Evaluation of In Vitro Regeneration Aptitude Through Histological Detection in Ocimum basilicum L.
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material, Sterilization Protocol, and In Vitro Germination
2.2. Establishment of Cultures for In Vitro Regeneration
2.3. Histological Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Germination
3.2. In Vitro Regeneration
3.3. Histological Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
abx.l. | abaxial lamina |
adx.l. | adaxial lamina |
A.G.T. | average germination time |
BAP | 6-Benzylaminopurine |
c.c. | central cylinder |
CNs | cotyledonary nodes |
cvs | Cultivars |
DOP | Denominazione di Origine Protetta (Protected Designation of Origin) |
IAA | Indole-3-acetic acid |
IBA | Indole-3-butyric acid |
MS | Murashige and Skoog (1962) medium |
m.c. | meristematic centers |
NLMs | nodule-like meristems |
NGTs | New Genomic Techniques |
PGRs | Plant Growth Regulators |
r.p. | root primordia |
s.a. | shoot apex |
s.p. | shoot primordia |
t.e. | tracheary elements |
TEAs | Assisted Evolution Techniques |
TDZ | Thidiazuron |
u.c. | undifferentiated cells |
References
- Pimentel, A.G.F.; Altenhofen da Silva, M.; Sartorio de Medeiros, S.D.; Queiroz Luz, J.M.; Sala, F.C. Agronomic, sensory and essential oil characterization of basil (Ocimum basilicum L.) accessions. Horticulturae 2023, 9, 831. [Google Scholar] [CrossRef]
- Makri, O.; Kintzios, S. Ocimum sp. (basil): Botany, cultivation, pharmaceutical properties, and biotechnology. J. Herbs Spices Med. Plants 2008, 13, 123–150. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Adhikari, S.; Biswas, A.; Bhuimali, A.; Ghosh, P.; Saha, S. Ocimum phytochemicals and their potential impact on human health. In Phytochemicals in Human Health; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Vetrano, F.; D’Anna, F. First results on yield and quality response of basil (Ocimum basilicum L.) grown in a floating system. Acta Hortic. 2003, 609, 377–381. [Google Scholar] [CrossRef]
- Laura, M.; Forti, C.; Barberini, S.; Ciorba, R.; Mascarello, C.; Giovannini, A.; Pistelli, L.; Pieracci, Y.; Lanteri, A.P.; Ronca, A.; et al. Highly efficient CRISPR/Cas9 mediated gene editing in Ocimum basilicum ‘FT Italiko’ to induce resistance to Peronospora belbahrii. Plants 2023, 12, 2395. [Google Scholar] [CrossRef]
- Kiferle, C.; Lucchesini, M.; Mensuali-Sodi, A.; Maggini, R.; Raffaelli, A.; Pardossi, A. Rosmarinic acid content in basil plants grown in vitro and in hydroponics. Open Life Sci. 2011, 6, 946–957. [Google Scholar] [CrossRef]
- Bajomo, E.; Aing, M.; Ford, L.; Niemeyer, E. Chemotyping of commercially available basil (Ocimum basilicum L.) varieties: Cultivar and morphotype influence phenolic acid composition and antioxidant properties. NFS J. 2022, 26, 1–9. [Google Scholar] [CrossRef]
- Branca, F.; Treccarichi, S.; Ruberto, G.; Renda, A.; Argento, S. Comprehensive Morphometric and Biochemical Characterization of Seven Basil (Ocimum basilicum L.) Genotypes: Focus on Light Use Efficiency. Agronomy 2024, 14, 224. [Google Scholar] [CrossRef]
- Bekalu, Z.E.; Panting, M.; Holme, I.B.; Brinch-Pedersen, H. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing. Int. J. Mol. Sci. 2023, 24, 11920. [Google Scholar] [CrossRef]
- Fraj, H.; Hannachi, C.; Werbrouck, S.P.O. Efficient adventitious shoot organogenesis on root explants of Ocimum basilicum L. Acta Hortic. 2017, 1187, 89–92. [Google Scholar] [CrossRef]
- Ekmekci, H.; Aasim, M. In vitro plant regeneration of turkish sweet basil (Ocimum basilicum L.). Plant Sci. 2014, 24, 1758–1765. [Google Scholar]
- Asghari, F.; Hossieni, B.; Hassani, A.; Shirzad, H. Effect of explants source and different hormonal combinations on direct regeneration of basil plants (Ocimum basilicum L.). Aust. J. Agric. Eng. 2012, 3, 12–17. [Google Scholar]
- Gopi, C.; Sekhar, Y.N.; Ponmurugan, P. In vitro multiplication of Ocimum gratissimum L. through direct regeneration. Afr. J. Biotechnol. 2006, 5, 723–726. [Google Scholar]
- Jakovljević, D.; Stanković, M.; Warchoł, M.; Skrzypek, E. Basil (Ocimum L.) cell organ culture for the secondary metabolites production: A review. Plant Cell Tissue Organ Cult. 2022, 149, 61–79. [Google Scholar] [CrossRef]
- Forti, C.; Barberini, S.; Laura, M.; Ciorba, R.; Mascarello, C.; Giovannini, A.; Ruffoni, B.; Savona, M. Messa a Punto di Protocolli di Rigenerazione In Vitro in Ocimum Basilicum cv FT Italiko, Finalizzati al Miglioramento Genetico Via Genome Editing; Atti Giornate Scientifiche SOI: Bari, Italy, 2024. [Google Scholar]
- Rocha, D.I.; Kurczyńska, E.; Potocka, I.; Steinmacher, D.A.; Otoni, W.C. Histology and Histochemistry of Somatic Embryogenesis. In Somatic Embryogenesis: Fundamental Aspects and Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- alMurashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ellis, R.H.; Roberts, E.H. Improved equations for the prediction of seed longevity. Ann. Bot. 1980, 45, 13–30. [Google Scholar] [CrossRef]
- Jensen, W.A. Botanical Histochemistry, Principles and Practice; Freeman: San Francisco, CA, USA, 1962; p. 408. [Google Scholar]
- Zagoto, M.; De Freitas, P.S.L.; Contiero, R.L.; Da Rocha, E.M.T.; Cardia, G.F.E.; Mourão, K.S.M.; Filho, S.E.S.; Batistela, V.R.; Janeiro, V.; Cuman, R.K.N. Performance of seed sermination of six different varieties of basil (Ocimum basilicum spp.). Res. Soc. Dev. 2022, 16, e590111638517. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Iwase, A.; Rymen, B.; Lambolez, A.; Kojima, M.; Takebayashi, Y.; Heyman, J.; Watanabe, S.; Seo, M.; De Veylder, L. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol. 2017, 175, 1158–1174. [Google Scholar] [CrossRef]
- Bennur, P.L.; O’Brien, M.; Fernando, S.C.; Doblin, M.S. Improving transformation and regeneration efficiency in medicinal plants: Insights from other recalcitrant species. J. Exp. Bot. 2025, 76, 52–75. [Google Scholar] [CrossRef]
- Barberini, S.; Forti, C.; Laura, M.; Ciorba, R.; Mascarello, C.; Giovannini, A.; Ruffoni, B.; Savona, M. An optimized protocol for in vitro regeneration of Ocimum basilicum cv. FT Italiko. Horticulturae 2023, 9, 407. [Google Scholar] [CrossRef]
- Verma, S.K.; Sahin, G.; Das, A.K.; Gurel, E. In vitro plant regeneration of Ocimum basilicum L. is accelerated by zinc sulfate. In Vitro Cell. Dev. Biol.-Plant 2016, 52, 20–27. [Google Scholar] [CrossRef]
- Karami, O.; Aghavaisi, B.; Mahmoudi Pour, A. Molecular aspects of somatic-to-embryogenic transition in plants. J. Chem. Biol. 2009, 2, 177–190. [Google Scholar] [CrossRef]
- McCown, B.H.; Zeldin, E.L.; Pinkalla, H.A.; Dedolph, R. Nodule culture: A developmental pathway with high potential for regeneration, automated micropropagation, and plant metabolite production from woody plants. In Genetic Manipulation of Woody Plants; Springer: Berlin/Heidelberg, Germany, 1988; pp. 149–166. [Google Scholar]
- Altamura, M.M.; Biondi, S.; Colombo, L.; Guzzo, F. Elementi di Biologia Dello Sviluppo Delle Piante; Edises: Napoli, Italy, 2007; pp. 1–195. [Google Scholar]
- Dang, S.; Gao, R.; Zhang, Y.; Feng, Y. In vitro regeneration and its histological characteristics of Dioscorea nipponica Makino. Sci. Rep. 2022, 12, 18436. [Google Scholar] [CrossRef] [PubMed]
- Nassar, M.A.A.; El-Segai, M.U.; Azoz, S.N. Anatomical and Phytochemical Studies on Ocimum basilicum L. Plant (Lamiaceae). Int. J. Adv. Res. 2014, 2, 204–226. [Google Scholar]
- Bansal, S.; Sharma, M.K.; Singh, S.; Joshi, P.; Pathania, P.; Malhotra, E.V.; Rajkumar, S.; Misra, P. Histological and molecular insights into in vitro regeneration pattern of Xanthosoma sagittifolium. Sci. Rep. 2023, 13, 5806. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cheng, F.; Zhong, Y. Efficient plant regeneration via meristematic nodule culture in Paeonia ostii ‘Feng Dan’. Plant Cell Tissue Organ Cult. 2022, 149, 599–608. [Google Scholar] [CrossRef]
Explant Type | Total n. of Explants/cvs (Repetitions) | PGR Concentration Added to MS Basal Medium | Ref. |
---|---|---|---|
Roots | 44 (22 Petri dishes, 2 roots each) | 1.0 mg L−1 TDZ | [10,14] |
Hypocotyls | 40 (5 Petri dishes, 8 hypocotyls each) | 2.0 mg L−1 TDZ + 0.1 mg L−1 IBA | [11] |
Cotyledons | 80 (5 Petri dishes, 16 cotyledons each) | 2.25 mg L−1 BAP | [12] |
Cotyledonary nodes (CNs) | 24 (3 Petri dishes, 8 CNs each) | 0.5 mg L−1 BAP + 0.25 mg L−1 IAA | [13] |
Cultivars | % Germination | A.G.T. (Days) |
---|---|---|
‘Prospera’ | 96 ± 1.10 a | 0.65 ± 0.10 c |
‘Paoletto’ | 93 ± 1.65 ab | 2.42 ± 0.30 b |
‘FT Italiko’ | 87 ± 2.65 ab | 1.41 ± 0.30 bc |
‘Dark opal’ | 91 ± 1.10 ab | 4.03 ± 0.22 a |
‘Bolloso napoletano’ | 83 ± 4.00 b | 4.74 ± 0.27 a |
Cvs | Roots | Hypocotyls | Cotyledons | CNs |
---|---|---|---|---|
‘Prospera’ | 100% a | 7.50% ± 0.2 a | 36% ± 0.02 a | 50% ± 0.04 ab |
‘Paoletto’ | 91.27% ± 0.01 b | 0% a | 25.50% ± 0.03 ab | 72.50% ± 0.04 a |
‘FT Italiko’ | 100% a | 0% a | 3.80% ± 0.01 b | 25% ± 0.10 b |
‘Dark opal’ | 86.51% ± 0.01 b | 2.50% ± 0.01 a | 10% ± 0.04 b | 51.25% ± 0.08 ab |
‘Bolloso napoletano’ | 95.24% ± 0.01 ab | 0% a | 0% b | 10% ± 0.02 b |
Cvs | Roots | Hypocotyls | Cotyledons | CNs |
---|---|---|---|---|
‘Prospera’ | 5.96 ± 0.14 ab | 0.08 ± 0.02 a | 0.93 ± 0.03 a | 1.25 ± 0.10 a |
‘Paoletto’ | 7.37 ± 0.21 a | 0.00 a | 0.90 ± 0.11 a | 1.85 ± 0.17 a |
‘FT Italiko’ | 6.66 ± 0.14 ab | 0.00 a | 0.10 ± 0.03 b | 0.50 ± 0.25 a |
‘Dark opal’ | 4.21 ± 0.12 b | 0.05 ± 0.02 a | 0.14 ± 0.06 b | 1.03 ± 0.20 a |
‘Bolloso napoletano’ | 4.56 ±0.12 b | 0.00 a | 0.00 b | 0.45 ± 0.13 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montone, M.; Cassetti, A.; Ruffoni, B.; Pistelli, L.; Savona, M. Evaluation of In Vitro Regeneration Aptitude Through Histological Detection in Ocimum basilicum L. Horticulturae 2025, 11, 1060. https://doi.org/10.3390/horticulturae11091060
Montone M, Cassetti A, Ruffoni B, Pistelli L, Savona M. Evaluation of In Vitro Regeneration Aptitude Through Histological Detection in Ocimum basilicum L. Horticulturae. 2025; 11(9):1060. https://doi.org/10.3390/horticulturae11091060
Chicago/Turabian StyleMontone, Michela, Arianna Cassetti, Barbara Ruffoni, Laura Pistelli, and Marco Savona. 2025. "Evaluation of In Vitro Regeneration Aptitude Through Histological Detection in Ocimum basilicum L." Horticulturae 11, no. 9: 1060. https://doi.org/10.3390/horticulturae11091060
APA StyleMontone, M., Cassetti, A., Ruffoni, B., Pistelli, L., & Savona, M. (2025). Evaluation of In Vitro Regeneration Aptitude Through Histological Detection in Ocimum basilicum L. Horticulturae, 11(9), 1060. https://doi.org/10.3390/horticulturae11091060