Efficacy of an Eco-Friendly Bloom Thinning Formulation on Mango Trees and Its Olfactory Effect on an Insect Pollinator, Apis mellifera
Abstract
:1. Introduction
2. Materials and Methods
2.1. BTF
2.2. BTF Treatment on a Mango Orchard
2.3. Honey Bees
2.4. Olfactory Responses of A. mellifera to BTFs
2.5. Statistical Analysis
3. Results
3.1. Effects of BTF Treatment on Mango Trees
3.2. Olfactory Responses of A. mellifera to BTF Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dennis, F.G.J. The history of fruit thinning. Plant Growth Reg. 2000, 31, 1–16. [Google Scholar] [CrossRef]
- Costa, G.; Vizzotto, G. Fruit thinning of peach trees. Plant Growth Reg. 2000, 31, 113–119. [Google Scholar] [CrossRef]
- Coneva, E.D.; Cline, J.A. Blossom thinners reduce crop load and increase fruit size and quality of peaches. HortScience 2006, 41, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Kon, T.M.; Schupp, J.R. Apple crop load management with special focus on early thinning strategies: A US perspective. Hortic. Rev. 2019, 46, 255–298. [Google Scholar]
- Costa, G. Two decades of activity of the “Fruit Chemical Thinning” working group of the EUFRIN network. Acta Hortic. 2016, 1138, 1–7. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Torregrosa, A.; García Brunton, J. Post-bloom mechanical thinning for can peaches using a hand-held electrical device. Sci. Hortic. 2012, 144, 179–186. [Google Scholar] [CrossRef]
- Wertheim, S.J. Developments in the chemical thinning of apple and pear. Plant Growth Reg. 2000, 31, 85–100. [Google Scholar] [CrossRef]
- Jones, K.M.; Koen, T.B.; Meredith, R.J. Thinning ‘Golden Delicious’ apples using ethephon sprays. J. Hort. Sci. 1983, 58, 381–388. [Google Scholar] [CrossRef]
- Nielsen, J.C.; Dennis, F.G. Thinning ‘Delicious’ apples; trials and tribulations. J. Hort. Sci. 1983, 28, 484. [Google Scholar]
- Jemric, T.; Pavicic, N.; Blaskovic, D.; Krapac, M.; Pavicic, D. The effect of hand and chemical fruit thinning on ‘Golden Delicious cl. B’ apple fruit quality. Curr. Stud. Biotech. 2003, 3, 193–198. [Google Scholar]
- Matta, F.B.; Ouma, G. Apple cultivar responses to fruit thinning Agents accel and carbaryl in northern Mississippi. Bull. Mafes 2007, 1161, 1–9. [Google Scholar]
- Berlanga Reyes, D.I.; Romo Chacon, A.; Martinez Campos, A.R.; Guerrero Prieto, V.M. Apple fruit chemical thinning in Chihuahua, Mexico. Rev. Fitotec. Mex. 2008, 31, 243–250. [Google Scholar]
- Greene, D.; Costa, G. Fruit thinning in pome-and stone-fruit: State of the art. Acta Hortic. 2013, 998, 93–102. [Google Scholar] [CrossRef]
- Lenahan, O.M.; Whiting, M.D. Fish oil plus lime sulfur shows potential as a sweet cherry postbloom thinning agent. HortScience 2006, 41, 860–861. [Google Scholar] [CrossRef] [Green Version]
- Schoedl, K.; Denk, A.; Hummelbrunner, S.; Modl, P.; Forneck, A. No improvement in fruit quality through chemical bloom thinning in sweet cherry (Prunus avium L.). J. Sci. Food Agric. 2009, 89, 1236–1240. [Google Scholar] [CrossRef]
- Batjer, L.P.; Westwood, M.N. 1–Naphthyl n–methylcarbamate, a new chemical for thinning apples. Proc. Am. Soc. Hort. Sci. 1960, 75, 1–4. [Google Scholar]
- Williams, M.W. Sulfcarbamide, a blossom–Thinning agent for apples. Hort Technol. 1993, 3, 322–324. [Google Scholar] [CrossRef] [Green Version]
- Jahan, S.M.H.; Shim, J.-K.; Son, T.-K.; Jo, J.; Choi, C.; Lee, K.-Y. Effects of bloom thinning formulation on activities of digestive enzymes and acetylcholinesterase in honeybee Apis mellifera. Curr. Res. Agric. Life Sci. 2014, 32, 63–66. [Google Scholar] [CrossRef]
- Peck, G.M.; Combs, L.D.; DeLong, C.; Yoder, K.S. Precision apple bloom thinning using organically approved chemicals. Acta Hortic. 2016, 1137, 47–52. [Google Scholar] [CrossRef]
- Son, T.-K.; Hwang, H.-S.; Mostafiz, M.M.; Ozaki, Y.; Lee, K.-Y. Effects of eco–friendly bloom thinning formulations on a pollination insect, Apis mellifera. J. Fac. Agric. Kyushu Univ. 2020, 65, 233–236. [Google Scholar] [CrossRef]
- Tharanathan, R.N.; Yashoda, H.M.; Prabha, T.N. Mango (Mangifera indica L.), “The King of Fruits”—An Overview. Food Rev. Int. 2006, 22, 95–123. [Google Scholar] [CrossRef]
- Jackson, J.E. The manipulation of fruiting. In The Manipulation of Fruiting; Wright, C.J., Ed.; Butterworth & Co.: London, UK, 1989. [Google Scholar]
- Sasaki, K.; Utsunomiya, N. Effect of fruit thinning on fruit growth and profitability in ‘Irwin’ mango cultivation under greenhouse. Jpn. J. Trop. Agric. 2002, 46, 295–297. [Google Scholar]
- Yeshitela, T.; Robbertse, P.J.; Fivas, J. Effects of fruit thinning on ‘Senation’ mango (Mangifera indica) trees with respect to fruit quantity, quality and tree phenology. Expl. Agric. 2004, 40, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Mostafiz, M.M.; Hassan, E.; Shim, J.-K.; Lee, K.-Y. Lethal and sublethal effects of methyl benzoate on the predatory bug Nesidiocoris tenuis. Insects 2020, 11, 377. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, S.; Qin, Y.; Zhang, S.; Gao, Z.; Dang, Z.; Pan, W. Identification of plant chemicals attracting and repelling whiteflies. Arthropod Plant Interact. 2014, 8, 183–190. [Google Scholar] [CrossRef]
- SAS. SAS Institute Inc Base SAS 9.4 Procedures Guide: High-Performance Procedures, 6th ed.; SAS Institute 390 Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortiScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Polo, J.; Mata, P. Evaluation of a biostimulant (Pepton) based in enzymatic hydrolyzed animal protein in comparison to seaweed extracts on root development, vegetative growth, blooming, and yield of gold cherry tomatoes grown under low stress ambient field conditions. Front. Plant Sci. 2018, 8, 2261. [Google Scholar] [CrossRef]
- Blunden, G.; Jenkins, T.; Liu, Y. Enhanced leaf chlorophyll levels in plants treated with seaweed extract. J. Appl. Phycol. 1997, 8, 535–543. [Google Scholar] [CrossRef]
- Featonby-Smith, B.C.; Van Staden, J. The effect of seaweed concentrates and fertilizer on growth and the endogenous cytokinin content of Phaseolus vulgaris. S. Afr. J. Bot. 1984, 3, 375–379. [Google Scholar] [CrossRef] [Green Version]
- Crouch, I.J.; Van Staden, J. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J. Appl. Phycol. 1992, 4, 291–296. [Google Scholar] [CrossRef]
- Son, T.-K.; Ozaki, Y.; Lee, K.-Y. A study on labor force reduction and fruit quality with the use of substances showing thinning effect in ‘Fuji’ and ‘Arisu’ apple varieties. J. Fac. Agric. Kyushu Univ. 2020, 65, 257–261. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polm. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Sarrocco, S.; Raeta, R.; Vannacci, G. Seeds encapsulation in calcium alginate pellets. Seed Sci. Tech. 2004, 32, 649–661. [Google Scholar] [CrossRef]
- Faisal, M.; Anis, M. Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. f.) Merrill, an endangered medicinal plant. J. Horti. Sci. Biotech. 2007, 82, 351–354. [Google Scholar] [CrossRef]
- Shibata, S. Chemistry of components in ginseng. J. Tradit. Sino Jpn. Med. 1982, 3, 62–69. [Google Scholar]
- Chou, S.C.; Su, C.R.; Ku, Y.C.; Wu, T.S. The constituents and their bioactivities of Houttuynia cordata. Chem. Pharm. Bull. 2009, 57, 1227–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, L.P. Ginsenosides chemistry, biosynthesis, analysis, and potential health effects. Adv. Food Nutr. Res. 2009, 55, 1–99. [Google Scholar] [PubMed]
- Reyes-Becerril, M.; Angulo, C.; Sanchez, V.; Vázquez-Martínez, J.; López, M.G. Antioxidant, intestinal immune status and anti-inflammatory potential of Chenopodium ambrosioides L. in fish: In vitro and in vivo studies. Fish Shellfish. Immunol. 2019, 86, 420–428. [Google Scholar] [CrossRef]
Components of the Bloom Thinning Formulation | Proportions (%) in the Bloom Thinning Formulation | Main Active Ingredients |
---|---|---|
1. Extract of seaweed | <18 | Alginate |
2. Nitrogen, zinc, boron | <46 | Nitrogen |
3. Extract of low quality fresh Panax ginseng | <2 | Ginsenoside |
4. Extract of >Chenopodium ambrosioides | >1 | Limonene |
5. Extract of Houttuynia cordata | <20 | Essential oil |
6. Extract of Bupleurum falcatum | <10 | Saponin |
7. Wood vinegar | >1 | Organic acid |
8. Inert ingredient | - | Water |
Treatment | Number of Mango Trees (N) | Average Number Fruits per Tree | Average Weight (kg/fruit) | Average Yield (kg/tree) | Price (1000 VND/kg) | Total Revenue (1000 VND/tree) |
---|---|---|---|---|---|---|
Control-treated orchard | 15 | 55.3 b ± 2.2 | 0.635 a ± 0.06 | 35.1 b ± 1.7 | 10 | 351 |
Bloom thinning formulation-treated orchard | 15 | 25.6 a ± 1.4 | 1.250 b ± 0.06 | 28.6 a ± 1.6 | 32 | 772 |
Bloom Thinning Formulation Component | N a | Number of Minutes Spent in the Arm (Mean ± SD) | ||||
---|---|---|---|---|---|---|
Treatment | Control | t-Value | p-Value | |||
Extract of seaweed | 10 (9) | 6.02 (1.16) | 6.32 (0.95) | 0.49 | 0.6561 | |
Nitrogen, zinc, boron | 10 (8) | 5.62 (0.43) | 6.54 (1.29) | 1.73 | 0.1824 | |
Extract of low quality fresh Panax ginseng | 10 (10) | 7.08 (1.41) | 7.24 (1.08) | 0.39 | 0.7185 | |
Extract of >Chenopodium ambrosioides | 10 (9) | 6.23 (1.44) | 7.64 (1.13) | 0.98 | 0.3995 | |
Extract of Houttuynia cordata | 10 (9) | 7.05 (1.15) | 6.68 (1.71) | −0.39 | 0.7235 | |
Extract of Bupleurum falcatum | 10 (9) | 6.32 (0.89) | 6.88 (1.75) | 1.38 | 0.2603 | |
Wood vinegar | 10 (10) | 5.92 (1.17) | 6.55 (1.17) | 0.75 | 0.4957 | |
Inert ingredient | 10 (9) | 6.00 (1.18) | 6.97 (1.30) | 2.7 | 0.0741 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, T.-K.; Mostafiz, M.M.; Hwang, H.-S.; Thạnh, N.T.; Lee, K.-Y. Efficacy of an Eco-Friendly Bloom Thinning Formulation on Mango Trees and Its Olfactory Effect on an Insect Pollinator, Apis mellifera. Horticulturae 2021, 7, 62. https://doi.org/10.3390/horticulturae7040062
Son T-K, Mostafiz MM, Hwang H-S, Thạnh NT, Lee K-Y. Efficacy of an Eco-Friendly Bloom Thinning Formulation on Mango Trees and Its Olfactory Effect on an Insect Pollinator, Apis mellifera. Horticulturae. 2021; 7(4):62. https://doi.org/10.3390/horticulturae7040062
Chicago/Turabian StyleSon, Tae-Kwon, Md Munir Mostafiz, Hwal-Su Hwang, Nguyen Truong Thạnh, and Kyeong-Yeoll Lee. 2021. "Efficacy of an Eco-Friendly Bloom Thinning Formulation on Mango Trees and Its Olfactory Effect on an Insect Pollinator, Apis mellifera" Horticulturae 7, no. 4: 62. https://doi.org/10.3390/horticulturae7040062
APA StyleSon, T. -K., Mostafiz, M. M., Hwang, H. -S., Thạnh, N. T., & Lee, K. -Y. (2021). Efficacy of an Eco-Friendly Bloom Thinning Formulation on Mango Trees and Its Olfactory Effect on an Insect Pollinator, Apis mellifera. Horticulturae, 7(4), 62. https://doi.org/10.3390/horticulturae7040062