234. [Google Scholar] [CrossRef]
- Yao, X.; Tang, P.; Li, Z.; Li, D.; Liu, Y.; Huang, H. The first complete chloroplast genome sequences in Actinidiaceae: Genome structure and comparative analysis. PLoS ONE 2015, 10, e0129347. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.F.; Zang, M.Y.; Li, M.; Fang, Y. Complete chloroplast genome sequence and phylogentic analysis of Quercus acutissima. Int. J. Mol. Sci. 2018, 19, 2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, B.R.; Zhao, Z.L.; Ni, L.H.; Wu, J.R.; Dan, Z.Z.G. Comparative analysis of complete chloroplast genome sequences within Gentianaceae and significance of identifying species. Chin. Tradit. Herbal Drugs. 2020, 51, 1641–1649. [Google Scholar]
- Ren, G.P.; Dong, Y.Y.; Dang, Y.K. Codon codes: Codon usage bias influences many levels of gene expression. Sci. Sin. 2019, 49, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.M.; Wu, S.F.; Ren, D.M.; Zhu, Y.P.; He, F.C. The analysis method and progress in the study of codon bias. Hereditas 2007, 29, 420–426. [Google Scholar] [CrossRef]
- Han, L.H.; Dai, D.Q.; Zhao, M.Y. Codon usage bias analysis of the genome-wide genes encoded in Agaricus bisporus. Mycosystema 2021, 40, 1–12. [Google Scholar] [CrossRef]
- Li, J.F.; Wang, Y.; Yan, T.Y.; Wang, Q.B.; Chen, S.; Cai, N.H.; Xu, Y.L.; Tang, H.Y. Analysis on codon usage bias of Keteleeria evelyniana chloroplast genome. J. Cent. South Univ. For. Technol. 2022, 42, 30–39. [Google Scholar] [CrossRef]
- Liu, C.; Han, L.H.; Wu, L.F.; Dai, X.B.; Liu, j. Genome-wide codon usage bias analysis of Capsicum annuum. Jiangsu Agric. Sci. 2022, 50, 16–22. [Google Scholar] [CrossRef]
- Li, K.Y.; Zhang, H.L.; Zhang, H.; Cong, C.L.; Song, X.H.; Chen, W.W.; Pang, L.; Chang, X.C.; Tian, S.J. Codon Preference Analysis of the Chloroplast Genome of Urtica fissa. Agric. Sci. Technol. 2022, 41, 51–58. [Google Scholar] [CrossRef]
- He, Y.L.; Peng, Y.J.; Li, M.; Feng, B.; Qing, Y.J.; Wang, A.Y.; Zhu, J.B. Preference analysis of codon usage in the chloroplast genome of Saussurea involucrate. J. Shihezi Univ. Nat. Sci. 2022, 40, 84–92. [Google Scholar] [CrossRef]
- Xiao, M.K.; Yan, W.; Xiong, X.K.; Shen, S.B.; Song, J.M.; Yi, H.F.; Zhang, L.H. Analysis of codon usage bias in the chloroplast genome of Cinnamomum glanduliferum. J. Cent. South Univ. For. Technol. 2022, 42, 127–134. [Google Scholar] [CrossRef]
- Du, Q.; Wang, B.; Wei, Z.; Zhang, D.; Li, B. Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J. Hered. 2012, 103, 853–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamada, H.; Petrino, M.G.; Kakunaga, T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 1982, 79, 6465–6469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.; Niu, N.; Li, Y.Y. Application of SSR marker in plant genome research. J. Shenyang Norm. Univ. 2010, 1, 83–85. [Google Scholar] [CrossRef]
- Yan, H.Q.; Liu, Z.B.; Ji, H.W.; Zhang, Y.M.; Sun, G.L.; Zhou, Q.; Luo, Q.H. Analysis of EST-SSR Loci and Primers Development in Mango (Mangifera indica). Mol. Plant Breeding 2020, 18, 6077–6084. [Google Scholar] [CrossRef]
- Qian, J.; Song, J.Y.; Gao, H.H.; Zhu, Y.J.; Xu, J.; Pang, X.H.; Yao, H.; Sun, C.; Li, X.E.; Li, C.Y.; et al. The Complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 2013, 6, e57607. [Google Scholar] [CrossRef]
- Guo, H.; Liu, J.; Luo, L.; Wei, X.; Zhang, J.; Qi, Y.; Zhang, B.G.; Liu, H.T.; Xiao, P. Complete chloroplast genome sequences of Schisandra chinensis: Genome structure, comparative analysis, and phylogenetic relationship of basal angiosperms. Sci. China Life Sci. 2017, 60, 1286–1290. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, X.; Cui, Y.; Sun, W.; Li, Y.; Wang, Y.; Song, J.Y.; Yao, H. Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. Int. J. Mol. Sci. 2017, 18, 1839. [Google Scholar] [CrossRef]
- Gao, L.; Yi, X.; Yang, Y.X.; Su, Y.J.; Wang, T. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: Insights into evolutionary changes in fern chloroplast genomes. BMC Evol. Biol. 2009, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, H. Mangifera . Flora Males. 1978, 1, 423–440. [Google Scholar]
- Zhou, J.A. Mangifera indica germplasm resources and breeding in Thailand. South China Fruits 2018, 47, 140–142. [Google Scholar] [CrossRef]
- Teo, L.L.; Kiew, R.; Set, O.; Lee, S.K.; Gan, Y.Y. Hybrid status of kuwini, Mangifera odorata Griff. (Anacardiaceae) verified by amplified fragment length polymorphism. Mol. Ecol. 2002, 11, 1465–1469. [Google Scholar] [CrossRef]
- Matra, D.D.; Fathoni, M.; Majiidu, M.; Wicaksono, H.; Sriyono, A.; Gunawan, G.; Susanti, H.; Sari, R.; Fitmawati, F.; Siregar, I.Z.; et al. The genetic variation and relationship among the natural hybrids of Mangifera casturi Kosterm. Sci. Rep. 2021, 11, 19766. [Google Scholar] [CrossRef]
- Fitmawati, F.; Harahap, S.P.; Sofiyanti, N. Short Communication: Phylogenetic analysis of mango (Mangifera) in Northern Sumatra based on gene sequences of cpDNA trnL-F intergenic spacer. Biodiversitas 2017, 18, 715–719. [Google Scholar] [CrossRef]
- Yang, J.B.; Tang, M.; Li, H.T.; Zhang, Z.R.; Li, D.Z. Complete chloroplast genome of the genus Cymbidium: Lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evol. Biol. 2013, 13, 84. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, S.; Li, F.; Zhang, S.; Zhang, H.; Wang, X.; Sun, R.; Bonnema, G.; Borm, T.J.A. A phylogenetic analysis of chloroplast genomes elucidates the relationships of the six economically important Brassica species comprising the triangle of U. Front. Plant Sci. 2017, 8, 111. [Google Scholar] [CrossRef]
Species | Sources | Voucher Information | Whole Genome | LSC | SSC | IR | ||||
---|---|---|---|---|---|---|---|---|---|---|
Length (bp) | G + C (%) | Length (bp) | G + C (%) | Length (bp) | G + C (%) | Length (bp) | G + C (%) | |||
Mangifera caloneura | Pak Thong Chai, Nakhon Ratchasima | ON805860 | 158,931 | 37.8 | 87,727 | 35.8 | 18,430 | 32.3 | 26,387 | 43.0 |
M. cochinchinensis | Soi Dao, Chantaburi | ON805859 | 158,932 | 37.8 | 87,735 | 35.8 | 18,417 | 32.3 | 26,390 | 43.0 |
M. foetida | Khao Chong, Nayong, Trang | ON805858 | 158,887 | 37.8 | 87,707 | 35.8 | 18,426 | 32.3 | 26,377 | 43.0 |
M. indica Bao | Bangkok | OK000994 | 157,779 | 37.9 | 86,673 | 36.0 | 18,349 | 32.4 | 26,379 | 43.0 |
M. indica R2E2 | Bangkok | ON805861 | 157,780 | 37.9 | 86,672 | 36.0 | 18,349 | 32.4 | 26,379 | 43.0 |
M. macrocarpa MMC1 | Khao Chong, Nayong, Trang | OK000993 | 158,942 | 37.8 | 87,732 | 35.8 | 18,436 | 32.3 | 26,387 | 43.0 |
M. macrocarpa MMC2 | Khao Chong, Nayong, Trang | ON805857 | 158,942 | 37.8 | 87,732 | 35.8 | 18,436 | 32.3 | 26,387 | 43.0 |
M. odorata | Bangyai,Nonthaburi | ON805856 | 158,889 | 37.8 | 87,708 | 35.8 | 18,427 | 32.3 | 26,377 | 43.0 |
M. pentandra | Khao Chong, Nayong, Trang | ON805855 | 158,918 | 37.8 | 87,710 | 35.8 | 18,432 | 32.3 | 26,388 | 43.0 |
M. quadrifida | Khao Chong, Nayong, Trang | ON805854 | 158,940 | 37.8 | 87,731 | 35.8 | 18,425 | 32.3 | 26,392 | 43.0 |
M. siamensis | Lansak, Uthaithani | ON805853 | 158,025 | 37.9 | 86,856 | 35.9 | 18,387 | 32.3 | 26,391 | 43.0 |
M. sylvatica | Umphang, Tak | ON755224 | 157,368 | 37.9 | 86,228 | 36.0 | 18,348 | 32.4 | 26,396 | 43.0 |
* M. indica | NCBI | MN711724 | 157,775 | 37.9 | 86,664 | 35.9 | 20,557 | 32.8 | 25,277 | 43.0 |
* M. indica | NCBI | MT727081 | 157,779 | 37.9 | 86,672 | 36.0 | 18,349 | 32.7 | 26,379 | 43.0 |
* M. indica | NCBI | KX871231 | 157,780 | 37.9 | 86,673 | 36.0 | 18,349 | 32.7 | 26,379 | 43.0 |
* M. sylvatica | NCBI | MN917211 | 157,824 | 37.9 | 86,719 | 35.9 | 18,347 | 32.7 | 26,379 | 43.0 |
* M. perseciforma | NCBI | MN917208 | 157,799 | 37.9 | 86,724 | 36.0 | 20,571 | 32.7 | 25,252 | 43.3 |
* M. perseciforma | NCBI | MN917209 | 157,796 | 37.9 | 86,718 | 36.0 | 20,572 | 32.7 | 25,253 | 43.3 |
Category for Gene | Group of Genes | Name of Genes |
---|---|---|
Photosynthesis, related genes | 1 Photosystem I | psaA, psaB, psaC, psaI, psaJ |
2 Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | |
Cytochrome b/f complex | petA, petB,a petD,a petG, petL, petN | |
ATP synthase | atpA, atpB, atpE, atpF,a atpH, atpI | |
Rubisco large subunit | rbcL | |
NADH, NADH dehydrogenase | ndhA,a ndhB,a,b ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Self-replication | rRNA | rrn5,b rrn4.5,b rrn16,b rrn23b |
tRNA | trnA-UGC,a,b trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, trnG-UCC,a trnH-GUG, trnI-CAU,b trnI-GAU,a,b trnK-UUU,a trnL-CAA,b trnL-UAA,a trnL-UAG, trnM-CAU, trnN-GUU,b trnP-UGG, trnQ-UUG, trnR-ACG,b trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC,b trnV-UAC,a trnW-CCA, trnY-GUA | |
Ribosomal protein (SSU) | rps2, rps3, rps4, rps7,b rps8, rps11, rps12,b,c,d rps14, rps15, rps16,a rps18, rps19 | |
Ribosomal protein (LSU) | rpl2,a,b rpl14, rpl20, rpl22, rpl23,b rpl32, rpl33, rpl36, rpl16a | |
RNA polymerase | rpoA, rpoB, rpoC1,a rpoC2 | |
Other genes | Maturase | matK |
Envelop membrane protein | cemA | |
Subunit of acetyl-CoA-carboxylase | accD | |
c-type cytochrome synthesis CcsA gene | ccsA | |
ATP-dependent protease subunit p | clpPd | |
Unknown function | Hypothetical chloroplast reading frames | ycf1,e ycf2,b ycf3,d ycf4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Y.; Yu, W.-B.; Eiadthong, W.; Cao, Z.; Li, Q.; Yang, Z.; Zhao, W.; Xin, P. Comparative Analyses of 18 Complete Chloroplast Genomes from Eleven Mangifera Species (Anacardiaceae): Sequence Characteristics and Phylogenomics. Horticulturae 2023, 9, 86. https://doi.org/10.3390/horticulturae9010086
Xin Y, Yu W-B, Eiadthong W, Cao Z, Li Q, Yang Z, Zhao W, Xin P. Comparative Analyses of 18 Complete Chloroplast Genomes from Eleven Mangifera Species (Anacardiaceae): Sequence Characteristics and Phylogenomics. Horticulturae. 2023; 9(1):86. https://doi.org/10.3390/horticulturae9010086
Chicago/Turabian StyleXin, Yaxuan, Wen-Bin Yu, Wichan Eiadthong, Zhengying Cao, Qishao Li, Zhenxin Yang, Wenzhi Zhao, and Peiyao Xin. 2023. "Comparative Analyses of 18 Complete Chloroplast Genomes from Eleven Mangifera Species (Anacardiaceae): Sequence Characteristics and Phylogenomics" Horticulturae 9, no. 1: 86. https://doi.org/10.3390/horticulturae9010086
APA StyleXin, Y., Yu, W. -B., Eiadthong, W., Cao, Z., Li, Q., Yang, Z., Zhao, W., & Xin, P. (2023). Comparative Analyses of 18 Complete Chloroplast Genomes from Eleven Mangifera Species (Anacardiaceae): Sequence Characteristics and Phylogenomics. Horticulturae, 9(1), 86. https://doi.org/10.3390/horticulturae9010086