Hedypnois cretica L. and Urospermum picroides L. Plant Growth, Nutrient Status and Quality Characteristics under Salinity Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Treatments and Growth Conditions
2.2. Plant Growth Parameters Measurement
2.3. Determination of Mineral Profile in Leaves and Roots and Nitrate Concentration in Leaves
2.4. Chemical Analyses in Leaves
2.5. Statistical Analysis
3. Results and Discussion
3.1. Plant Growth Parameters
3.2. Leaf and Root Mineral Profile
3.3. Salinity Tolerance Index
3.4. Quality Traits (Leaf Pigments, Total Soluble Solids Content, Titratable Acidity, and Total Phenolic Compounds Content)
3.5. Proline Content
3.6. Leaf Nitrate Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stephenson, J.; Newman, K.; Mayhew, S. Population dynamics and climate change: What are the links? J. Public Health 2010, 32, 150–156. [Google Scholar] [CrossRef] [PubMed]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021. In Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021; p. 240. [Google Scholar]
- FAOSTAT Production and Trade Statistics. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 24 December 2022).
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. CRC. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as eustressor for enhancing quality of vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Fita, A.; Rodríguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015, 6, 978. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8, 300. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Petropoulos, S.A. Impact of salinity on the growth and chemical composition of two underutilized wild edible greens: Taraxacum Officinale and Reichardia picroides. Horticulturae 2021, 7, 160. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the prospects of sea fennel (Crithmum maritimum L.) as emerging vegetable crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef]
- Calone, R.; Bregaglio, S.; Sanoubar, R.; Noli, E.; Lambertini, C.; Barbanti, L. Physiological adaptation to water salinity in six wild halophytes suitable for Mediterranean agriculture. Plants 2021, 10, 309. [Google Scholar] [CrossRef]
- Koyro, H.-W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ. Exp. Bot. 2006, 56, 136–146. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Fernandes, A.; Vaz, J.; Petropoulos, S.; Georgiou, E.; Ciric, A.; Sokovic, M.; Oludemi, T.; Barros, L.; Ferreira, I. Chemical composition and bioactive properties of Sanguisorba minor Scop. under Mediterranean growing conditions. Food Funct. 2019, 10, 1340–1351. [Google Scholar] [CrossRef] [Green Version]
- Karkanis, A.C.; Petropoulos, S.A. Physiological and growth responses of several genotypes of common purslane (Portulaca oleracea L.) under Mediterranean semi-arid conditions. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Mata, M.C.; Loera, R.D.C.; Morales, P.; Fernández-Ruiz, V.; Cámara, M.; Marqués, C.D.; Pardo-de-Santayana, M.; Tardío, J. Wild vegetables of the Mediterranean area as valuable sources of bioactive compounds. Genet. Resour. Crop Evol. 2012, 59, 431–443. [Google Scholar] [CrossRef]
- Chatzopoulou, E.; Carocho, M.; Di Gioia, F.; Petropoulos, S.A. The beneficial health effects of vegetables and wild edible greens: The case of the mediterranean diet and its sustainability. Appl. Sci. 2020, 10, 9144. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Badalonas, D.; Sykora, K.; Papastergiadou, E. Review of plant communities from Greek dunes and salt marshes, a preliminary summarizing list. Ann. Di Bot. 1995, 53, 107–118. [Google Scholar]
- Salonikioti, A.; Petropoulos, S.; Antoniadis, V.; Levizou, E.; Alexopoulos, A. Wild Edible Species with Phytoremediation Properties. Procedia Environ. Sci. 2015, 29, 98–99. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, A.A.; Marandos, E.; Assimakopoulou, A.; Vidalis, N.; Petropoulos, S.A.; Karapanos, I.C. Effect of Nutrient Solution pH on the Growth, Yield and Quality of Taraxacum officinale and Reichardia picroides in a Floating Hydroponic System. Agronomy 2021, 11, 1118. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Maroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Bálint, A.F.; Kovács, G.; Sutka, J. Copper tolerance of Aegilops, Triticum, Secale and triticale seedlings and copper and iron content in their shoots. Acta Biol. Szeged. 2002, 46, 77–78. [Google Scholar]
- Karapanos, I.; Papandreou, A.; Skouloudi, M.; Makrogianni, D.; Fernández, J.A.; Rosa, E.; Ntatsi, G.; Bebeli, P.J.; Savvas, D. Cowpea fresh pods—A new legume for the market: Assessment of their quality and dietary characteristics of 37 cowpea accessions grown in southern Europe. J. Sci. Food Agric. 2017, 97, 4343–4352. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Bates, L.S. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Uddin, M.N.; Tariqul Islam, M.; Karim, M.A. Salinity tolerance of three mustard/rapeseed cuitivars. J. Bangladesh Agric. Univ. 2005, 3, 203–208. [Google Scholar] [CrossRef]
- Wang, Y.; Nii, N. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress. J. Hortic. Sci. Biotechnol. 2000, 75, 623–627. [Google Scholar] [CrossRef]
- Shannon, M.C.; Grieve, C.M. Tolerance of vegetable crops to salinity. HortScience 1999, 78, 5–38. [Google Scholar] [CrossRef]
- Ryu, H.; Cho, Y.G. Plant hormones in salt stress tolerance. J. Plant Biol. 2015, 58, 147–155. [Google Scholar] [CrossRef]
- Wu, Z.; Xue, Z.; Li, H.; Zhang, X.; Wang, X.; Lu, X. Cultivation of dandelion (Taraxacum erythropodium) on coastal saline land based on the control of salinity and fertilizer. Folia Hortic. 2019, 31, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 2009, 27, 84–93. [Google Scholar] [CrossRef]
- Assimakopoulou, A.; Nifakos, K.; Salmas, I.; Kalogeropoulos, P. Growth, Ion Uptake, and Yield Responses of Three Indigenous Small-Sized Greek Tomato (Lycopersicon esculentum L.) Cultivars and Four Hybrids of Cherry Tomato under NaCl Salinity Stress. Commun. Soil Sci. Plant Anal. 2015, 46, 2357–2377. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 1998, 78, 127–157. [Google Scholar] [CrossRef]
- Rus, A.; Lee, B.H.; Muñoz-Mayor, A.; Sharkhuu, A.; Miura, K.; Zhu, J.K.; Bressan, R.A.; Hasegawa, P.M. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol. 2004, 136, 2500–2511. [Google Scholar] [CrossRef] [Green Version]
- Shannon, M.; Gronwald, J.; Tal, M. Effects of Salinity on Growth and Accumulation of Organic and Inorganic Ions in Cultivated and Wild Tomato Species. J. Am. Soc. Hortic. Sci. 1987, 112, 416–423. [Google Scholar] [CrossRef]
- Assimakopoulou, A.; Salmas, I.; Roussos, P.A.; Nifakos, K.; Kalogeropoulos, P.; Kostelenos, G. Salt tolerance evaluation of nine indigenous Greek olive cultivars. J. Plant Nutr. 2017, 40, 1099–1110. [Google Scholar] [CrossRef]
- Semiz, G.D.; Suarez, D.L.; Ünlükara, A.; Yurtseven, E. Interactive Effects of Salinity and N on Pepper (Capsicum annuum L.) Yield, Water Use Efficiency and Root Zone and Drainage Salinity. J. Plant Nutr. 2014, 37, 595–610. [Google Scholar] [CrossRef]
- Shahid, M.A.; Sarkhosh, A.; Khan, N.; Balal, R.M.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Zhang, J.L.; Flowers, T.J.; Wang, S.M. Mechanisms of sodium uptake by roots of higher plants. Plant Soil 2010, 326, 45–60. [Google Scholar] [CrossRef]
- Alfocea, F.P.; Estañ, M.T.; Caro, M.; Bolarín, M.C. Response of tomato cultivars to salinity. Plant Soil 1993, 150, 203–211. [Google Scholar] [CrossRef]
- Peng, Z.; He, S.; Sun, J.; Pan, Z.; Gong, W.; Lu, Y.; Du, X. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings. Sci. Rep. 2016, 6, 34548. [Google Scholar] [CrossRef] [PubMed]
- Maathuis, F.J.M.; Ahmad, I.; Patishtan, J. Regulation of Na+ fluxes in plants. Front. Plant Sci. 2014, 5, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, D.M.; Margarida Oliveira, M.; Saibo, N.J.M. Regulation of Na+ and K+ homeostasis in plants: Towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 2017, 40, 326–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mousavi, A.; Lessani, H.; Babalar, M.; Talaei, A.R.; Fallahi, E. Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J. Plant Nutr. 2008, 31, 1906–1916. [Google Scholar] [CrossRef]
- Shibli, R.A.; Sawwan, J.; Swaidat, I.; Tahat, M. Increased phosphorus mitigates the adverse effects of salinity in tissue culture. Commun. Soil Sci. Plant Anal. 2001, 32, 429–440. [Google Scholar] [CrossRef]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Ding, J.; Li, C.; Zhu, X.; Guo, W.; Zhu, M. Evaluating and Screening of Agro-Physiological Indices for Salinity Stress Tolerance in Wheat at the Seedling Stage. Front. Plant Sci. 2021, 12, 646175. [Google Scholar] [CrossRef]
- Anshori, M.F.; Purwoko, B.S.; Dewi, I.S.; Ardie, S.W.; Suwarno, W.B.; Safitri, H. Determination of selection criteria for screening of rice genotypes for salinity tolerance. Sabrao J. Breed. Genet. 2018, 50, 279–294. [Google Scholar]
- Chatzigianni, M.; Ntatsi, G.; Theodorou, M.; Stamatakis, A.; Livieratos, I.; Rouphael, Y.; Savvas, D. Functional Quality, Mineral Composition and Biomass Production in Hydroponic Spiny Chicory (Cichorium spinosum L.) Are Modulated Interactively by Ecotype, Salinity and Nitrogen Supply. Front. Plant Sci. 2019, 10, 1040. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Mou, B. Evaluation of lettuce genotypes for salinity tolerance. HortScience 2015, 50, 1441–1446. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Mou, B. Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. J. Am. Soc. Hortic. Sci. 2016, 141, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Liu, A.; Hua, X. Proline accumulation and transcriptional regulation of proline biothesynthesis and degradation in Brassica napus. BMB Rep. 2009, 42, 28–34. [Google Scholar] [CrossRef]
- Žnidarčič, D.; Ban, D.; Šircelj, H. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem. 2011, 129, 1164–1168. [Google Scholar] [CrossRef]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef]
- Verma, N.; Shukla, S. Impact of various factors responsible for fluctuation in plant secondary metabolites. J. Appl. Res. Med. Aromat. Plants 2015, 2, 105–113. [Google Scholar] [CrossRef]
- Kim, H.J.; Fonseca, J.M.; Choi, J.H.; Kubota, C.; Dae, Y.K. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem. 2008, 56, 3772–3776. [Google Scholar] [CrossRef]
- Neocleous, D.; Koukounaras, A.; Siomos, A.S.; Vasilakakis, M. Assessing the Salinity Effects on Mineral Composition and Nutritional Quality of Green and Red “Baby” Lettuce. J. Food Qual. 2014, 37, 1–8. [Google Scholar] [CrossRef]
- Garrido, Y.; Tudela, J.A.; Marín, A.; Mestre, T.; Martínez, V.; Gil, M.I. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. J. Sci. Food Agric. 2014, 94, 1592–1599. [Google Scholar] [CrossRef]
- Klados, E.; Tzortzakis, N. Effects of substrate and salinity in hydroponically grown Cichorium spinosum. J. Soil Sci. Plant Nutr. 2014, 14, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 2204. [Google Scholar] [CrossRef]
- Okasha, A.M.; Eldib, E.M.; Elmetwalli, A.H.; Farooque, A.A.; Yaseen, Z.M.; Elsayed, S. Maximization of Water Productivity and Yield of Two Iceberg Lettuce Cultivars in Hydroponic Farming System Using Magnetically Treated Saline Water. Agriculture 2022, 12, 101. [Google Scholar] [CrossRef]
- Carillo, P.; Soteriou, G.A.; Kyriacou, M.C.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Di Mola, I.; Mori, M.; Rouphael, Y. Regulated salinity eustress in a floating hydroponic module of sequentially harvested lettuce modulates phytochemical constitution, plant resilience, and post-harvest nutraceutical quality. Agronomy 2021, 11, 1040. [Google Scholar] [CrossRef]
- Sakamoto, K.; Kogi, M.; Yanagisawa, T. Effects of Salinity and Nutrients in Seawater on Hydroponic Culture of Red Leaf Lettuce. Environ. Control Biol. 2014, 52, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Gioia, F.D.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 314. [Google Scholar] [CrossRef]
- Roshdy, A.E.D.; Alebidi, A.; Almutairi, K.; Al-Obeed, R.; Elsabagh, A. The effect of salicylic acid on the performances of salt stressed strawberry plants, enzymes activity, and salt tolerance index. Agronomy 2021, 11, 775. [Google Scholar] [CrossRef]
- Tari, I.; Csiszár, J.; Szalai, G.; Horváth, F.; Pécsváradi, A.; Kiss, G.; Szepesi, Á.; Szabó, M.; Erdei, L. Acclimation of tomato plants to salinity stress after a salicylic acid pre-treatment. Acta Biol. Szeged. 2002, 46, 55–56. [Google Scholar]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; De Pascale, S. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Cardarelli, M.; Svecova, E.; Rea, E.; Lucini, L. Effects of saline stress on mineral composition, phenolic acids and flavonoids in leaves of artichoke and cardoon genotypes grown in floating system. J. Sci. Food Agric. 2013, 93, 1119–1127. [Google Scholar] [CrossRef]
- Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Lucini, L.; Colla, G. Changes in biomass, mineral composition, and quality of cardoon in response to NO3−:Cl− ratio and nitrate deprivation from the nutrient solution. Front. Plant Sci. 2016, 7, 978. [Google Scholar] [CrossRef] [Green Version]
- Rubinigg, M.; Posthumus, F.; Ferschke, M.; Elzenga, J.T.M.; Stulen, I. Effects of NaCl salinity on 15N-nitrate fluxes and specific root length in the halophyte Plantago maritima L. Plant Soil 2003, 250, 201–213. [Google Scholar] [CrossRef]
EC (dS m−1) | Leaf Number Plant−1 | Rosette Diameter (cm) | Non-Marketable Leaf Number Plant−1 | SPAD Index | Maximum Leaf Length (cm) | Maximum Leaf Width (cm) |
2 | 113.2 a | 57.96 a | 2.8 b | 40.83 a | 29.04 a | 6.29 a |
6 | 80.5 b | 30.45 b | 2.2 b | 45.94 a | 15.64 b | 3.95 b |
10 | 36.6 c | 19.27 c | 5.6 a | 41.49 a | 9.89 c | 2.56 c |
Total Plant FW (g) | Aerial Part FW (g) | Root FW (g) | Root/Aerial Part Ratio | Leaves FW (g) Plant−1 | Leaf DMC (%) | |
2 | 132.47 a | 105.92 a | 26.55 a | 0.25 b | 94.83 a | 7.26 c |
6 | 51.54 b | 33.23 b | 18.32 b | 0.55 a | 30.70 b | 8.42 b |
10 | 24.49 c | 13.66 c | 10.83 c | 0.82 a | 10.70 c | 10.62 a |
EC (dS m−1) | Leaf Number Plant−1 | Rosette Diameter (cm) | Non-Marketable Leaf Number Plant−1 | SPAD Index | Maximum Leaf Length (cm) | Maximum Leaf Width (cm) |
2 | 25.2 a | 39.46 a | 1.00 b | 41.32 b | 20.49 a | 6.07 a |
6 | 23.0 ab | 30.45 b | 1.68 b | 48.82 a | 15.74 b | 4.91 b |
10 | 18.8 b | 25.64 b | 3.08 a | 48.61 a | 13.33 b | 4.40 b |
Total Plant FW (g) | Aerial Part FW (g) | Root FW (g) | Root/Aerial Part Ratio | Leaves FW (g) Plant−1 | Leaf DMC (%) | |
2 | 55.70 a | 41.24 a | 14.46 a | 0.35 a | 36.62 a | 8.28 a |
6 | 42.70 b | 29.95 b | 12.74 ab | 0.43 a | 25.51 b | 8.69 a |
10 | 31.43 c | 22.60 c | 8.83 b | 0.39 a | 19.92 b | 8.64 a |
EC | N | P | K | Ca | Mg | Na | Cl | Fe | Mn | Zn | Cu | B | K/Na | Ca/Na |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(dS m−1) | (mg g−1 Leaf DW) | (mg kg−1 Leaf DW) | ||||||||||||
Hedypnois cretica | ||||||||||||||
2 | 44.6 a | 8.1 b | 67.0 a | 11.0 a | 2.2 a | 3.80 c | 5.0 c | 72.5 a | 108.1 a | 99.3 a | 8.7 a | 153.1 a | 18.4 a | 2.99 a |
6 | 44.7 a | 13.4 a | 35.0 b | 7.1 b | 2.1 a | 3.84 b | 15.0 b | 76.9 a | 58.3 b | 112.3 a | 9.8 a | 51.7 b | 0.9 b | 0.19 b |
10 | 44.3 a | 13.3 a | 30.0 b | 5.9 b | 2.1 a | 49.7 a | 24.0 a | 74.2 a | 68.2 b | 114.8 a | 9.2 a | 48.8 b | 0.6 b | 0.12 b |
Urospermum picroides | ||||||||||||||
2 | 46.2 a | 8.8 b | 62.0 a | 8.7 a | 2.1 a | 9.6 c | 6.0 c | 69.2 b | 193.3 a | 117.3 a | 7.0 a | 142.7 b | 6.4 a | 0.90 a |
6 | 43.2 b | 9.4 b | 41.0 b | 5.0 b | 1.6 b | 34.4 b | 14.0 b | 76.3 ab | 71.7 b | 88.5 b | 6.6 a | 152.0 ab | 1.2 b | 0.15 b |
10 | 48.7 a | 12.2 a | 30.0 c | 4.3 b | 1.7 b | 46.8 a | 20.0 a | 78.3 a | 85.8 b | 95.7 b | 7.7 a | 156.5 a | 0.6 c | 0.09 b |
EC | P | K | Ca | Mg | Na | Fe | Mn | Zn | Cu | B |
---|---|---|---|---|---|---|---|---|---|---|
(dS m−1) | (mg g−1 Leaf DW) | (mg kg−1 Root DW) | ||||||||
Hedypnois cretica | ||||||||||
2 | 13.7 b | 72.0 a | 4.2 b | 1.4 a | 1.6 c | 267.4 a | 53.1 a | 92.4 a | 41.3 a | 28.0 a |
6 | 16.3 a | 52.0 b | 5.4 ab | 1.7 a | 21.6 b | 162.5 b | 15.2 c | 73.1 b | 30.9 b | 24.7 a |
10 | 15.6 a | 40.0 c | 5.9 a | 1.7 a | 29.0 a | 144.1 b | 22.5 b | 92.5 a | 20.8 c | 22.6 a |
Urospermum picroides | ||||||||||
2 | 12.9 b | 63.0 a | 4.1 a | 1.9 a | 1.3 c | 119.8 b | 123.1 a | 215.4 a | 12.8 b | 31.9 a |
6 | 15.2 a | 64.0 a | 3.8 a | 1.5 ab | 11.6 b | 149.7 a | 70.3 b | 117.5 b | 16.1 a | 26.5 b |
10 | 16.3 a | 48.0 b | 2.6 a | 1.2 b | 21.4 a | 79.0 c | 26.7 c | 104.6 b | 12.4 b | 25.2 b |
EC | Chlorophyll a | Chlorophyll b | Total Chlorophyll | Carotenoids+ Xanthophylls | Total Phenolic Compounds | TSSC | TA | Nitrate Content | Free Proline |
---|---|---|---|---|---|---|---|---|---|
(dS m−1) | (mg/100 g FW) | (mg GAE /100 g FW) | °Brix | g Malic Acid/100 g FW | (mg/kg FW) | (μmole/g FW) | |||
Hedypnois cretica | |||||||||
2 | 49.22 a | 24.15 a | 73.37 a | 6.90 a | 52.66 a | 3.75 b | 0.043 c | 4317.5 a | 0.006 b |
6 | 51.58 a | 24.90 a | 76.48 a | 7.35 a | 58.90 a | 4.23 ab | 0.115 b | 2323.2 b | 0.028 b |
10 | 50.10 a | 24.70 a | 74.80 a | 6.42 a | 50.35 a | 5.03 a | 0.184 a | 1311.3 c | 1.444 a |
Urospermum picroides | |||||||||
2 | 55.48 a | 25.89 a | 81.37 a | 8.29 a | 62.60 a | 3.85 b | 0.178 a | 2534.2 a | 0.046 c |
6 | 52.22 a | 24.43 a | 76.65 a | 8.36 a | 73.11 a | 4.28 ab | 0.171 a | 1057.3 b | 0.606 b |
10 | 57.05 a | 26.28 a | 83.33 a | 8.51 a | 70.82 a | 4.45 a | 0.204 a | 993.6 b | 2.339 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexopoulos, A.A.; Assimakopoulou, A.; Panagopoulos, P.; Bakea, M.; Vidalis, N.; Karapanos, I.C.; Rouphael, Y.; Petropoulos, S.A. Hedypnois cretica L. and Urospermum picroides L. Plant Growth, Nutrient Status and Quality Characteristics under Salinity Stress. Horticulturae 2023, 9, 65. https://doi.org/10.3390/horticulturae9010065
Alexopoulos AA, Assimakopoulou A, Panagopoulos P, Bakea M, Vidalis N, Karapanos IC, Rouphael Y, Petropoulos SA. Hedypnois cretica L. and Urospermum picroides L. Plant Growth, Nutrient Status and Quality Characteristics under Salinity Stress. Horticulturae. 2023; 9(1):65. https://doi.org/10.3390/horticulturae9010065
Chicago/Turabian StyleAlexopoulos, Alexios A., Anna Assimakopoulou, Panagiotis Panagopoulos, Maria Bakea, Nikolina Vidalis, Ioannis C. Karapanos, Youssef Rouphael, and Spyridon A. Petropoulos. 2023. "Hedypnois cretica L. and Urospermum picroides L. Plant Growth, Nutrient Status and Quality Characteristics under Salinity Stress" Horticulturae 9, no. 1: 65. https://doi.org/10.3390/horticulturae9010065
APA StyleAlexopoulos, A. A., Assimakopoulou, A., Panagopoulos, P., Bakea, M., Vidalis, N., Karapanos, I. C., Rouphael, Y., & Petropoulos, S. A. (2023). Hedypnois cretica L. and Urospermum picroides L. Plant Growth, Nutrient Status and Quality Characteristics under Salinity Stress. Horticulturae, 9(1), 65. https://doi.org/10.3390/horticulturae9010065