Chitosan Coating Improves Postharvest Shelf-Life of Mango (Mangifera indica L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Chitosan Solution
2.3. Treatments and Sample Preparation
2.4. Weight Loss Determination
2.5. Total Bacteria Count (TBC) and Total Mold Count (TMC) Determination
2.6. Chemical Analyses
2.6.1. Determination of Vitamin C (Vit-C) Content
2.6.2. Determination of Ash Content
2.6.3. Determination of Total Protein Content
2.6.4. Determination of Titratable Acidity
2.6.5. Determination of Sugar Content
2.7. Statistical Analysis
3. Results
3.1. Weight Loss and Shelf-Life
3.2. Microbiological Changes
3.2.1. Total Bacteria Count (TBC)
3.2.2. Total Mold Count (TMC)
3.3. Nutritional Changes
3.3.1. Vitamin C (Vit-C) Content
3.3.2. Titratable Acidity (TA)
3.3.3. Sugar Content
3.3.4. Ash Content
3.3.5. Protein Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarker, S.R.; Islam, M.R.; Hossain, I. Prevalence and eco-friendly management of some important nursery diseases of mango in Bangladesh. J. Agric. Sci. 2015, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization of The United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 April 2022).
- Tridge. Fresh Mango. Available online: https://www.tridge.com/intelligences/mango/production (accessed on 1 April 2022).
- Afifa, K.; Kamruzzaman, M.; Mahfuza, I.; Afzal, H.; Arzina, H.; Roksana, H. A comparison with antioxidant and functional properties among five mango (Mangifera indica L.) varieties in Bangladesh. Int. Food Res. J. 2014, 21, 1501. [Google Scholar]
- Giovannoni, J.; Nguyen, C.; Ampofo, B.; Zhong, S.; Fei, Z. The epigenome and transcriptional dynamics of fruit ripening. Annu. Rev. Plant Biol. 2017, 68, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.M.K.; Rahman, M.A.; Reza, M.H.; Amin, M.N.; Hussen, M.A.M. Postharvest loss assessment of mango at different stages of supply chain through traditional and improved handling practices. Adv. Plants Agric. Res. 2019, 9, 384–388. [Google Scholar]
- Begum, M.; Marium, B.; Farid, M.S.; Hasan, M. Post-harvest loss assessment and marketing practices of fruits: An empirical study of Maulvibazar District in Bangladesh. J. Econ. Manag. Trade 2022, 28, 15–27. [Google Scholar] [CrossRef]
- Rahman, M.A.; Saha, M.G.; Nasrin, T.A.A.; Islam, M.N.; Uddin, M.S.; Arfin, M.S. Postharvest loss assessment of mango in the existing value chain of Bangladesh. J. Bangladesh Hortic. 2017, 3, 12–22. [Google Scholar]
- Diskin, S.; Sharir, T.; Feygenberg, O.; Maurer, D.; Alkan, N. Fludioxonil—A potential alternative for postharvest disease control in mango fruit. Crop. Prot. 2019, 124, 104855. [Google Scholar] [CrossRef]
- Swart, S.H.; Serfontein, J.J.; Swart, G.; Labuschagne, C. Chemical control of post-harvest diseases of mango: The effect of fludioxonil and prochloraz on soft brown rot, stem-end rot and anthracnose. Acta Hortic. 2009, 820, 503–510. [Google Scholar] [CrossRef]
- Sellitto, V.M.; Zara, S.; Fracchetti, F.; Capozzi, V.; Nardi, T. Microbial biocontrol as an alternative to synthetic fungicides: Boundaries between pre- and postharvest applications on vegetables and fruits. Fermentation 2021, 7, 60. [Google Scholar] [CrossRef]
- Jianglian, D. Application of chitosan based coating in fruit and vegetable preservation: A review. J. Food Process. Technol. 2013, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Pan, L.; Zhou, M.; Yang, Z.; Meng, Y.; Zhang, X. Comparative physiological and transcriptomic analyses reveal mechanisms of improved osmotic stress tolerance in annual ryegrass by exogenous chitosan. Genes 2019, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yan, Z.; Tang, W.; Zhang, Q.; Lu, B.; Li, Q.; Zhang, G. Impact of chitosan, sucrose, glucose, and fructose on the postharvest decay, quality, enzyme activity, and defense-related gene expression of strawberries. Horticulturae 2021, 7, 518. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Rabea, E.I.; El-Nouby, M.A.M.; Ismail, R.I.A.; Taktak, N.E.M. Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. Int. J. Fruit Sci. 2016, 17, 117–136. [Google Scholar] [CrossRef]
- Drevinskas, T.; Naujokaitytė, G.; Maruška, A.; Kaya, M.; Sargin, I.; Daubaras, R.; Česonienė, L. Effect of molecular weight of chitosan on the shelf life and other quality parameters of three different cultivars of Actinidia kolomikta (kiwifruit). Carbohydr. Polym. 2017, 173, 269–275. [Google Scholar] [CrossRef]
- Shah, S.; Hashmi, M.S. Chitosan–aloe vera gel coating delays postharvest decay of mango fruit. Hortic. Environ. Biotechnol. 2020, 61, 279–289. [Google Scholar] [CrossRef]
- Silva, G.M.C.; Silva, W.B.; Medeiros, D.B.; Salvador, A.R.; Cordeiro, M.H.M.; da Silva, N.M.; Santana, D.B.; Mizobutsi, G.P. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem. 2017, 237, 372–378. [Google Scholar] [CrossRef]
- Parvin, N.; Kader, M.A.; Huque, R.; Molla, M.E.; Khan, M.A. Extension of shelf-life of tomato using irradiated chitosan and its physical and biochemical characteristics. Int. Lett. Nat. Sci. 2018, 67, 16–23. [Google Scholar] [CrossRef]
- Hailu, M.; Seyoum Workneh, T.; Belew, D. Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.). J. Food Sci. Technol. 2014, 51, 2947–2963. [Google Scholar] [CrossRef] [Green Version]
- Wills, R.H.H.; Lee, T.H.; Graham, D.; McGlasson, W.B.; Hall, E.G. Postharvest. An Introduction to the Physiology and Handling of Fruit and Vegetables, 3rd ed.; Springer: New York, NY, USA, 1989. [Google Scholar]
- Rashid, T.U.; Rahman, M.M.; Kabir, S.; Shamsuddin, S.M.; Khan, M.A. A new approach for the preparation of chitosan from γ-irradiation of prawn shell: Effects of radiation on the characteristics of chitosan. Polym. Int. 2012, 61, 1302–1308. [Google Scholar] [CrossRef]
- Harris, L.J.; Ray, S.N. Determination of plasma Ascorbic acid by 2, 6-dichorphenol indophenols titration. Lancet 1935, 1, 462. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists, 12th ed.; Method 14.006; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1975. [Google Scholar]
- AOAC. Association of Official Analytical Chemists, 17th ed.; Method 7.056; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products, 2nd ed.; Tata McGraw-Hill Education: New York, NY, USA, 1986. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 12 August 2022).
- Ntsoane, M.L.; Zude-Sasse, M.; Mahajan, P.; Sivakumar, D. Quality assesment and postharvest technology of mango: A review of its current status and future perspectives. Sci. Hortic. 2019, 249, 77–85. [Google Scholar] [CrossRef]
- Kumarihami, H.M.P.C.; Kim, Y.-H.; Kwack, Y.-B.; Kim, J.; Kim, J.G. Application of chitosan as edible coating to enhance storability and fruit quality of kiwifruit: A review. Sci. Hortic. 2022, 292, 110647. [Google Scholar] [CrossRef]
- Sogvar, O.B.; Saba, M.K.; Emamifar, A. Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biol. Technol. 2016, 114, 29–35. [Google Scholar] [CrossRef]
- Bambalele, N.L.; Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Recent advances on postharvest technologies of mango fruit: A review. Int. J. Fruit Sci. 2021, 21, 565–586. [Google Scholar] [CrossRef]
- Prashanth, K.V.H.; Baskaran, R.; DhanyaSri, E.B. Rajashekaramurthy, Bioactive chitosan based coatings: Functional applications in shelf life extension of Alphonso mango—A sweet story. Pure Appl. Chem. 2016, 88, 853–863. [Google Scholar] [CrossRef]
- Kumar, N.; Pratibha, N.; Petkoska, A.T.; Al-Hilifi, S.A.; Fawole, O.A. Effect of Chitosan–Pullulan Composite Edible Coating Functionalized with Pomegranate Peel Extract on the Shelf Life of Mango (Mangifera indica). Coatings 2021, 11, 764. [Google Scholar] [CrossRef]
- Tefera, A.; Seyoum, T.; Woldetsadik, K. Effect of Disinfection, Packaging, and Storage Environment on the Shelf Life of Mango. Biosyst. Eng. 2007, 96, 201–212. [Google Scholar] [CrossRef]
- Kahramanoğlu, İ.; Usanmaz, S. Improving Postharvest Storage Quality of Cucumber Fruit by Modified Atmosphere Packaging and Biomaterials. HortScience 2019, 54, 2005–2014. [Google Scholar] [CrossRef] [Green Version]
- Chiabrando, V.; Garavaglia, L.; Giacalone, G. The Postharvest Quality of Fresh Sweet Cherries and Strawberries with an Active Packaging System. Foods 2019, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Jha, S.N.; Jaiswal, P.; Narsaiah, K.; Bhardwaj, R.; Sharma, R.; Kumar, R.; Basediya, A.L. Post-harvest micro-flora on major cultivars of Indian mangoes. Sci. Hortic. 2010, 125, 617–621. [Google Scholar] [CrossRef]
- Govender, V.; Korsten, L.; Sivakumar, D. Semi-commercial evaluation of Bacillus licheniformis to control mango postharvest diseases in South Africa. Postharvest Biol. Technol. 2005, 38, 57–65. [Google Scholar] [CrossRef]
- Ngo, T.M.P.; Nguyen, T.H.; Dang, T.M.Q.; Do, T.V.T.; Reungsang, A.; Chaiwong, N.; Rachtanapun, P. Effect of Pectin/Nanochitosan-Based Coatings and Storage Temperature on Shelf-Life Extension of “Elephant” Mango (Mangifera indica L.) Fruit. Polymers 2021, 13, 3430. [Google Scholar] [CrossRef]
- Fortunati, E.; Giovanale, G.; Luzi, F.; Mazzaglia, A.; Kenny, J.; Torre, L.; Balestra, G. Effective postharvest preservation of kiwifruit and romaine lettuce with a chitosan hydrochloride coating. Coatings 2017, 7, 196. [Google Scholar] [CrossRef] [Green Version]
- Erkmen, O.; Faruk Bozoglu, F.T. Food Microbiology: Principles into Practice; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Lers, A. 27-Potential application of biotechnology to maintain fresh produce postharvest quality and reduce losses during storage. In Plant Biotechnology and Agriculture; Altman, A., Hasegawa, P.M., Eds.; Academic Press: San Diego, CA, USA, 2012; pp. 425–441. [Google Scholar]
- Hesami, A.; Kavoosi, S.; Khademi, R.; Sarikhani, S. Effect of chitosan coating and storage temperature on shelf-life and fruit quality of Ziziphus mauritiana. Int. J. Fruit Sci. 2021, 21, 509–518. [Google Scholar] [CrossRef]
- Suseno, N.; Savitri, E.; Sapei, L.; Padmawijaya, K.S. Improving shelf-life of cavendish banana using chitosan edible coating. Procedia Chem. 2014, 9, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Basumatary, I.B.; Mukherjee, A.; Katiyar, V.; Kumar, S.; Dutta, J. Chitosan-based antimicrobial coating for improving postharvest shelf life of pineapple. Coatings 2021, 11, 1366. [Google Scholar] [CrossRef]
- Sritananan, S.; Uthairatanakij, A.; Jitareerat, P.; Photchanachai, S.; Vongcheeree, S. Effects of Irradiation and Chitosan Coating on Physiological Changes of Mangosteen Fruit Stored at Room Temperature; International Symposium on New Frontiers of Food and Non-Food Products; KMUTT: Bangkok, Thailand, 2005; pp. 22–23. [Google Scholar]
- Vilvert, J.C.; de Freitas, S.T.; Ferreira, M.A.R.; Leite, R.H.d.L.; dos Santos, F.K.G.; Costa, C.d.S.R.; Aroucha, E.M.M. Chitosan and graphene oxide-based biodegradable bags: An eco-friendly and effective packaging alternative to maintain postharvest quality of ‘Palmer’ mango. Lwt 2022, 154, 112741. [Google Scholar] [CrossRef]
- Azene, M.; Workneh, T.S.; Woldetsadik, K. Effect of packaging materials and storage environment on postharvest quality of papaya fruit. J. Food Sci. Technol. 2014, 51, 1041–1055. [Google Scholar] [CrossRef]
Treatments | Vit-C Content (%) | Titratable Acidity (%) | Sugar Content (%) | Ash Content (%) | Protein Content (%) |
---|---|---|---|---|---|
Storage condition (S) | |||||
Ambient temp-open (S1) | 2.00 ± 0.24 d | 0.04 ± 0.01 d | 10.28 ± 0.53 a | 0.41 ± 0.04 c | 2.79 ± 0.16 c |
Ambient temp-zipbag (S2) | 2.23 ± 0.32 c | 0.19 ± 0.05 c | 8.28 ± 0.28 b | 0.41 ± 0.01 c | 2.95 ± 0.83 b |
Refrigeration-open (S3) | 3.13 ± 0.71 b | 0.33 ± 0.07 a | 7.4 ± 0.88 c | 2.79 ± 0.16 b | 2.34 ± 0.19 d |
Refrigeration-zipbag (S4) | 4.11 ± 0.2 a | 0.27 ± 0.06 b | 6.54 ± 0.48 d | 2.95 ± 0.83 a | 3.54 ± 1.30 a |
p-value | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * |
Chitosan treatment (C) | |||||
Control (C0) | 2.48 ± 0.97 d | 0.16 ± 0.10 c | 8.85 ± 1.51 a | 1.39 ± 1.04 b | 2.33 ± 0.17 c |
750 ppm (C1) | 2.73 ± 0.81 c | 0.18 ± 0.10 c | 8.11 ± 1.48 b | 1.44 ± 1.1 b | 2.46 ± 0.28 c |
1000 ppm (C2) | 3.33 ± 0.95 a | 0.22 ± 0.12 b | 7.88 ± 1.56 c | 1.81 ± 1.49 a | 3.07 ± 0.55 b |
1500 ppm (C3) | 2.95 ± 0.89 b | 0.27 ± 0.15 a | 7.66 ± 1.41 d | 1.92 ± 1.62 a | 3.76 ± 1.20 a |
p-value | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * |
Interaction (C × S) | |||||
C0 × S1 | 1.67 ± 0.04 j | 0.02 ± 0.01 g | 11.09 ± 0.10 a | 0.40 ± 0.10 f | 2.57 ± 0.06 efg |
C0 × S2 | 1.81 ± 0.04 ij | 0.14 ± 0.05 f | 8.36 ± 0.04 f | 0.4 ± 0.02 f | 2.19 ± 0.02 h |
C0 × S3 | 2.42 ± 0.02 def | 0.26 ± 0.02 cd | 8.85 ± 0.05 e | 2.57 ± 0.06 d | 2.2 ± 0.03 h |
C0 × S4 | 4.02 ± 0.03 b | 0.22 ± 0.02 de | 7.10 ± 0.10 h | 2.19 ± 0.02 e | 2.37 ± 0.03 fgh |
C1 × S1 | 2.25 ± 0.02 fgh | 0.04 ± 0.00 g | 10.03 ± 0.06 c | 0.42 ± 0.02 f | 2.92 ± 0.08 d |
C1 × S2 | 2.63 ± 0.05 d | 0.21 ± 0.05 de | 8.43 ± 0.02 f | 0.41 ± 0.01 f | 3.50 ± 0.40 c |
C1 × S3 | 4.05 ± 0.05 b | 0.33 ± 0.02 b | 6.91 ± 0.02 hij | 2.92 ± 0.08 c | 2.33 ± 0.03 gh |
C1 × S4 | 4.40 ± 0.20 a | 0.31 ± 0.02 bc | 6.13 ± 0.15 k | 3.50 ± 0.40 b | 3.53 ± 0.16 c |
C2 × S1 | 2.09 ± 0.18 gh | 0.05 ± 0.00 g | 9.72 ± 0.06 d | 0.41 ± 0.01 f | 2.92 ± 0.05 de |
C2 × S2 | 2.13 ± 0.15 gh | 0.24 ± 0.03 cd | 7.83 ± 0.04 g | 0.42 ± 0.01 f | 3.93 ± 0.06 b |
C2 × S3 | 3.53 ± 0.04 c | 0.45 ± 0.02 a | 7.05 ± 0.05 hi | 2.92 ± 0.05 c | 2.63 ± 0.04 defg |
C2 × S4 | 4.02 ± 0.07 b | 0.33 ± 0.04 b | 6.05 ± 0.05 k | 3.93 ± 0.06 a | 5.56 ± 0.05 a |
C3 × S1 | 2.00 ± 0.10 hi | 0.04 ± 0.01 g | 10.26 ± 0.05 b | 0.41 ± 0.02 f | 2.75 ± 0.04 de |
C3 × S2 | 2.35 ± 0.02 efg | 0.16 ± 0.02 ef | 8.50 ± 0.06 f | 0.41 ± 0.01 f | 2.20 ± 0.03 h |
C3 × S3 | 2.53 ± 0.04 de | 0.31 ± 0.02 bc | 6.80 ± 0.02 j | 2.75 ± 0.04 cd | 2.19 ± 0.03 h |
C3 × S4 | 4.02 ± 0.08 b | 0.21 ± 0.01 def | 6.88 ± 0.03 ij | 2.20 ± 0.03 e | 2.68 ± 0.05 def |
p-value | <0.05 * | <0.05 * | <0.05 * | <0.05 * | <0.05 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvin, N.; Rahman, A.; Roy, J.; Rashid, M.H.; Paul, N.C.; Mahamud, M.A.; Imran, S.; Sakil, M.A.; Uddin, F.M.J.; Molla, M.E.; et al. Chitosan Coating Improves Postharvest Shelf-Life of Mango (Mangifera indica L.). Horticulturae 2023, 9, 64. https://doi.org/10.3390/horticulturae9010064
Parvin N, Rahman A, Roy J, Rashid MH, Paul NC, Mahamud MA, Imran S, Sakil MA, Uddin FMJ, Molla ME, et al. Chitosan Coating Improves Postharvest Shelf-Life of Mango (Mangifera indica L.). Horticulturae. 2023; 9(1):64. https://doi.org/10.3390/horticulturae9010064
Chicago/Turabian StyleParvin, Nehar, Afrina Rahman, Jayanta Roy, Md Harun Rashid, Newton Chandra Paul, Md. Asif Mahamud, Shahin Imran, Md. Arif Sakil, F M Jamil Uddin, Md. Elias Molla, and et al. 2023. "Chitosan Coating Improves Postharvest Shelf-Life of Mango (Mangifera indica L.)" Horticulturae 9, no. 1: 64. https://doi.org/10.3390/horticulturae9010064
APA StyleParvin, N., Rahman, A., Roy, J., Rashid, M. H., Paul, N. C., Mahamud, M. A., Imran, S., Sakil, M. A., Uddin, F. M. J., Molla, M. E., Khan, M. A., Kabir, M. H., & Kader, M. A. (2023). Chitosan Coating Improves Postharvest Shelf-Life of Mango (Mangifera indica L.). Horticulturae, 9(1), 64. https://doi.org/10.3390/horticulturae9010064