Improving Shelf Life, Maintaining Quality, and Delaying Microbial Growth of Broccoli in Supply Chain Using Commercial Vacuum Cooling and Package Icing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Precooling, Processing, and Storage Conditions
2.3. Cooling Coefficient
2.4. Weight Loss Percentage
2.5. Color Evaluation
2.6. Total Chlorophyll Content
2.7. Ascorbic Acid Content
2.8. Total Phenolic Content
2.9. Antioxidant Activity
2.10. Microbiological Analysis
2.11. Sensory Quality and SHELF-Life Evaluation
2.12. Statistical Analysis
3. Results
3.1. Evolution of the Temperature during Precooling
3.2. Weight Loss Percentage and Sensory Quality
3.3. Color Evaluation
3.4. Total Chlorophyll Content
3.5. Ascorbic Acid Content
3.6. Antioxidant Activity
3.7. Total Phenolic Content
3.8. Microbiological Analysis
3.9. Shelf-Life Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lv, J.; Wu, J.; Zuo, J.; Fan, L.; Shi, J.; Gao, L.; Li, M.; Wang, Q. Effect of Se treatment on the volatile compounds in broccoli. Food Chem. 2017, 216, 225–233. [Google Scholar] [CrossRef]
- Pezeshkpour, V.; Khosravani, S.A.; Ghaedi, M.; Dashtian, K.; Zare, F.; Sharifi, A.; Jannesar, R.; Zoladl, M. Ultrasound assisted extraction of phenolic acids from broccoli vegetable and using sonochemistry for preparation of MOF-5 nanocubes: Comparative study based on micro-dilution broth and plate count method for synergism antibacterial effect. Ultrason. Sonochem. 2018, 40, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Cheng, S.-C.; Cai, J.-H.; Wei, B.-D.; Zhou, X.; Zhou, Q.; Zhao, Y.-B.; Ji, S.-J. Chlorophyll degradation and carotenoid biosynthetic pathways: Gene expression and pigment content in broccoli during yellowing. Food Chem. 2019, 297, 124964. [Google Scholar] [CrossRef] [PubMed]
- Santana, J.C.C.; Araújo, S.A.; Alves, W.A.L.; Belan, P.A.; Jiangang, L.; Jianchu, C.; Dong-Hong, L. Optimization of vacuum cooling treatment of postharvest broccoli using response surface methodology combined with genetic algorithm technique. Comput. Electron. Agric. 2018, 144, 209–215. [Google Scholar] [CrossRef]
- Chiman, B.; Jayesh, D. Precooling techniques and applications for fruits and vegetables. Int. J. Process. Post Harvest Technol. 2016, 7, 141–150. [Google Scholar]
- Alibas, I.; Koksal, N. Forced-air, vacuum, and hydro precooling of cauliflower (Brassica oleracea L. var. botrytis cv. Freemont): Part I. determination of precooling parameters. Food Sci. Technol. 2014, 34, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Wang, G.-B.; Fawole, O.A.; Verboven, P.; Zhang, X.-R.; Wu, D.; Opara, U.L.; Nicolai, B.; Chen, K. Postharvest precooling of fruit and vegetables: A review. Trends Food Sci. Technol. 2020, 100, 278–291. [Google Scholar] [CrossRef]
- Kochhar, V. Effect of Different Pre-Cooling Methods on the Quality and Shelf Life of Broccoli. J. Food Process. Technol. 2015, 6, 424. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, W.; Brecht, J.K.; Nunes, M.C.d.N.; Émond, J.-P. Quality of Strawberries Shipped by Truck from California to Florida as Influenced by Postharvest Temperature Management Practices. HortTechnology 2011, 21, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Xiao-Ming, D.; Sheng, L.I.U.; JIA, L. Effect of Different Pre-cooling and Transportation Methods on the Quality of Green Asparagus. DEStech Trans. Environ. Energy Earth Sci. 2016, 486–490. [Google Scholar]
- Zhu, Z.; Geng, Y.; Sun, D.-W. Effects of operation processes and conditions on enhancing performances of vacuum cooling of foods: A review. Trends food Sci. Technol. 2019, 85, 67–77. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, S.; Tian, C.; Yan, G.; Wang, D. An overview of current status of cold chain in China. Int. J. Refrig. 2018, 88, 483–495. [Google Scholar] [CrossRef]
- Song, X.; Liu, B.; Jaganathan, G.K.; Chen, L. Mechanism of spillage and excessive boiling of water during vacuum cooling. Int. J. Refrig. 2015, 56, 37–42. [Google Scholar] [CrossRef]
- Ranjbaran, M.; Datta, A.K. Pressure-driven infiltration of water and bacteria into plant leaves during vacuum cooling: A mechanistic model. J. Food Eng. 2019, 246, 209–223. [Google Scholar] [CrossRef]
- Feng, C.; Drummond, L.; Zhang, Z.; Sun, D.-W.; Wang, Q. Vacuum cooling of meat products: Current state-of-the-art research advances. Crit. Rev. Food Sci. Nutr. 2012, 52, 1024–1038. [Google Scholar] [CrossRef]
- Garrido, Y.; Tudela, J.A.; Gil, M.I. Comparison of industrial precooling systems for minimally processed baby spinach. Postharvest Biol. Technol. 2015, 102, 1–8. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Abdalla, N.A.; Taha, H.S.; Fári, M. Postharvest Management of Fruits and Vegetables Storage. In Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 15, pp. 65–152. [Google Scholar]
- Behdani, B.; Fan, Y.; Bloemhof, J.M. Chapter 12—Cool Chain and Temperature-Controlled Transport: An Overview of Concepts, Challenges, and Technologies. In Sustainable Food Supply Chains; Accorsi, R., Manzini, R.B.T.-S.F.S.C., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 167–183. [Google Scholar]
- Elansari, A.M.; Fenton, D.L.; Callahan, C.W. Chapter 6—Precooling. In Postharvest Technology of Perishable Horticultural Commodities; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 161–207. [Google Scholar]
- Siegel, R.; Maté, J.; Watson, G.; Nosaka, K.; Laursen, P.B. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J. Sports Sci. 2012, 30, 155–165. [Google Scholar] [CrossRef]
- Raut, R.D.; Gardas, B.B.; Narwane, V.S.; Narkhede, B.E. Improvement in the food losses in fruits and vegetable supply chain-a perspective of cold third-party logistics approach. Oper. Res. Perspect. 2019, 6, 100117. [Google Scholar] [CrossRef]
- Wu, W.; Defraeye, T. Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains. Appl. Therm. Eng. 2018, 133, 407–417. [Google Scholar] [CrossRef]
- Kongwong, P.; Boonyakiat, D.; Poonlarp, P. Extending the shelf life and qualities of baby cos lettuce using commercial precooling systems. Postharvest Biol. Technol. 2019, 150, 60–70. [Google Scholar] [CrossRef]
- Zhan, L.; Hu, J.; Ai, Z.; Pang, L.; Li, Y.; Zhu, M. Light exposure during storage preserving soluble sugar and L-ascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L. var. longifolia). Food Chem. 2013, 136, 273–278. [Google Scholar] [CrossRef]
- Aiamla-or, S.; Kaewsuksaeng, S.; Shigyo, M.; Yamauchi, N. Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets. Food Chem. 2010, 120, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Gomes-Feitosa, C.L.; Castell-Perez, E.; Moreira, R.G.; Silva, P.F. Quality of packaged romaine lettuce hearts exposed to low-dose electron beam irradiation. LWT Food Sci. Technol. 2004, 37, 705–715. [Google Scholar] [CrossRef]
- Khyasudeen, M.F.; Nowakowski, P.J.; Nguyen, H.L.; Sim, J.H.N.; Do, T.N.; Tan, H.-S. Studying the spectral diffusion dynamics of chlorophyll a and chlorophyll b using two-dimensional electronic spectroscopy. Chem. Phys. 2019, 527, 110480. [Google Scholar] [CrossRef]
- Witham, F.H.; Blaydes, D.F.; Devlin, R.M. Experiments in Plant Physiology; Van Nostrand-Reinhold: New York, NY, USA, 1971. [Google Scholar]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw-Hill Education: New Delhi, India, 1986; ISBN 0074518518. [Google Scholar]
- Tugli, L.S.; Essuman, E.K.; Kortei, N.K.; Nsor-Atindana, J.; Nartey, E.B.; Ofori-Amoah, J. Bioactive constituents of waakye; a local Ghanaian dish prepared with Sorghum bicolor (L.) Moench leaf sheaths. Sci. Afr. 2019, 3, e00049. [Google Scholar] [CrossRef]
- Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic acids, flavonoids and total antioxidant capacity of selected leafy vegetables. J. Funct. Foods 2012, 4, 979–987. [Google Scholar] [CrossRef]
- Mantilla, N.; Castell-Perez, M.E.; Gomes, C.; Moreira, R.G. Multilayered antimicrobial edible coating and its effect on quality and shelf-life of fresh-cut pineapple (Ananas comosus). LWT Food Sci. Technol. 2013, 51, 37–43. [Google Scholar] [CrossRef]
- Xu, X.; Luo, D.; Bao, Y.; Liao, X.; Wu, J. Characterization of diversity and probiotic efficiency of the autochthonous lactic acid bacteria in the fermentation of selected raw fruit and vegetable juices. Front. Microbiol. 2018, 9, 2539. [Google Scholar] [CrossRef] [Green Version]
- Meilgaard, M.C.; Carr, B.T.; Civille, G. V Sensory Evaluation Techniques, 3rd ed.; Taylor & Francis: New York, NY, USA, 1999; ISBN 9781439832271. [Google Scholar]
- Wang, N.; Kan, A.; Huang, Z.; Lu, J. CFD simulation of heat and mass transfer through cylindrical Zizania latifolia during vacuum cooling. Heat Mass Transf. 2020, 56, 627–637. [Google Scholar] [CrossRef]
- Mi, S.; Cai, L.; Ma, K.; Liu, Z. Investigation on flow and heat transfer characteristics of ice slurry without additives in a plate heat exchanger. Int. J. Heat Mass Transf. 2018, 127, 11–20. [Google Scholar] [CrossRef]
- Han, Z.; Hua, L.; Fang, Y.; Ma, Q.; Li, Y.; Wang, J.X. Innovative research on refrigeration technology of cold chain logistics. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 52105. [Google Scholar] [CrossRef]
- Rajapaksha, L.; Gunathilake, D.; Pathirana, S.M. Reducing post-harvest losses in fruits and vegetables for ensuring food security–Case of Sri Lanka. MOJ Food Process Technols 2021, 9, 7–16. [Google Scholar] [CrossRef]
- Song, X.; Liu, B.; Jaganathan, G.K. Temperature distribution pattern of Brassica chinensis during vacuum cooling. J. Food Process. 2016, 2016, 8247085. [Google Scholar] [CrossRef] [Green Version]
- Hussein, Z.; Caleb, O.J.; Opara, U.L. Perforation-mediated modified atmosphere packaging of fresh and minimally processed produce—A review. Food Packag. Shelf Life 2015, 6, 7–20. [Google Scholar] [CrossRef]
- Falagán, N.; Terry, L.A. Recent Advances in Controlled and Modified Atmosphere of Fresh Produce. Johnson Matthey Technol. Rev. 2018, 62, 107–117. [Google Scholar] [CrossRef]
- Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Food Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Yan, L.; Liu, S. Effect of different pre-cooling, packaging and cold storage treatments on quality of broccoli. In Proceedings of the 28th International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Postharvest Technology in the Global Market, Lisbon, Portugal, 22–27 August 2010. [Google Scholar]
- Saad, M.; EL SAYED, M. Effect of Cooling Delays on Quality Attribute of Globe Artichoke during Cold Storage. Ann. Agric. Sci. Moshtohor 2019, 57, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Wu, X.; Geng, Y.; Sun, D.-W.; Chen, H.; Zhao, Y.; Zhou, W.; Li, X.; Pan, H. Effects of modified atmosphere vacuum cooling (MAVC) on the quality of three different leafy cabbages. LWT 2018, 94, 190–197. [Google Scholar] [CrossRef]
- De Ell, J.R.; Toivonen, P.M.A. Chlorophyll fluorescence as an indicator of physiological changes in cold-stored broccoli after transfer to room temperature. J. Food Sci. 1999, 64, 501–503. [Google Scholar] [CrossRef]
- Du, Y.; Jin, T.; Zhao, H.; Han, C.; Sun, F.; Chen, Q.; Yue, F.; Luo, Z.; Fu, M. Synergistic inhibitory effect of 1-methylcyclopropene (1-MCP) and chlorine dioxide (ClO2) treatment on chlorophyll degradation of green pepper fruit during storage. Postharvest Biol. Technol. 2021, 171, 111363. [Google Scholar] [CrossRef]
- Torales, A.C.; Gutiérrez, D.R.; Rodríguez, S.d.C. Influence of passive and active modified atmosphere packaging on yellowing and chlorophyll degrading enzymes activity in fresh-cut rocket leaves. Food Packag. Shelf Life 2020, 26, 100569. [Google Scholar] [CrossRef]
- Shi, J.; Gao, L.; Zuo, J.; Wang, Q.; Wang, Q.; Fan, L. Exogenous sodium nitroprusside treatment of broccoli florets extends shelf life, enhances antioxidant enzyme activity, and inhibits chlorophyll-degradation. Postharvest Biol. Technol. 2016, 116, 98–104. [Google Scholar] [CrossRef]
- Alanís-Garza, P.A.; Becerra-Moreno, A.; Mora-Nieves, J.L.; Mora-Mora, J.P.; Jacobo-Velázquez, D.A. Effect of industrial freezing on the stability of chemopreventive compounds in broccoli. Int. J. Food Sci. Nutr. 2015, 66, 282–288. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Luo, S.; Zhou, H.; Zhang, Y.; Zhang, L.; Hu, H.; Li, P. Effects of hydrogen-rich water combined with vacuum precooling on the senescence and antioxidant capacity of pakchoi (Brassica rapa subsp. Chinensis). Sci. Hortic. 2021, 289, 110469. [Google Scholar] [CrossRef]
- Tao, J.; Xie, J.; Wang, Y.; Gao, L.; Xiong, Y.; Sheng, D. Effect of different pre-cooling methods on quality of cutting greengrocery under low temperature storage. Food Ind. Technol. 2015, 337–340. [Google Scholar]
- Brat, P.; Bugaud, C.; Guillermet, C.; Salmon, F. Review of banana green life throughout the food chain: From auto-catalytic induction to the optimisation of shipping and storage conditions. Sci. Hortic. 2020, 262, 109054. [Google Scholar] [CrossRef]
- Li, L.; Lichter, A.; Kenigsbuch, D.; Porat, R. Effects of cooling delays at the wholesale market on the quality of fruit and vegetables after retail marketing. J. Food Process. Preserv. 2015, 39, 2533–2547. [Google Scholar] [CrossRef]
- Kitazawa, H.; Sato, T.; Nakamura, N.; Motoki, S. Effects of post-harvest cooling delay on weight loss, soluble solid and ascorbic acid contents of strawberry fruit. J. Food Agric. Environ. 2013, 11, 372–376. [Google Scholar]
- Tao, F.; Zhang, M.; Yu, H. Effect of vacuum cooling on physiological changes in the antioxidant system of mushroom under different storage conditions. J. Food Eng. 2007, 79, 1302–1309. [Google Scholar] [CrossRef]
- Li, J.; Ma, G.; Ma, L.; Bao, X.; Li, L.; Zhao, Q.; Wang, Y. Multivariate analysis of fruit antioxidant activities of blackberry treated with 1-methylcyclopropene or vacuum precooling. Int. J. Anal. Chem. 2018, 2018, 2416461. [Google Scholar] [CrossRef] [Green Version]
- López, A.; Javier, G.-A.; Fenoll, J.; Hellín, P.; Flores, P. Chemical composition and antioxidant capacity of lettuce: Comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. J. Food Compos. Anal. 2014, 33, 39–48. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Maciel de Souza, V.; Morato Bergamini, A.M.; De Martinis, E.C.P. Microbiological quality of ready-to-eat minimally processed vegetables consumed in Brazil. Food Control 2011, 22, 1400–1403. [Google Scholar] [CrossRef]
- Al-Dairi, M.; Pathare, P.B.; Al-Yahyai, R. Effect of Postharvest Transport and Storage on Color and Firmness Quality of Tomato. Horticulturae 2021, 7, 163. [Google Scholar] [CrossRef]
- Rattanakaran, J.; Saengrayap, R.; Prahsarn, C.; Kitazawa, H.; Chaiwong, S. Application of Room Cooling and Thermal Insulation Materials to Maintain Quality of Okra during Storage and Transportation. Horticulturae 2021, 7, 188. [Google Scholar] [CrossRef]
- GOJIYA, D.K. Effect of pre-treatments on biochemical and microbial parameters of guava fruit during storage. Int. J. Nutr. Sci. Food Tech. 2017, 3, 32–37. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Gao, H.; Chen, H.; Fang, X.; Wu, W. Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits. Food Chem. 2017, 221, 1947–1953. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Vigneault, C.; Delele, M.A.; Al-Said, F.A.-J. Design of packaging vents for cooling fresh horticultural produce. Food Bioprocess Technol. 2012, 5, 2031–2045. [Google Scholar] [CrossRef]
- Zhang, K.-X.; Pu, Y.-Y.; Sun, D.-W. Effective postharvest preservation methods for mushroom (Agricus bisporus): A brief review. Biosyst. Food Eng. Res. Rev. 2017, 22, 1. [Google Scholar]
- Tian, D.; Fen, L.; Jiangang, L.; Mengli, K.; Jingfen, Y.; Xingqian, Y.; Donghong, L. Comparison of different cooling methods for extending shelf life of postharvest broccoli. Int. J. Agric. Biol. Eng. 2016, 9, 178–185. [Google Scholar]
- Patel, B.; Sutar, R.; Javed, M.; Joshi, D. Respiration behaviour and heat of respiration of mango (cv. Langdo) under different storage conditions. Int. J. Agric. Environ. Biotechnol. 2016, 9, 855–859. [Google Scholar] [CrossRef]
- Charuvi, D.; Nevo, R.; Aviv-Sharon, E.; Gal, A.; Kiss, V.; Shimoni, E.; Farrant, J.M.; Kirchhoff, H.; Reich, Z. Chloroplast breakdown during dehydration of a homoiochlorophyllous resurrection plant proceeds via senescence-like processes. Environ. Exp. Bot. 2019, 157, 100–111. [Google Scholar] [CrossRef]
- Garrido, Y.; Tudela, J.A.; Marín, A.; Mestre, T.; Martínez, V.; Gil, M.I. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. J. Sci. Food Agric. 2014, 94, 1592–1599. [Google Scholar] [CrossRef]
- Sun, B.; Yan, H.; Liu, N.; Wei, J.; Wang, Q. Effect of 1-MCP treatment on postharvest quality characters, antioxidants and glucosinolates of Chinese kale. Food Chem. 2012, 131, 519–526. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A.R. LC-ESI-QTOF/MS Characterisation of Phenolic Acids and Flavonoids in Polyphenol-Rich Fruits and Vegetables and Their Potential Antioxidant Activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aworh, O.C. Food safety issues in fresh produce supply chain with particular reference to sub-Saharan Africa. Food Control 2021, 123, 107737. [Google Scholar] [CrossRef]
Cooling Parameters | Vacuum Cooling | Package Icing |
---|---|---|
Initial temperature (°C) | 21.80 ± 0.08 | 21.60 ± 0.04 |
Final temperature (°C) | 4.06 ± 0.12 | 4.08 ± 0.06 |
Cooling time (min) | 41 | 190 |
Weight loss (%) | 1.698 | 1.084 |
Cooling rate (°C min−1) | 0.432 | 0.092 |
Energy consumption (kWh) | 0.058 | 32.329 |
Lag factor (J) | 0.844 | 0.753 |
Cooling coefficient (min−1) | 0.030 | 0.065 |
1/2 cooling time (Z) | 17.355 | 31.379 |
7/8 cooling time (S) | 35.875 | 137.365 |
Storage Period (d) | Treatment | Weight Loss (%) | Sensory Quality (Score) |
---|---|---|---|
0 | Control | N/A | 8.80 ± 0.20 a |
Vacuum cooling | N/A | 9.00 ± 0.00 a | |
Package icing | N/A | 9.00 ± 0.00 a | |
2 | Control | 0.75 ± 0.05 a | 8.60 ± 0.24 a |
Vacuum cooling | 0.42 ± 0.03 b | 8.80 ± 0.20 a | |
Package icing | 0.23 ± 0.01 c | 8.80 ± 0.20 a | |
4 | Control | 1.35 ± 0.08 a | 7.40 ± 0.24 b |
Vacuum cooling | 1.11 ± 0.09 ab | 7.80 ± 0.20 ab | |
Package icing | 0.86 ± 0.09 b | 8.00 ± 0.00 a | |
6 | Vacuum cooling | 2.06 ± 0.10 ab | 6.80 ± 0.20 a |
Package icing | 1.71 ± 0.17 b | 7.20 ± 0.37 a | |
8 | Vacuum cooling | 2.89 ± 0.16 ab | 5.40 ± 0.24 b |
Package icing | 2.60 ± 0.30 b | 6.20 ± 0.20 a | |
10 | Vacuum cooling | 4.02 ± 0.22 ab | 5.00 ± 0.00 a |
Package icing | 3.66 ± 0.35 b | 5.40 ± 0.24 a | |
12 | Package icing | 4.48 ± 0.40 | 5.00 ± 0.00 |
Storage Period (d) | Treatment | L* | Hue Angle (h°) | Chroma | ΔE* |
---|---|---|---|---|---|
0 | Control | 48.99 ± 0.70 a | 126.36 ± 2.63 a | 8.88 ± 2.39 a | 0 |
Vacuum cooling | 48.50 ± 0.13 a | 128.32 ± 2.63 a | 6.89 ± 0.75 a | 0 | |
Package icing | 48.15 ± 0.32 a | 129.53 ± 0.68 a | 7.47 ± 0.85 a | 0 | |
2 | Control | 49.98 ± 0.26 a | 127.22 ± 1.97 a | 9.26 ± 1.80 a | 1.32 |
Vacuum cooling | 49.22 ± 0.29 a | 129.60 ± 1.07 a | 7.40 ± 0.45 a | 1.59 | |
Package icing | 48.71 ± 0.39 a | 129.99 ± 1.02 a | 8.35 ± 0.65 a | 1.37 | |
4 | Control | 50.30 ± 0.27 a | 126.56 ± 0.88 a | 10.16 ± 1.10 a | 1.87 |
Vacuum cooling | 49.67 ± 0.47 a | 130.33 ± 1.84 a | 7.99 ± 0.64 a | 1.24 | |
Package icing | 49.19 ± 0.50 a | 129.17 ± 1.47 a | 9.04 ± 0.85 a | 1.18 | |
6 | Vacuum cooling | 49.79 ± 0.25 b | 127.82 ± 0.33 ab | 9.96 ± 0.66 b | 3.07 |
Package icing | 49.44 ± 0.25 b | 128.51 ± 0.95 a | 11.00 ± 0.61 ab | 2.86 | |
8 | Vacuum cooling | 50.83 ± 0.36 ab | 124.34 ± 1.08 a | 12.04 ± 0.62 b | 5.61 |
Package icing | 50.19 ± 0.41 b | 124.43 ± 0.61 a | 13.09 ± 0.62 b | 4.55 | |
10 | Vacuum cooling | 53.72 ± 0.67 ab | 114.37 ± 1.79 a | 18.66 ± 1.03 a | 12.04 |
Package icing | 52.59 ± 0.60 b | 114.77 ± 1.08 a | 18.91 ± 0.89 a | 11.82 | |
12 | Package icing | 54.94 ± 0.63 | 106.39 ± 1.33 | 20.42 ± 0.75 | 14.62 |
Storage Period (d) | Treatment | Total Chlorophyll Content (mg/gFW) | Ascorbic Acid Content (mg/100 g) | Antioxidant Activity (µgTrolox/gFW) | Total Phenolic Content (µgGAE/gFW) |
---|---|---|---|---|---|
0 | Control | 0.08 ± 0.00 b | 40.58 ± 0.55 b | 296.98 ± 4.08 a | 105.46 ± 3.34 a |
Vacuum cooling | 0.10 ± 0.00 a | 43.36 ± 0.87 ab | 301.49 ± 3.75 a | 109.92 ± 4.71 a | |
Package icing | 0.01 ± 0.00 a | 50.61 ± 4.96 a | 318.61 ± 10.36 a | 113.82 ± 3.52 a | |
2 | Control | 0.07 ± 0.00 c | 30.69 ± 0.90 c | 274.65 ± 37.47 b | 96.37 ± 4.34 a |
Vacuum cooling | 0.08 ± 0.00 b | 34.92 ± 0.45 b | 315.62 ± 19.32 ab | 104.56 ± 7.71 a | |
Package icing | 0.09 ± 0.00 a | 39.24 ± 1.03 a | 367. 11 ± 11.49 a | 107.91 ± 1.84 a | |
4 | Control | 0.07 ± 0.00 c | 29.77 ± 1.66 c | 257.31 ± 41.16 b | 82.92 ± 4.45 b |
Vacuum cooling | 0.08 ± 0.00 b | 34.81 ± 0.76 b | 346.64 ± 8.30 ab | 90.60 ± 3.59 ab | |
Package icing | 0.09 ± 0.00 a | 39.01 ± 0.86 a | 369.73 ± 15.23 a | 99.79 ± 3.68 a | |
6 | Vacuum cooling | 0.07 ± 0.00 b | 33.65 ± 0.33 b | 326.38 ± 11.41 a | 91.65 ± 5.21 ab |
Package icing | 0.08 ± 0.00 a | 36.70 ± 0.97 a | 366.12 ± 21.46 a | 99.46 ± 1.10 a | |
8 | Vacuum cooling | 0.07 ± 0.00 a | 29.04 ± 1.14 ab | 356.89 ± 10.97 a | 84.47 ± 2.80 a |
Package icing | 0.07 ± 0.00 a | 31.11 ± 1.29 a | 379.31 ± 14.68 a | 92.27 ± 11.71 a | |
10 | Vacuum cooling | 0.06 ± 0.00 b | 26.91 ± 0.94 a | 318.59 ± 7.97 a | 63.60 ± 4.83 b |
Package icing | 0.06 ± 0.00 a | 27.23 ± 0.22 a | 339.81 ± 17.98 a | 73.91 ± 2.48 a | |
12 | Package icing | 0.05 ± 0.00 | 26.01 ± 0.85 | 322.28 ± 30.47 | 43.35 ± 0.18 |
Storage Period (d) | Treatment | Total Aerobic Bacteria (CFU/g) | Yeast (CFU/g) | Mold (CFU/g) | Lactic Acid Bacteria (CFU/g) |
---|---|---|---|---|---|
0 | Control | 5.55 × 104 a | 7.73 × 103 a | 4.55 × 102 a | N.D. |
Vacuum cooling | 4.14 × 105 a | 5.00 × 103 b | N.D. | N.D. | |
Package icing | 4.13 × 105 a | 5.91 × 103 ab | N.D. | N.D. | |
2 | Control | 4.41 × 105 a | 1.55 × 104 a | 4.55 × 102 a | 1.36 × 103 a |
Vacuum cooling | 7.05 × 104 b | 1.18 × 104 a | N.D. | N.D. | |
Package icing | 2.32 × 104 b | 1.27 × 104 a | N.D. | N.D. | |
4 | Control | 8.92 × 105 a | 2.36 × 104 a | 1.36 × 103 a | 9.09 × 101 a |
Vacuum cooling | 1.49 × 106 a | 2.18 × 104 a | 4.55 × 102 a | N.D. | |
Package icing | 4.75 × 105 a | 2.27 × 104 a | 4.55 × 102 a | N.D. | |
6 | Vacuum cooling | 5.00 × 104 a | 4.55 × 103 a | N.D. | N.D. |
Package icing | 5.00 × 104 a | 1.27 × 104 a | N.D. | N.D. | |
8 | Vacuum cooling | 3.00 × 105 a | 5.45 × 103 a | 4.55 × 102 b | 1.82 × 101 a |
Package icing | 1.82 × 105 a | 3.91 × 104 a | 4.55 × 102 b | 4.55 × 10 a | |
10 | Vacuum cooling | 3.17 × 105 a | 3.18 × 104 a | 9.09 × 102 b | 3.64 × 101 b |
Package icing | 1.27 × 105 a | 2.27 × 104 a | 4.55 × 102 b | 2.73 × 101 b | |
12 | Package icing | N.D. | 1.95 × 104 | 3.64 × 103 | 3.64 × 101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirapan, P.; Boonyakiat, D.; Poonlarp, P. Improving Shelf Life, Maintaining Quality, and Delaying Microbial Growth of Broccoli in Supply Chain Using Commercial Vacuum Cooling and Package Icing. Horticulturae 2021, 7, 506. https://doi.org/10.3390/horticulturae7110506
Dirapan P, Boonyakiat D, Poonlarp P. Improving Shelf Life, Maintaining Quality, and Delaying Microbial Growth of Broccoli in Supply Chain Using Commercial Vacuum Cooling and Package Icing. Horticulturae. 2021; 7(11):506. https://doi.org/10.3390/horticulturae7110506
Chicago/Turabian StyleDirapan, Pimonphat, Danai Boonyakiat, and Pichaya Poonlarp. 2021. "Improving Shelf Life, Maintaining Quality, and Delaying Microbial Growth of Broccoli in Supply Chain Using Commercial Vacuum Cooling and Package Icing" Horticulturae 7, no. 11: 506. https://doi.org/10.3390/horticulturae7110506
APA StyleDirapan, P., Boonyakiat, D., & Poonlarp, P. (2021). Improving Shelf Life, Maintaining Quality, and Delaying Microbial Growth of Broccoli in Supply Chain Using Commercial Vacuum Cooling and Package Icing. Horticulturae, 7(11), 506. https://doi.org/10.3390/horticulturae7110506