Quality Responses of Table Grapes ‘Flame Seedless’ as Effected by Foliarly Applied Micronutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological Analysis
2.2. Biochemical Quality Analysis
2.3. Biochemical Leaf Analysis
2.4. Organoleptic Evaluation of Grapes
2.5. Statistical Analysis
3. Results
3.1. Fruit Morphological Parameters
3.2. Biochemical Fruit Quality Analysis
3.3. Biochemical Leaf Analysis
3.4. Organoleptic Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venkitasamy, C.; Zhao, L.; Zhang, R.; Pan, Z. Grapes. In Integrated Processing Technologies for Food and Agricultural By-Products; Elsevier: Amsterdam, The Netherlands, 2019; pp. 133–163. [Google Scholar]
- Imran, M.; Rauf, A.; Imran, A.; Nadeem, M.; Ahmad, Z.; Atif, M.; Waqar, A.B. Health benefits of grapes polyphenols. J. Environ. Agric. Sci. 2017, 10, 40–51. [Google Scholar]
- Nache Gowda, V.; Keshava, S.; Shyamalamma, S. Growth, yield and quality of Bangalore Blue grapes as influenced by foliar applied polyfeed and multi-K. In Proceedings of the International Symposium on Grape Production and Processing, Baramati (Pune), Maharashtra, India, 6–11 February 2006; p. 785. [Google Scholar]
- Khan, A.S.; Ahmad, N.; Malik, A.U.; Saleem, B.A.; Rajwana, I.A. Pheno-physiological revelation of grapes germplasm grown in Faisalabad, Pakistan. Int. J. Agric. Biol. 2011, 13, 391–395. [Google Scholar]
- Blaylock, A.D. Soil Salinity, Salt Tolerance, and Growth Potential of Horticultural and Landscape Plants; University of Wyoming, Cooperative Extension Service, Department of Plant, Soil, and Insect Sciences, College of Agriculture: Laramie, WY, USA, 1994. [Google Scholar]
- Sandhu, G.; Qureshi, R. Salt affected soils of Pakistan and their utilization. Reclam. Reveg. Res. 1986, 5, 105–113. [Google Scholar]
- Muhammad, S.; Müller, T.; Joergensen, R. Relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab. J. Arid Environ. 2008, 72, 448–457. [Google Scholar] [CrossRef]
- Khalid, R.; Mahmood, T.; Bibi, R.; Siddique, M.T.; Alvi, S.; Naz, S.Y. Distribution and indexation of plant available nutrients of rainfed calcareous soils of Pakistan. Soil Environ. 2012, 31, 146–151. [Google Scholar]
- Moyo, A. Assessment of the Effect of Soil Erosion on Nutrient Loss from Granite-Derived Sandy Soils under Different Tillage Systems in Zimbabwe. Ph.D. Thesis, University of Zimbabwe, Harare, Zimbabwe, 2003. [Google Scholar]
- Bajracharya, R.; Atreya, K.; Sharma, S. Minimization of soil and nutrient losses in maize-based cropping systems in the midhills of central Nepal. Kathmandu Univ. J. Sci. Eng. Technol. 2005, 1, 1–10. [Google Scholar]
- Shaheen, A. Characterization of eroded lands of Pothwar plateau, Punjab, Pakistan. Sarhad J. Agric. 2016, 32, 192–201. [Google Scholar] [CrossRef]
- Rashid, A.; Rafique, E. Boron deficiency diagnosis and management in field crops in calcareous soils of Pakistan: A mini review. Bor Dergisi 2017, 2, 142–152. [Google Scholar]
- Admad, N.; Rashid, M. Fertilizers and their Use in Pakistan; National Fertilizer Development Centre, Planning and Development Division: Islamabad, Pakistan, 2003.
- Kashem, M.; Singh, B. Metal availability in contaminated soils: I. Effects of floodingand organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosyst. 2001, 61, 247–255. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- Khan, F.; Ahmad, W.; Bhatti, A.; Khattak, R.; Agricultural Univ, N.W.F.P. Effect of soil erosion on physical properties of some soil series in NWFP, Pakistan. Pak. J. Soil Sci. 2003, 22, 36–42. [Google Scholar]
- Ashley, R. Grapevine Nutrition-an Australian Perspective; Foster’s Wine Estates Americas 1000: Napa Valley, CA, USA, 2011. [Google Scholar]
- Mahmood-ul-Hassan, M.; Akhtar, M.; Nabi, G. Boron and zinc transport through intact columns of calcareous soils. Pedosphere 2008, 18, 524–532. [Google Scholar] [CrossRef]
- Palmer, C.M.; Guerinot, M.L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat. Chem. Biol. 2009, 5, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Keller, M. Deficit irrigation and vine mineral nutrition. Am. J. Enol. Vitic. 2005, 56, 267–283. [Google Scholar]
- Prasad, R.; Shivay, Y.S.; Kumar, D. Agronomic biofortification of cereal grains with iron and zinc. Adv. Agron. 2014, 125, 55–91. [Google Scholar]
- Fernández, V.; Sotiropoulos, T.; Brown, P.H. Foliar Fertilization: Scientific Principles and Field Practices; International Fertilizer Industry Association: Paris, France, 2013. [Google Scholar]
- AOAC. Official Method of Analysis, 15th ed.; Association of Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Hans, Y.S.H. The Guide Book of Food Chemical Experiments; Pekin Agricultural University Press: Pekin, China, 1992. [Google Scholar]
- Hortwitz, W. Official and Tentative Methods of Analysis; Association of Official Agriculture Chemists: Washington, DC, USA, 1960. [Google Scholar]
- Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from commonly grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69. [Google Scholar]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis. A Manual for the West Asia and North Africa Region, 3rd ed.; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2013. [Google Scholar]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedure of Statistics; A Biological Approach, 3rd ed.; McGraw Hill Book Inc: New York, NY, USA, 1997. [Google Scholar]
- Rana, R.S.; Sharma, H.C. Effect of iron sprays on growth, yield & quality of grapes. Punjab Hort. J. 1979, 19, 31–34. [Google Scholar]
- Usha, K.; Singh, B. Effect of macro and micro-nutrient spray on fruit yield and quality of grape (Vitis vinifera L) cv. Perlette. In Proceedings of the International Symposium on Foliar Nutrition of Perennial Fruit Plants, Meran, Italy, 11–15 September 2001; International Society for Horticultural Science: Leuven, Belgium, 2002; pp. 197–202. [Google Scholar]
- Beede, R.H.; Brown, P.H.; Kallsen, C.; Weinbaum, S.A. Diagnosing and correcting nutrient deficiencies. In Pistachio Production Manual, 4th ed.; Ferguson, L., Ed.; Division of Agriculture and Natural Resources, University of California: Oakland, CA, USA, 2005; pp. 147–157. [Google Scholar]
- Malakouti, M.J. Zinc is a neglected element in the life cycle of plants: A review. Middle East. Russ. J. Plant Sci. Biotechnol. 2007, 1, 1–12. [Google Scholar]
- Akbar, S.; Vahid, M.; Ahmad, T.P.; Abdolreza, A. Effect of Zn, Cu and Fe foliar application on fruit set and some quality and quantity characteristics of pistachio trees. South-West. J. Hortic. Biol. Environ. 2013, 4, 19–34. [Google Scholar]
- Ebadi, A.; Atashkar, D.; Babalar, M. Effect of boron on pollination and fertilization in seedless grapevine cvs White Seedless and Askari. Iran. J. Agric. Sci. 2001, 32, 457–465. [Google Scholar]
- Chen, M.; Mishra, S.; Heckathorn, S.A.; Frantz, J.M.; Krause, C. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis. J. Plant Physiol. 2014, 171, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, G.; Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021, 72, 400–412. [Google Scholar] [CrossRef]
- Nawaz, H.; Zubair, M.; Derawadan, H. Interactive effects of nitrogen, phosphorus and zinc on growth and yield of tomato (Solanum lycopersicum). Afr. J. Agric. Res. 2012, 7, 3792–3799. [Google Scholar]
- Singh, M.; Jamwal, M.; Sharma, N.; Kumar, R.; Wali, V. Response of iron and zinc on vegetative and reproductive growth of strawberry (Fragaria × Ananassa Duch.) cv. Chandler. Bangladesh J. Bot. 2015, 44, 337–340. [Google Scholar] [CrossRef]
- Hoehn, E.; Gasser, F.; Guggenbühl, B.; Künsch, U. Efficacy of instrumental measurements for determination of minimum requirements of firmness, soluble solids, and acidity of several apple varieties in comparison to consumer expectations. Postharvest Biol. Tec. 2003, 27, 27–37. [Google Scholar] [CrossRef]
- Güneş, A.; Köse, C.; Turan, M. Yield and mineral composition of grapevine (Vitis vinifera L. cv. Karaerik) as affected by boron management. Turk. J. Agric. For. 2015, 39, 742–752. [Google Scholar] [CrossRef]
- Swathi, A.; Jegadeeswari, D.; Chitdeshwari, T.; Kavitha, C. Effect of foliar nutrition of calcium and boron on the yield and quality attributes of grape. J. Pharmacogn. Phytochem. 2019, 8, 3625–3629. [Google Scholar]
- Bybordi, A.; Shabanov, J.A. Effects of the foliar application of magnesium and zinc on the yield and quality of three grape cultivars grown in the calcareous soils of iran. Not. Sci. Biol. 2010, 2, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Nikkhah, R.; Nafar, H.; Rastgoo, S.; Dorostkar, M. Effect of foliar application of boron and zinc on qualitative and quantitative fruit characteristics of grapevine (Vitis vinifera L.). Int. J. Agric. Crop. Sci. 2013, 6, 485–492. [Google Scholar]
- Bibi, F.; Ahmad, I.; Bakhsh, A.; Kiran, S.; Danish, S.; Ullah, H.; Rehman, A.U. Effect of foliar application of boron with calcium and potassium on quality and yield of mango cv. Summer Bahisht (SB) Chaunsa. Open Agric. 2019, 4, 98–106. [Google Scholar] [CrossRef]
- Farid, M.Z.; Qureshi, K.M.; Shah, S.H.; Qureshi, A.A.; Umair, M.; Shafiq, H. Foliar application of micronutrients improves growth, productivity and fruit quality of strawberry (Fragaria ananassa Duch). J. Anim. Plant Sci. 2020, 30, 905–912. [Google Scholar]
- Ullah, S.; Khan, A.S.; Malik, A.U.; Afzal, I.; Shahid, M.; Razzaq, K. Foliar application of boron influences the leaf mineral status, vegetative and reproductive growth, yield and fruit quality of ‘Kinnow’mandarin (Citrus reticulata Blanco.). J. Plant Nutr. 2012, 35, 2067–2079. [Google Scholar] [CrossRef]
- Al-Obeed, R.S.; Ahmed, M.A.A.; Kassem, H.A.; Al-Saif, A.M. Improvement of “Kinnow” mandarin fruit productivity and quality by urea, boron and zinc foliar spray. J. Plant Nutr. 2018, 41, 609–618. [Google Scholar] [CrossRef]
- Korkmaz, N.; Aşkın, M.A. Effects of GA3, calcium and boron applications to seasonal changes of leaf, peel and aril mineral nutritions on Hicaznar pomegranate (Punica granatum L.). Int. J. Agric. For. Life Sci. 2017, 1, 27–51. [Google Scholar]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Matteazzi, A.; Andrbeotti, C. Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation. Agronomy 2019, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Perveen, R.; Wang, X.; Jamil, Y.; Ali, Q.; Ali, S.; Zakaria, M.Q.; Afzaal, M.; Kasana, R.A.; Saleem, M.H.; Fiaz, S. Quantitative Determination of the Effects of He–Ne Laser Irradiation on Seed Thermodynamics, Germination Attributes and Metabolites of Safflower (Carthamus tinctorius L.) in Relation with the Activities of Germination Enzymes. Agronomy 2021, 11, 1411. [Google Scholar] [CrossRef]
- Spinelli, F.; Fiori, G.; Noferini, M.; Sprocatti, M.; Costa, G. Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees. J. Hortic. Sci. Biotechnol. 2009, 84, 131–137. [Google Scholar] [CrossRef]
- Khan, S.U.; Wang, X.; Mehmood, T.; Latıf, S.; Khan, S.U.; Fiaz, S.; Qayyum, A. Comparison of Organic and Inorganic Mulching for Weed Suppression in Wheat under Rain-Fed Conditions of Haripur, Pakistan. Agronomy 2021, 11, 1131. [Google Scholar] [CrossRef]
- Ali, I.; Wang, X.; Tareen, M.J.; Wattoo, F.M.; Qayyum, A.; Hassan, M.U.; Shafique, M.; Liaquat, M.; Asghar, S.; Hussain, T.; et al. Foliar Application of Salicylic Acid at Different Phenological Stages of Peach Fruit CV. ‘Flordaking’ Improves Harvest Quality and Reduces Chilling Injury during Low Temperature Storage. Plants 2021, 10, 1981. [Google Scholar] [CrossRef]
- Manaf, A.; Wang, X.; Tariq, F.; Jhanzab, H.M.; Bibi, Y.; Sher, A.; Razzaq, A.; Fiaz, S.; Tanveer, S.K.; Qayyum, A. Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions. Agronomy 2021, 11, 1494. [Google Scholar] [CrossRef]
- Wang, X.; Saleem, M.H.; Parveen, A.; Mumtaz, S.; Hassan, A.; Adnan, M.; Fiaz, S.; Ali, S.; Iqbal Khan, Z.; Ali, S.; et al. Proximate Composition and Nutritive Value of Some Leafy Vegetables from Faisalabad, Pakistan. Sustainability 2021, 13, 8444. [Google Scholar]
- Naqve, M.; Wang, X.; Shahbaz, M.; Fiaz, S.; Naqvi, W.; Naseer, M.; Mahmood, A.; Ali, H. Foliar Spray of Alpha-Tocopherol Modulates Antioxidant Potential of Okra Fruit under Salt Stress. Plants 2021, 10, 1382. [Google Scholar] [CrossRef] [PubMed]
- Pestana, M.; Correia, P.J.; de Varennes, A.; Abadía, J.; Faria, E.A. Effectiveness of different foliar iron applications to control iron chlorosis in orange trees grown on a calcareous soil. J. Plant Nutr. 2001, 24, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Bastani, S.; Hajiboland, R.; Khatamian, M.; Saket-Oskoui, M. Nano iron (Fe) complex is an effective source of Fe for tobacco plants grown under low Fe supply. J. Soil Sci. Plant Nutr. 2018, 18, 524–541. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.A.E.; Fiaz, S.; Ali, M.; Abdallah, A.A.; Ahmed, S.I. Performance of some Rice (Oryza sativa L.) cultivars under water shortage and high temperature stress. Sanis Malysiana 2021, 50, 617–628. [Google Scholar]
- Hussain, T.; Murtaza, G.; Wang, X.; Zia, M.H.; Aziz, H.; Ali, S.; Murtaza, B.; Fiaz, S. Bioassimilation of lead and zinc in rabbits fed on spinach grown on contaminated soil. Ecotoxicol. Environ. Saf. 2021, 224, 112638. [Google Scholar] [CrossRef]
- Kabir, A.H.; Paltridge, N.; Stangoulis, J. Chlorosis correction and agronomic biofortification in field peas through foliar application of iron fertilizers under Fe deficiency. J. Plant Interact. 2016, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rasht, I. Effect of application of iron fertilizers in two methods′ foliar and soil application’on growth characteristics of Spathyphyllum illusion. Eur. J. Exp. Biol. 2013, 3, 232–240. [Google Scholar]
- Tariq, F.; Xiukang, W.; Saleem, M.H.; Khan, Z.I.; Ahmad, K.; Malik, I.S.; Munir, M.; Mahpara, S.; Mehmood, N.; Ahmad, T.; et al. Risk Assessment of Heavy Metals in Basmati Rice (Oryza Sativa): Implications for Public Health. Sustainability 2021, 13, 8513. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Jia, L.; Chen, H.; Wei, X. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf. 2013, 89, 150–157. [Google Scholar] [CrossRef]
- Mathpal, B.; Srivastava, P.C.; Shankhdhar, D.; Shankhdhar, S.C. Improving key enzyme activities and quality of rice under various methods of zinc application. Physiol. Mol. Biol. Plants 2015, 21, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Hua, Y.; Huang, Y.; Ding, G.; Shi, L.; Xu, F. Physiological and transcriptional analyses reveal differential phytohormone responses to boron deficiency in Brassica napus genotypes. Front. Plant Sci. 2016, 7, 221. [Google Scholar] [CrossRef] [Green Version]
- Wasaya, A.; Shahzad, S.M.; Hussain, M.; Ansar, M.; Aziz, A.; Hassan, W.; Ahmad, I. Foliar application of zinc and boron improved the productivity and net returns of maize grown under rainfed conditions of Pothwar plateau. J. Soil Sci. Plant Nutr. 2017, 7, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, E.; El-Motaium, R.; Yehia, T.; Hashim, M. Effect of foliar boron application on boron, chlorophyll, phenol, sugars and hormones concentration of olive (Olea europaea L.) buds, leaves, and fruits. J. Plant Nutr. 2018, 41, 749–765. [Google Scholar] [CrossRef]
- Lakshmipathi, J.D.A.; Kalaivanan, D.; Muralidhara, B.M.; Preethi, P. Effect of Zinc and Boron application on leaf area, photosynthetic pigments, stomatal number and yield of Cashew. Int. J. Curr. Microbiol. Appllied Sci. 2018, 7, 1786–1795. [Google Scholar]
- Ekinci, M.; Esringü, A.; Dursun, A.; Yildirim, E.; Turan, M.; Karaman, M.R.; Arjumend, T. Growth, yield, and calcium and boron uptake of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) as affected by calcium and boron humate application in greenhouse conditions. Turk. J. Agric. For. 2015, 39, 613–632. [Google Scholar] [CrossRef]
- García-López, J.I.; Niño-Medina, G.; Olivares-Sáenz, E.; Lira-Saldivar, R.H.; Barriga-Castro, E.D.; Vázquez-Alvarado, R.; Zavala-García, F. Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 2019, 8, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, P.; Dhua, R.S. Improvement on fruit quality of Himsagar mango through application of zinc, iron and manganese. Hort. J. 2002, 15, 1–9. [Google Scholar]
- Bhoyar, M.G.; Ramdevputra, M.V. Effect of foliar spray of zinc, iron and boron on the growth, yield and sensory characters of guava (Psidium guajava L) Cv. Sardar L-49. J. Appl. Nat. Sci. 2016, 8, 701–704. [Google Scholar] [CrossRef]
- Maity, A.; Gaikwad, N.; Babu, K.D.; Sarkar, A.; Patil, P. Impact of zinc and boron foliar application on fruit yield, nutritional quality and oil contents of three pomegranate (Punica granatum L.) cultivars. J. Plant Nutr. 2020, 44, 1841–1852. [Google Scholar] [CrossRef]
Soil Characteristics | 0–15 cm | 30–45 cm |
---|---|---|
Texture | Silt loam | |
pH | 7.94 ± 0.20 | 7.98 ± 0.09 |
ECs dS m–1 | 0.54 ± 0.26 | 0.42 ± 0.08 |
Organic matter (%) | 0.87 ± 0.10 | 0.50 ± 0.09 |
CaCO3 (%) | 6.30 ± 4.89 | 7.50 ± 3.82 |
Nitrate-N (mg kg–1) | 2.75 ± 0.57 | 2.40 ± 2.15 |
Phosphorus (mg kg–1) | 0.20 ± 0.26 | 0.32 ± 0.13 |
Potassium (mg kg–1) | 80 ± 18 | 77 ± 13 |
Copper (mg kg–1) | 2.71 ± 0.42 | 3.36 ± 0.93 |
Iron (mg kg–1) | 4.81 ± 0.32 | 3.64 ± 1.89 |
Manganese (mg kg–1) | 5.46 ± 1.24 | 4.32 ± 2.79 |
Zinc (mg kg–1) | 0.28 ± 0.05 | 0.19 ± 0.75 |
Boron (mg kg–1) | 0.21 ± 0.17 | 0.04 ± 0.02 |
Treatments | Bunch Number Per Vine | Bunch Length (cm) | Berry Number Per Bunch | Berry Diameter (mm) | Bunch Weight (g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
Control | 42 ± 2.02 e | 35 ± 2.6 c | 21.3 ± 0.43 c | 22.7 ± 0.41 d | 144 ± 5.23 b | 165 ± 6.80 d | 12.92 ± 0.14 d | 13.83 ± 0.29 c | 628 ± 14.31 d | 632 ± 0.11 c |
Fe 50 ppm | 44 ± 2.02 de | 40 ± 3.21 abc | 21.7 ± 0.57 abc | 23.2 ± 0.43 bcd | 152 ± 8.66 ab | 171 ± 7.85 cd | 13.11 ± 0.17 cd | 14.13 ± 0.37 bc | 639 ± 13.13 cd | 641 ± 0.13 c |
Fe 100 ppm | 45 ± 2.18 cde | 42 ± 2.88 abc | 21.9 ± 0.52 abc | 23.2 ± 0.46 bcd | 155 ± 8.66 ab | 182 ± 5.51 bcd | 13.27 ± 0.19 bcd | 14.41 ± 0.4 abc | 654 ± 11.09 bcd | 651 ± 0.17 abc |
Fe 150 ppm | 49 ± 1.76 b–e | 44 ± 2.3 ab | 22.5 ± 0.55 ab | 23.5 ± 0.43 bcd | 160 ± 8.66 ab | 188 ± 6.06 a–d | 13.63 ± 0.16 abc | 14.53 ± 0.4 abc | 666 ± 12.14 abc | 666 ± 0.19 abc |
Fe 200 ppm | 55 ± 2.3 ab | 47 ± 2.64 a | 23.6 ± 0.46 a | 24.9 ± 0.69 a | 170 ± 5.04 a | 207 ± 6.48 a | 13.90 ± 0.16 ab | 14.93 ± 0.38 a | 702 ± 13.61 a | 686 ± 0.16 a |
Zn 50 ppm | 46 ± 3.01 cde | 37 ± 3.17 bc | 21.3 ± 0.49 bc | 23.1 ± 0.44 bcd | 155 ± 5.29 ab | 169 ± 8.95 cd | 13.21 ± 0.24 cd | 14.11 ± 0.28 bc | 640 ± 13.22 cd | 646 ± 0.11 bc |
Zn 100 ppm | 49 ± 2.33 b–e | 39 ± 2.9 abc | 21.7 ± 0.46 abc | 23.5 ± 0.42 bcd | 159 ± 5.19 ab | 176 ± 10.52 cd | 13.44 ± 0.27 bcd | 14.26 ± 0.23 abc | 655 ± 13.28 bcd | 658 ± 0.13 abc |
Zn 150 ppm | 52 ± 2.96 abc | 43 ± 2.3 abc | 22.3 ± 0.49 abc | 23.6 ± 0.49 a–d | 162 ± 5.85 ab | 192 ± 9.29 abc | 13.43 ± 0.26 bcd | 14.43 ± 0.29 abc | 668 ± 10.81 abc | 663 ± 0.12 abc |
Zn 200 ppm | 54 ± 3.21 ab | 45 ± 2.64 ab | 22.5 ± 0.61 ab | 24.3 ± 0.41 abc | 169 ± 6.48 a | 202 ± 10.21 ab | 13.56 ± 0.24 abc | 14.81 ± 0.28 ab | 683 ± 13.29 ab | 684 ± 0.18 ab |
B 50 ppm | 50 ± 2.18 bcd | 37 ± 2.02 bc | 21.6 ± 0.49 abc | 23.1 ± 0.37 cd | 153 ± 7.21 ab | 169 ± 10.74 cd | 13.33 ± 0.26 bcd | 14.11 ± 0.32 bc | 641 ± 11.86 cd | 639 ± 0.12 c |
B 100 ppm | 52 ± 2.31 bc | 41 ± 2.08 abc | 21.8 ± 0.43 abc | 23.2 ± 0.41 bcd | 158 ± 7.23 ab | 173 ± 9.83 cd | 13.47 ± 0.25 bcd | 14.32 ± 0.34 abc | 653 ± 12.41 bcd | 651 ± 0.15 abc |
B 150 ppm | 54 ± 2.33 ab | 43 ± 2.02 ab | 22.3 ± 0.43 abc | 23.6 ± 0.51 a–d | 164 ± 8.08 ab | 181 ± 8.76 bcd | 13.71 ± 0.26 abc | 14.53 ± 0.32 abc | 665 ± 12.03 bc | 663 ± 0.16 abc |
B 200 ppm | 59 ± 2.61 a | 45 ± 20.8 ab | 23.1 ± 0.49 a | 24.4 ± 0.41 ab | 172 ± 6.69 a | 204 ± 6.35 ab | 14.12 ± 0.28 a | 14.86 ± 0.31 ab | 683 ± 11.26 ab | 683 ± 0.23 ab |
LSD | 7 | 7 | 1.5 | 1.4 | 20 | 25 | 0.64 | 0.78 | 36 | 39 |
Treatments | Bunch Compactness | Berry Weight (g) | Yield per Vine (kg) | Soluble Solids (brix°) | Titratable Acidity (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
Control | 6.39 ± 0.14 d | 7.11 ± 0.36 f | 2.03 ± 0.12 d | 2.16 ± 0.11 c | 27.2 ± 1.04 d | 20.9 ± 1.44 e | 13.1 ± 0.29 g | 13.2 ± 0.28 e | 1.41 ± 0.09 a | 1.35 ± 0.09 a |
Fe 50 ppm | 6.46 ± 0.13 cd | 7.39 ± 0.21 def | 2.11 ± 0.11 cd | 2.26 ± 0.13 bc | 30.1 ± 1.14 a–d | 23.2 ± 1.61 cde | 13.1 ± 0.26 fg | 13.4 ± 0.27 e | 1.24 ± 0.08 ab | 1.26 ± 0.08 ab |
Fe 100 ppm | 6.68 ± 0.24 bcd | 7.81 ± 0.08 bcd | 2.31 ± 0.15 a–d | 2.48 ± 0.17 abc | 30.6 ± 1.47 a–d | 24.5 ± 1.51 b–e | 13.8 ± 0.25 c–f | 13.5 ± 0.22 de | 1.08 ± 0.09bc | 1.15 ± 0.09 abc |
Fe 150 ppm | 6.78 ± 0.36 bcd | 8.02 ± 0.11 abc | 2.39 ± 0.13 a–d | 2.56 ± 0.19 abc | 31.4 ± 1.79 a–d | 25.3 ± 1.27 bcd | 14.4 ± 0.28 bc | 14.2 ± 0.28 bcd | 0.96 ± 0.09 cd | 0.97 ± 0.09 cde |
Fe 200 ppm | 7.43 ± 0.12 a | 8.32 ± 0.03 ab | 2.61 ± 0.12 a | 2.85 ± 0.16 a | 33.8 ± 1.58 a | 28.1 ± 1.1 ab | 15.1 ± 0.2 a | 15.1 ± 0.24 a | 0.76 ± 0.08 d | 0.72 ± 0.09 de |
Zn 50 ppm | 6.62 ± 0.18 bcd | 6.96 ± 0.21 f | 2.13 ± 0.11 cd | 2.27 ± 0.11 bc | 30.1 ± 1.71 a–d | 22.5 ± 1.27 de | 13.5 ± 0.28 d-g | 13.3 ± 0.25 e | 1.19 ± 0.07 abc | 1.21 ± 0.09 abc |
Zn 100 ppm | 6.74 ± 0.17 bcd | 7.22 ± 0.18 ef | 2.21 ± 0.1 bcd | 2.41 ± 0.13 abc | 29.5 ± 1.32 a–d | 24.2 ± 1.67 b–e | 13.8 ± 0.25 cde | 13.4 ± 0.25 e | 1.09 ± 0.07 bc | 1.09 ± 0.09 abc |
Zn 150 ppm | 6.85 ± 0.19 a–d | 7.61 ± 0.15 cde | 2.34 ± 0.15 a–d | 2.54 ± 0.12 abc | 30.7 ± 1.68 a–d | 24.2 ± 1.54 b–e | 14.1 ± 0.23 cd | 14.2 ± 0.26 bc | 0.95 ± 0.08 cd | 1.01 ± 0.09 bc |
Zn 200 ppm | 7.21 ± 0.2 ab | 8.05 ± 0.16 abc | 2.54 ± 0.17 ab | 2.75 ± 0.18 a | 32.9 ± 1.39 ab | 28.5 ± 1.52 ab | 15.1 ± 0.21 ab | 14.6 ± 0.28 ab | 0.71 ± 0.07 d | 0.69 ± 0.09 e |
B 50 ppm | 6.71 ± 0.2 bcd | 7.03 ± 0.19 f | 2.12 ± 0.13 cd | 2.27 ± 0.12 bc | 27.5 ± 1.1 d | 23.1 ± 1.56 cde | 13.2 ± 0.24 efg | 13.3 ± 0.25 e | 1.21 ± 0.09 abc | 1.25 ± 0.08 abc |
B 100 ppm | 6.86 ± 0.2 a–d | 7.51 ± 0.21 c–f | 2.35 ± 0.11 a–d | 2.42 ± 0.15 abc | 28.4 ± 1.3 cd | 25.8 ± 1.45 bcd | 13.7 ± 0.29 defg | 13.6 ± 0.21 cde | 1.09 ± 0.08 bc | 1.14 ± 0.09 abc |
B 150 ppm | 7.06 ± 0.19 abc | 7.83 ± 0.21bcd | 2.40 ± 0.14 abc | 2.53 ± 0.16 abc | 29.1 ± 1.55 bcd | 27.3 ± 1.57 abc | 14.1 ± 0.21 cd | 14.2 ± 0.23 bcd | 0.96 ± 0.09 cd | 0.98 ± 0.08cd |
B 200 ppm | 7.41 ± 0.18 a | 8.42 ± 0.23 a | 2.64 ± 0.13 a | 2.71 ± 0.23 ab | 32.3 ± 1.38 abc | 30.9 ± 1.64 a | 15.1 ± 0.23 ab | 14.6 ± 0.29 ab | 0.76 ± 0.09 d | 0.70 ± 0.09 de |
LSD | 0.61 | 0.56 | 0.37 | 0.47 | 4.45 | 4.39 | 0.703 | 0.711 | 0.259 | 0.282 |
Treatments | pH | Ascorbic Acid (mg/100g) | Non-Reducing Sugar (%) | Reducing Sugar (%) | Total Sugar (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
Control | 3.29 ± 0.17 e | 3.43 ± 0.19 d | 3.89 ± 0.31 f | 3.58 ± 0.14 g | 1.14 ± 0.08 g | 1.19 ± 0.17 g | 8.2 ± 0.17 g | 8.1 ± 0.21 h | 9.4 ± 0.12 h | 9.3 ± 0.37 g |
Fe 50 ppm | 3.44 ± 0.18 de | 3.56 ± 0.16 cd | 4.42 ± 0.26 ef | 4.05 ± 0.19 fg | 1.38 ± 0.07 fg | 1.68 ± 0.12 ef | 9.2 ± 0.22 f | 8.5 ± 0.19 gh | 10.6 ± 0.14 efg | 10.3 ± 0.32 f |
Fe 100 ppm | 3.64 ± 0.19 cde | 3.86 ± 0.21 cd | 5.01 ± 0.16 cd | 4.93 ± 0.12 de | 1.55 ± 0.04ef | 1.94 ± 0.03 cde | 9.8 ± 0.13 de | 9.1 ± 0.26 def | 11.4 ± 0.08 cd | 11.9 ± 0.29 bcd |
Fe 150 ppm | 3.99 ± 0.14 bcd | 4.02 ± 0.19 bcd | 5.59 ± 0.14 ab | 5.63 ± 0.21 abc | 1.82 ± 0.1 cd | 2.08 ± 0.08 abc | 10.4 ± 0.18 abcd | 9.5 ± 0.21 cde | 12.3 ± 0.29 b | 12.2 ± 0.27 abc |
Fe 200 ppm | 4.48 ± 0.19 ab | 4.52 ± 0.21 ab | 6.05 ± 0.15 a | 6.11 ± 0.15 a | 2.23 ± 0.06 ab | 2.39 ± 0.11 a | 10.8 ± 0.17 a | 10.1 ± 0.18 ab | 13.2 ± 0.22 a | 12.7 ± 0.21 ab |
Zn 50 ppm | 3.46 ± 0.18 de | 3.63 ± 0.19 cd | 4.14 ± 0.12 ef | 4.12 ± 0.12 f | 1.34 ± 0.11 fg | 1.63 ± 0.17 f | 8.8 ± 0.19 fg | 8.8 ± 0.19 fg | 10.2 ± 0.29 fg | 11.1 ± 0.33 de |
Zn 100 ppm | 3.68 ± 0.18 cde | 3.92 ± 0.19 cd | 4.62 ± 0.15de | 4.92 ± 0.16 de | 1.85 ± 0.12 cd | 1.99 ± 0.07 cd | 9.2 ± 0.23 ef | 9.2 ± 0.23 def | 11.2 ± 0.34 de | 11.7 ± 0.31 cd |
Zn 150 ppm | 3.92 ± 0.17 cd | 3.99 ± 0.18 bcd | 5.22 ± 0.18 bc | 5.42 ± 0.21 bcd | 2.05 ± 0.1 bc | 2.02 ± 0.07 bcd | 9.9 ± 0.24 cd | 10.1 ± 0.21 abc | 12.1 ± 0.27 bc | 12.6 ± 0.28 ab |
Zn 200 ppm | 4.51 ± 0.2 ab | 4.63 ± 0.21 a | 5.95 ± 0.18 a | 5.77 ± 0.21 ab | 2.34 ± 0.11 a | 2.31 ± 0.16 ab | 10.6 ± 0.25 ab | 10.4 ± 0.17 a | 13.1 ± 0.37 a | 10.5 ± 0.35 ef |
B 50 ppm | 3.45 ± 0.18 de | 3.57 ± 0.18 cd | 4.13 ± 0.12 ef | 4.08 ± 0.12 fg | 1.42 ± 0.06 f | 1.74 ± 0.06 def | 8.5 ± 0.24 g | 9.1 ± 0.19 efg | 10.1 ± 0.29 gh | 11.3 ± 0.25 de |
B 100 ppm | 3.83 ± 0.19 cde | 3.88 ± 0.21 cd | 4.51 ± 0.19 de | 4.52 ± 0.21 ef | 1.56 ± 0.05ef | 2.13 ± 0.05 abc | 9.2 ± 0.24 f | 9.6 ± 0.14 bcd | 10.8 ± 0.22 def | 12.1 ± 0.14 abc |
B 150 ppm | 4.07 ± 0.18 abc | 4.11 ± 0.21 abc | 5.01 ± 0.19cd | 5.13 ± 0.17 cd | 1.78 ± 0.04 de | 2.19 ± 0.06 abc | 10.2 ± 0.23 bcd | 9.9 ± 0.12 abc | 12.1 ± 0.26 bc | 12.8 ± 0.19 a |
B 200 ppm | 4.59 ± 0.19 a | 4.67 ± 0.19 a | 5.87 ± 0.19a | 5.95 ± 0.11 a | 2.12 ± 0.05 ab | 2.34 ± 0.05 a | 10.5 ± 0.22 abc | 10.2 ± 0.11 ab | 12.7 ± 0.18 ab | 10.8 ± 0.15 ef |
LSD | 0.551 | 0.601 | 0.55 | 0.51 | 0.25 | 0.31 | 0.59 | 0.57 | 0.701 | 0.83 |
Treatments | Iron (ppm) | Zinc (ppm) | Boron (ppm) | Chlorophyll a (mg/g) | Chlorophyll b (mg/g) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
Control | 38.6 ± 2.33 c | 39.6 ± 1.45 c | 15.3 ± 1.45 d | 11.1 ± 1.15 d | 21.1 ± 1.15 d | 22.3 ± 0.88 c | 2.47 ± 0.23 e | 2.45 ± 0.14 f | 1.32 ± 0.18 d | 1.03 ± 0.06 e |
Fe 50 ppm | 41.1 ± 2.3 bc | 41.1 ± 1.15 c | 16.1 ± 1.15 cd | 11.6 ± 2.18 cd | 22.2 ± 0.57 d | 23.3 ± 1.45 c | 2.64 ± 0.21 de | 2.67 ± 0.14 def | 1.53 ± 0.19 bcd | 1.25 ± 0.11 de |
Fe 100 ppm | 42.6 ± 2.33 bc | 43.3 ± 1.45 bc | 16.6 ± 1.76 cd | 13.1 ± 1.73 bcd | 22.6 ± 0.88 d | 24.6 ± 1.45 bc | 2.91 ± 0.18 b–e | 2.86 ± 0.14a-f | 1.72 ± 0.18 a–d | 2.08 ± 0.26 a |
Fe 150 ppm | 44.3 ± 1.76 ab | 46.3 ± 1.76 ab | 18.6 ± 0.88 bcd | 13.6 ± 1.76 bcd | 24.1 ± 1.15 cd | 25.3 ± 2.18 bc | 3.37 ± 0.19 ab | 2.93 ± 0.12 a-f | 1.84 ± 0.18 abc | 1.85 ± 0.11 abc |
Fe 200 ppm | 47.6 ± 2.02 a | 49.1 ± 1.52 a | 19.3 ± 1.45 bcd | 15.1 ± 1.73 bcd | 24.6 ± 0.88 cd | 26.1 ± 1.73 bc | 3.61 ± 0.2 a | 3.32 ± 0.21 a | 2.16 ± 0.1 a | 1.99 ± 0.18 ab |
Zn 50 ppm | 39.6 ± 1.45 c | 40.1 ± 2.08 c | 17.1 ± 2.08 cd | 13.1 ± 1.52 bcd | 22.1 ± 1.15 d | 22.6 ± 1.45 c | 2.63 ± 0.15de | 2.53 ± 0.15 ef | 1.43 ± 0.14 cd | 1.23 ± 0.13 de |
Zn 100 ppm | 40.3 ± 1.45 bc | 40.6 ± 1.45 c | 20.3 ± 1.76 bc | 16.2 ± 1.52 bc | 22.6 ± 0.88 d | 24.1 ± 1.73 c | 2.85 ± 0.18 b–e | 2.96 ± 0.14 a-e | 1.84 ± 0.12 abc | 1.43 ± 0.14 cde |
Zn 150 ppm | 40.6 ± 1.2 bc | 42.3 ± 2.6 bc | 22.2 ± 1.73 ab | 17.3 ± 1.45 ab | 23.3 ± 1.85 cd | 24.3 ± 1.45 c | 3.17 ± 0.17 a–d | 3.09 ± 0.16 a–d | 1.98 ± 0.18 ab | 1.65 ± 0.12 a–d |
Zn 200 ppm | 41.3 ± 1.2 bc | 43.6 ± 2.33 bc | 26.6 ± 2.6 a | 21.6 ± 1.45 a | 24.1 ± 0.57 cd | 25.1 ± 2.08 bc | 3.23 ± 0.2 abc | 3.27 ± 0.17 ab | 2.21 ± 0.24 a | 1.81 ± 0.11 abc |
B 50 ppm | 39.3 ± 2.02 c | 40.3 ± 1.45 c | 15.6 ± 1.45cd | 11.3 ± 1.45 cd | 24.01 ± 2.08 cd | 26.3 ± 1.76 bc | 2.74 ± 0.16 cde | 2.74 ± 0.14 c–f | 1.52 ± 0.12 bcd | 1.26 ± 0.13 de |
B 100 ppm | 39.6 ± 1.45 c | 41.1 ± 1.73 c | 16.1 ± 1.52 cd | 12.3 ± 1.45 cd | 27.3 ± 2.02 bc | 27.1 ± 1.73 bc | 3.03 ± 0.17 bcd | 2.79 ± 0.15 b-f | 1.83 ± 0.16 abc | 1.51 ± 0.15 cd |
B 150 ppm | 40.3 ± 2.02 bc | 42.6 ± 0.88 bc | 16.6 ± 1.45 cd | 13.6 ± 1.85 bcd | 29.3 ± 2.02 b | 30.1 ± 2.31 ab | 3.12 ± 0.13 a–d | 3.09 ± 0.14 a–d | 1.94 ± 0.11 ab | 1.58 ± 0.12 bcd |
B 200 ppm | 41.1 ± 1.73 bc | 43.6 ± 1.45 bc | 18.6 ± 0.88 bcd | 14.1 ± 1.52 bcd | 34.3 ± 1.76 a | 33.3 ± 3.17 a | 3.31 ± 0.13 ab | 3.21 ± 0.19 abc | 2.07 ± 0.14 a | 1.78 ± 0.17 abc |
LSD | 4.57 | 5.07 | 4.82 | 4.72 | 4.18 | 5.61 | 0.54 | 0.48 | 0.51 | 0.45 |
Treatments | Flavor | Texture | Taste | Acceptability | ||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2018 | 2019 | 2019 | 2018 | 2019 | |
Control | 5.3 ± 0.33 e | 6.1 ± 0.57 d | 5.6 ± 0.57 e | 6.1 ± 0.66 c | 5.6 ± 0.33 f | 5.6 ± 0.33 g | 5.67 ± 0.33 d | 5.33 ± 0.67 f |
Fe 50 ppm | 6.6 ± 0.66 cde | 6.1 ± 0.57 d | 6.3 ± 0.57 cde | 7.1 ± 0.33 abc | 6.1 ± 0.33 ef | 6.3 ± 0.57 efg | 6.67 ± 0.88 bcd | 5.67 ± 0.33 ef |
Fe 100 ppm | 7.1 ± 0.57 bcd | 6.6 ± 0.66 cd | 7.1 ± 0.33 b–e | 7.3 ± 0.57 abc | 7.1 ± 0.57 cde | 7.1 ± 0.57 c–f | 7 ± 0.57 a–d | 6.67 ± 0.88 c–f |
Fe 150 ppm | 7.6 ± 0.66 a–d | 7.6 ± 0.66 abc | 7.6 ± 0.57 abc | 8.1 ± 0.33 ab | 7.6 ± 0.33 a–d | 7.6 ± 0.33 a–d | 7.33 ± 0.33 abc | 7.33 ± 0.67 a–d |
Fe 200 ppm | 8.3 ± 0.33 ab | 8.3 ± 0.33 ab | 8.6 ± 0.33 a | 8.6 ± 0.33 a | 8.3 ± 0.33 ab | 8.6 ± 0.33 a | 8.33 ± 0.33 a | 8.33 ± 0.33 ab |
Zn 50 ppm | 6.6 ± 0.33 cde | 6.3 ± 0.66 cd | 6.1 ± 0.88 de | 6.3 ± 0.57 bc | 6.1 ± 0.33 ef | 6.6 ± 0.57 d-g | 6.33 ± 0.33 cd | 6.33 ± 0.33 def |
Zn 100 ppm | 7.1 ± 0.57 bcd | 7.1 ± 0.57 bcd | 7.1 ± 0.57 b–e | 7.1 ± 0.57 abc | 7.3 ± 0.57 bcd | 7.1 ± 0.33 c–f | 6.67 ± 0.33 bcd | 7 ± 0.57 b–e |
Zn 150 ppm | 7.6 ± 0.33 a–d | 7.6 ± 0.33 abc | 7.6 ± 0.88 abc | 7.6 ± 0.33 abc | 8.1 ± 0.57 abc | 8.1 ± 0.57 abc | 7.33 ± 0.33 abc | 7.33 ± 0.33 a–d |
Zn 200 ppm | 8.6 ± 0.33 a | 8.6 ± 0.33 a | 8.3 ± 0.33 ab | 7.6 ± 0.33 abc | 8.6 ± 0.33 a | 8.3 ± 0.33 ab | 8 ± 0.57 ab | 8.67 ± 0.33 a |
B 50 ppm | 6.3 ± 0.33 de | 6.3 ± 0.33 cd | 6.3 ± 0.33 cde | 6.3 ± 0.66 bc | 6.6 ± 0.57 def | 6.1 ± 0.33 fg | 5.67 ± 0.33 d | 5.67 ± 0.67 ef |
B 100 ppm | 7.1 ± 0.57 bcd | 7.1 ± 0.57 bcd | 7.1 ± 0.57 b–e | 7.1 ± 0.57 abc | 7.3 ± 0.33 bcd | 7.3 ± 0.67 b–e | 6 ± 0.57 cd | 6 ± 0.57 def |
B 150 ppm | 8.1 ± 0.57 abc | 7.6 ± 0.33 abc | 7.3 ± 0.66 a–d | 7.6 ± 0.33 abc | 8.1 ± 0.33 abc | 7.6 ± 0.57 a–d | 7 ± 0.57 a–d | 7.33 ± 0.33 a–d |
B 200 ppm | 8.3 ± 0.33 ab | 8.6 ± 0.33 a | 8.6 ± 0.57 a | 8.1 ± 0.33 ab | 8.6 ± 0.57 a | 8.1 ± 0.33 abc | 8 ± 0.57 ab | 8 ± 0.57 abc |
LSD | 1.45 | 1.52 | 1.45 | 1.69 | 1.31 | 1.31 | 1.33 | 1.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, I.; Wang, X.; Abbas, W.M.; Hassan, M.U.; Shafique, M.; Tareen, M.J.; Fiaz, S.; Ahmed, W.; Qayyum, A. Quality Responses of Table Grapes ‘Flame Seedless’ as Effected by Foliarly Applied Micronutrients. Horticulturae 2021, 7, 462. https://doi.org/10.3390/horticulturae7110462
Ali I, Wang X, Abbas WM, Hassan MU, Shafique M, Tareen MJ, Fiaz S, Ahmed W, Qayyum A. Quality Responses of Table Grapes ‘Flame Seedless’ as Effected by Foliarly Applied Micronutrients. Horticulturae. 2021; 7(11):462. https://doi.org/10.3390/horticulturae7110462
Chicago/Turabian StyleAli, Irfan, Xiukang Wang, Wazir Mohsin Abbas, Mahmood Ul Hassan, Muhammad Shafique, Mohammad Javed Tareen, Sajid Fiaz, Waseem Ahmed, and Abdul Qayyum. 2021. "Quality Responses of Table Grapes ‘Flame Seedless’ as Effected by Foliarly Applied Micronutrients" Horticulturae 7, no. 11: 462. https://doi.org/10.3390/horticulturae7110462
APA StyleAli, I., Wang, X., Abbas, W. M., Hassan, M. U., Shafique, M., Tareen, M. J., Fiaz, S., Ahmed, W., & Qayyum, A. (2021). Quality Responses of Table Grapes ‘Flame Seedless’ as Effected by Foliarly Applied Micronutrients. Horticulturae, 7(11), 462. https://doi.org/10.3390/horticulturae7110462