Effect of Biostimulants on the Productivity and Nutritional Value of White Cabbage (Brassica oleracea L. var. capitata)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Conditions of the Experiment
2.2. Experimental Design
2.3. Tested Treatments and the Scheme
2.4. Estimation of Data and Analysis
2.5. Statistical Analysis
2.6. Meteorological Conditions
3. Results and Discussion
3.1. Effect of Meteorological Conditions on Cabbage Productivity and Nutritive Elements Accumulation
3.2. Effect of Biostimulants on Productivity Enhancement
3.3. Effect of Biostimulants for the Accumulation of Nutritive Elements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Pat. Biotechnol. 2023, 17, 206–244. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W. Sustainable approaches to boost yield and chemical constituents of aromatic and medicinal plants by application of biostimulants. Recent Adv. Food Nutr. Agric. 2022, 13, 72–92. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the Influences of Microbial Biostimulants on Horticultural Crops: Case Studies and Successful Paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Cummings, J.H. Dietary fibre in Europe: An overview. In COST 92—Dietary Fibre Intakes in Europe; Cummings, J.H., Frolich, W., Eds.; Commission of European Communitres, Directorate-General: Luxembourg, 1993; pp. 11–19. [Google Scholar]
- Elkner, K. Effect of cultivar and nitrogen fertilization on the content of dietary fibre and its composition in some cruciferous vegetables. Veg. Crops Res. Bull. 2000, 53, 23–30. [Google Scholar]
- Kovalikova, Z.; Kubes, J.; Skalick, M.; Kuchtickova, N.; Maskova, L.; Tuma, J.; Vachova, P.; Hejnak, V. Changes in Content of Polyphenols and Ascorbic Acid in Leaves of White Cabbage after Pest Infestation. Molecules 2019, 24, 2622. [Google Scholar] [CrossRef]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Reynaud, H.; Canaguier, R.; Trtílek, M.; Panzarová, K. Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato. Front. Plant Sci. 2019, 10, 47. [Google Scholar] [CrossRef]
- Bulgari, R.; Morgutti, S.; Cocetta, G.; Negrini, N.; Farris, S.; Calcante, A.; Spinardi, A.; Ferrari, E.; Mignani, I.; Oberti, R.; et al. Evaluation of Borage Extracts As Potential Biostimulant Using a Phenomic, Agronomic, Physiological, and Biochemical Approach. Front. Plant Sci. 2017, 8, 935. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Facanha, A.L.; Facanha, A.R. Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef]
- Miflin, B.J.; Lea, P.J. The pathway of nitrogen assimilation in plants. Phytochemistry 1976, 15, 873–885. [Google Scholar] [CrossRef]
- Porra, R.J. Invited Review Recent Progress in Porphyrin and Chlorophyll Biosynthesis. Regulation 1997, 65, 492–516. [Google Scholar]
- Cerdán, M.; Sánchez-Sánchez, A.; Jordá, J.D.; Juárez, M.; Sánchez-Andreu, J. Effect of commercial amino acids on iron nutrition of tomato plants grown under lime-induced iron deficiency. J. Plant Nutr. Soil Sci. 2013, 176, 859–866. [Google Scholar] [CrossRef]
- Koleška, I.; Hasanagić, D.; Todorović, V.; Murtić, S.; Klokić, I.; Paradiković, N.; Kukavica, B. Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. J. Plant Interact. 2017, 12, 209–218. [Google Scholar] [CrossRef]
- Anjum, K.; Ahmed, M.; Baber, J.K.; Alizai, M.A.; Ahmed, N.; Tareen, M.H. Response of Garlic Bulb Yield To Bio-Stimulant (Bio-Cozyme) Under Calcareous Soil. Life Sci. Int. J. 2014, 8, 3058–3062. [Google Scholar]
- Juškevičienė, D.; Karklelienė, R.; Radzevičius, A.; Kavaliauskaitė, D. Effect of nutritional elements on the productivity of common beans (Phaseolus vulgaris L.). Acta Hortic. 2023, 1375, 161–168. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Allam, A.Y.; Taha, M.; Varzakas, T. How Does the Addition of Biostimulants Affect the Growth, Yield, and Quality Parameters of the Snap Bean (Phaseolus vulgaris L.)? How Is This Reflected in Its Nutritional Value? Appl. Sci. 2022, 12, 776. [Google Scholar] [CrossRef]
- Botta, A. Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. Acta Hortic. 2012, 1009, 29–35. [Google Scholar] [CrossRef]
- Parađiković, N.; Vinković, T.; Vinković Vrček, I.; Tkalec, M. Natural biostimulants reduce the incidence of BER in sweet yellow pepper plants (Capsicum annuum L.). Agric. Food Sci. 2013, 22, 307–317. [Google Scholar] [CrossRef]
- Juárez-Maldonado, A.; Ortega-Ortíz, H.; Morales-Díaz, A.; González-Morales, S.; Morelos-Moreno, Á.; Cabrera-De la Fuente, M.; Sandoval-Rangel, A.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Nanoparticles and Nanomaterials as Plant Biostimulants. Int. J. Mol. Sci. 2019, 20, 162. [Google Scholar] [CrossRef]
- Choi, S.H.; Park, S.; Lim, Y.P.; Kim, S.-J.; Park, J.T.; An, G. Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position. Hortic. Environ. Biotechnol. 2014, 55, 237–247. [Google Scholar] [CrossRef]
- Ciska, E.; Drabinska, N.; Narwojsz, A.; Honke, J. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage. Food Chem. 2016, 203, 340–347. [Google Scholar] [CrossRef]
- Pessoa, M.F.; Scotti-Campos, P.; Pais, I.; Feteiro, A.; Canuto, D.; Simoes, M. Nutritional profile of the Portuguese cabbage (Brassica oleracea L. var. costata) and its relationship with the elemental soil analysis. Emir. J. Food Agric. 2016, 28, 381–388. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Rhee, J.; Choi, C.S.; Jo, J.S.; Shin, Y.K.; Lee, J.G. Profiling of individual desulfo-glucosinolate content in cabbage head (Brassica oleracea var. capitata) germplasm. Molecules 2020, 25, 1860. [Google Scholar] [CrossRef]
- Zhao, Y.; Yue, Z.; Zhong, X.; Lei, J.; Tao, P.; Li, B. Distribution of primary and secondary metabolites among the leaf layers of headed cabbage (Brassica oleracea var. capitata). Food Chem. 2020, 312, 126028. [Google Scholar] [CrossRef]
- Kałuzewicz, A.; Krzesiński, W.; Spizewski, T.; Zaworska, A. Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Not. Bot. Horti Agrobot. Cluj-Napoca 2017, 45, 197–202. [Google Scholar] [CrossRef]
- Singh, B.K.; Pathak, K.A.; Sarma, K.A.; Thapa, M. Effect of Transplanting Dates on Plant growth, Yield and Quality Traits of Cabbage (Brassica oleracea var. capitata L.). Indian J. Hill Farming 2010, 23, 1–5. Available online: https://www.researchgate.net/publication/235650323_Effect_of_transplanting_dates_on_plant_growth_yield_and_quality_traits_of_cabbage_Brassica_oleracea_var_capitata_L_cultivars (accessed on 1 July 2025).
- Parker, A.; Namuth-Covert, D. Cabbage, TG/48/7. In Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability; International Union For The Protection of New Varieties of Plants (UPOV): Geneva, Switzerland, 2004; p. 36. [Google Scholar]
- Godlewska, K.; Biesiada, A.; Michalak, I.; Pacyga, P. The effect of Plant-Derived Biostimulants on White Head Cabbage Seedlings Grown under Controlled Conditions. Sustainability 2019, 11, 5317. [Google Scholar] [CrossRef]
- Godlewska, K.; Pacyga, P.; Michalak, I.; Biesiada, A.; Szumny, A.; Pachura, N.; Piszcz, U. Effect of Botanical Extracts on the Growth and Nutritional Quality of Field-Grown White Head Cabbage (Brassica oleracea var. capitata). Molecules 2021, 26, 1992. [Google Scholar] [CrossRef]
- WRB: World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports, 106; FAO: Rome, Italy, 2014; pp. 187–192. [Google Scholar]
- Horwitz, W.; Latimer, G.W. AOAC Official Methods of Analysis. In Official Analytical Chemists, 17th ed.; AOAC: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis: Apparatus, Reagents, Procedures and some Applications; USDA-ARS Agricultural Handbook No. 379; US Agricultural Research Service: Washington, DC, USA, 1970.
- Dabkevičius, Z.; Brazauskienė, I. Plant Pathology; IDP Solution: Klaipėda, Lithuania, 2007; p. 493. (In Lithuanian) [Google Scholar]
- Tarakanovas, P.; Raudonius, S. Agronomic Research, Statistical Analysis Using Computer Programs ANOVA, STAT, SPLIT-PLOT from Program Package SELEKCIJA and IRRISTAT; Dotnuva–Akademija, Lithuanian Institute of Agriculture: Dotnuva, Lithuania, 2003; 56p. (In Lithuanian) [Google Scholar]
- Rashid, I.; Peer, Q.J.A.; Saraf, S.A.; Farooq, F.; Aziz, T. Assessment of the Knowledge Level of Cabbage Growers for an Enhanced Production Technology. Curr. J. Appl. Sci. Technol. 2020, 39, 36–42. [Google Scholar] [CrossRef]
- Nurhidayati, N.; Ali, U.; Murwani, I. Yield and quality of cabbage (Brassica oleracea L. var. Capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus inoculation. Agric. Agric. Sci. Procedia 2016, 11, 5–13. [Google Scholar] [CrossRef]
- Žnidarčič, D.; Kacjan-Maršić, N.; Osvald, J.; Požrl, T.; Trdan, S. Yield and quality of early cabbage (Brassica oleracea var. capitata L.) in response to within-row plant spacing. Acta Agric. Slov. 2007, 89, 15–23. [Google Scholar] [CrossRef]
- Paranhos, L.G.; Barrett, C.E.; Zotarelli, L.; Darnell, R.; Migliaccio, K.; Borisova, T. Planting date and in-row plant spacing effects on growth and yield of cabbage under plastic mulch. Sci. Hortic. 2016, 202, 49–56. [Google Scholar] [CrossRef]
- Červenski, J.; Takač, A. Growing cabbage as a double crop. Ratar. Povrt. 2012, 49, 75–79. [Google Scholar] [CrossRef]
- Gvozdenović, Đ.; Bugarski, D.; Gvozdanović-Varga, J.; Červenski, J.; Takač, A. Posebno povrtarstvo. In Knjiga-Udžbenik, 1-383; Megatrend Universitz: Belgrade, Serbia, 2007. [Google Scholar]
- Tiwari, K.N.; Singh, A.; Mal, P.K. Effect of Drip Irrigation on Yield of Cabbage (Brassica oleracea L. var. Capitata) under Mulch and Non-mulch Conditions. Agric. Water Manag. 2003, 58, 19–28. [Google Scholar] [CrossRef]
- Karklelienė, R.; Juškevičienė, D.; Radzevičius, A. Application of genetic resources in the development of new Lithuanian vegetable cultivars. Plants 2023, 12, 807. [Google Scholar] [CrossRef] [PubMed]
- Karklelienė, R.; Juškevičienė, D.; Radzevičius, A.; Sasnauskas, A. Productivity and adaptability of the new carrot and garlic cultivars in Lithuania. Zemdirb.-Agric. 2018, 105, 165–170. [Google Scholar] [CrossRef]
- Juškevičienė, D.; Karklelienė, R.; Radzevičius, A. Biodiversity and productivity of potato onions (Allium cepa var. Aggregatum g. Don). Acta Hortic. 2019, 1251, 91–96. [Google Scholar] [CrossRef]
- Kamiński, P. An evaluation of some morphological traits in doubled haploid lines and their F, hybrids of head cabbage Kamienna Głowa in the vegetative phase. J. Appl. Genet. 2000, 41, 247–252. [Google Scholar]
- Červenski, J.; Vlajić, S.; Ignjatov, M.; Tamindžić, G.; Zec, S. Agroclimatic conditions for cabbage production. Ratar. Povrt. 2022, 59, 43–50. [Google Scholar] [CrossRef]
- Lončarić, A.; Marček, T.; Šubarić, D.; Jozinović, A.; Babić, J.; Miličević, B.; Sinković, K.; Šubarić, D.; Babić, J.; Ačkar, Ð. Comparative Evaluation of Bioactive Compounds and Volatile Profile of White Cabbages. Molecules 2020, 25, 3696. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Upadhyay, A.K.; Prasad, K.; Bahadur, A.; Rai, M. Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J. Food Compos. Anal. 2007, 20, 106–112. [Google Scholar] [CrossRef]
- Gmižić, D.; Pinterić, M.; Lazarus, M.; Šola, I. High Growing Temperature Changes Nutritional Value of Broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) Seedlings. Foods 2023, 12, 582. [Google Scholar] [CrossRef]
- Seung, K.; Lee, A.; Kader, A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef]
- Fink, M.; Feller, C. An empirical model for describing growth and nitrogen uptake of white cabbage (Brassica oleracea var. capitata). Sci. Hortic. 1998, 73, 75–88. [Google Scholar] [CrossRef]
- Tetsuo, H.; Sonoda, Y. Cabbage-head development as affected by nitrogen and temperature. Soil Sci. Plant Nutr. 1982, 28, 109–117. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Sufar, E.K.; Gilroy, J.; Shotton, P.; Leifert, H.; Srednicka-Tober, D.; Hasanaliyeva, G.; Rosa, E.A.S.; Hajslova, J. Effect of Climatic Conditions, and Agronomic Practices Used in Organic and Conventional Crop Production on Yield and Nutritional Composition Parameters in Potato, Cabbage, Lettuce and Onion; Results from the Long-Term NFSC-Trials. Agronomy 2023, 13, 1225. [Google Scholar] [CrossRef]
- Komolka, P.; Górecka, D.; Dziedzic, K. The effect of thermal processing of cruciferous vegetables on their content of dietary fiber and its fractions. Acta Sci. Pol. Technol. Aliment. 2012, 11, 347–354. [Google Scholar]
- Kavaliauskaitė, D.; Karklelienė, R.; Jankauskienė, J. Impact of organic fertilizer on yield of white cabbage (Brassica oleracea var. capitata) and soil productivity. Hortic. Sci. 2023, 50, 290–296. [Google Scholar] [CrossRef]
- Jung-Hoon, K.; Chang-Seob, S.; Seong-Sil, K.; Hyeun-Kyoo, S. Quality Assessment of Ojeok-San, a Traditional Herbal Formula, Using High Performance Liquid Chromatography Combined with Chemometric Analysis. J. Anal. Methods Chem. 2015, 2015, 607252. [Google Scholar] [CrossRef]
- Ma, H.-L.; Qin, M.-J.; Qi, L.-W.; Wu, G.; Shu, P. Improved quality evaluation of Radix Salvia miltiorrhiza through simultaneous quantification of seven major active components by high-performance liquid chromatography and principal component analysis. Biomed. Chromatogr. 2007, 21, 931–939. [Google Scholar] [CrossRef]
- Haghighi, M.; Saadat, S.; Abbey, L. Effect of Exogenous Amino Acids Application on Growth and Nutritional Value of Cabbage under Drought Stress. Sci. Hortic. 2020, 272, 109561. [Google Scholar] [CrossRef]
- Sarojnee, D.Y.; Navindra, B.; Chandrabose, S. Effect of naturally occurring amino acid stimulants on the growth and yield of hot peppers (Capsicum annum L.). J. Anim. Plant Sci. 2009, 5, 414–424. Available online: https://www.researchgate.net/publication/283086040_Effect_of_naturally_occurring_amino_acid_stimulants_on_the_growth_and_yield_of_hot_peppers_Capsicum_annum_L (accessed on 3 July 2025).
- Song, C.; Ye, X.; Liu, G.; Zhang, S.; Li, G.; Zhang, H.; Li, F.; Sun, R.; Wang, C.; Xu, D.; et al. Comprehensive Evaluation of Nutritional Qualities of Chinese Cabbage (Brassica rapa ssp. pekinensis) Varieties Based on Multivariate Statistical Analysis. Horticulturae 2023, 9, 1264. [Google Scholar] [CrossRef]
Cultivar | Breeding Company/ Source | Cabbage Group | Vegetation Duration | Head Weight, kg |
---|---|---|---|---|
‘Bagočiai’ ∗ | LRCAF, Lithuania | White-headed | Average late | 2.5–4 |
‘Kamienna Głowa’∗∗ | Legutko, Poland | White-headed | Late | 4–5 |
Biostimulant | Composition |
---|---|
AAs for foliar spray Terra-Sorb® foliar (Bioiberica SA, Spain) | Free AAs *—9.3% (w/w) Total AAs—12% (w/w) Total N—2.1% (w/w) Organic N—2.1% (w/w) Boron (B)—0.02% (w/w) Manganese (Mn)—0.05% (w/w) Zinc (Zn)—0.07% (w/w) Organic matter—14.8% (w/w) |
BLACKJAK® (Sipcam, U.K.) is a concentrated suspension of Leonardite | Total humic extract—25.00% (w/w) HAs—20.50% (w/w) Fulvic acids—4.50% (w/w) |
Year | Total Yield, t ha−1 | Output of Marketable Yield, % | Mass of a Head, kg | Total Yield, t ha−1 | Output of Marketable Yield, % | Mass of a Head, kg |
---|---|---|---|---|---|---|
‘Bagočiai’ | ‘Kamienna Glowa’ | |||||
2020 | 69.3 a | 84.2 a | 2.9 a | 70.3 a | 83.7 a | 3.2 a |
2021 | 70.4 a | 80.2 a | 3.0 a | 50.5 b | 71.3 b | 2.1 b |
Average | 71.8 | 82.2 | 3.0 | 60.4 | 77.5 | 2.7 |
Year | Vitamin C, mg g−1 | Nitrogen, % | Crude Protein, % | Crude Fiber, % | Vitamin C, mg g−1 | Nitrogen, % | Crude Protein, % | Crude Fiber, % |
---|---|---|---|---|---|---|---|---|
‘Bagočiai’ | ‘Kamienna Glowa’ | |||||||
2020 | 14.60 b | 0.21 a | 1.81 a | 0.42 b | 12.70 b | 0.20 a | 1.22 a | 0.53 a |
2021 | 15.10 a | 0.25 a | 1.11 b | 0.79 a | 13.50 a | 0.24 a | 1.48 a | 0.64 a |
Average | 14.85 | 0.23 | 1.46 | 0.46 | 13.15 | 0.22 | 1.35 | 0.59 |
Total Yield, t ha−1 | Output of Marketable Yield, % | |
---|---|---|
Cultivar (C) (Factor A) | ||
‘Bagočiai’ | 68.7 | 82.2 |
‘Kamienna Glowa’ | 68.8 | 78.9 |
Biostimulants (Bio) (Factor B) | ||
C | 57.5 | 77.2 |
T1 | 70.9 | 81.5 |
T2 | 76.8 | 81.2 |
T3 | 74.4 | 81.2 |
T4 | 66.7 | 81.8 |
ANOVA (p = 0.05) | ||
C (A) | ns | ** |
Bio (B) | ** | ** |
CxBio (AxB) | * | ** |
Cultivar | Effectiveness of Biostimulants, % | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
‘Bagočiai’ | 27 | 27 | 29 | 11 |
‘Kamienna Głowa’ | 23 | 40 | 29 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juškevičienė, D.; Radzevičius, A.; Karklelienė, R. Effect of Biostimulants on the Productivity and Nutritional Value of White Cabbage (Brassica oleracea L. var. capitata). Horticulturae 2025, 11, 1020. https://doi.org/10.3390/horticulturae11091020
Juškevičienė D, Radzevičius A, Karklelienė R. Effect of Biostimulants on the Productivity and Nutritional Value of White Cabbage (Brassica oleracea L. var. capitata). Horticulturae. 2025; 11(9):1020. https://doi.org/10.3390/horticulturae11091020
Chicago/Turabian StyleJuškevičienė, Danguolė, Audrius Radzevičius, and Rasa Karklelienė. 2025. "Effect of Biostimulants on the Productivity and Nutritional Value of White Cabbage (Brassica oleracea L. var. capitata)" Horticulturae 11, no. 9: 1020. https://doi.org/10.3390/horticulturae11091020
APA StyleJuškevičienė, D., Radzevičius, A., & Karklelienė, R. (2025). Effect of Biostimulants on the Productivity and Nutritional Value of White Cabbage (Brassica oleracea L. var. capitata). Horticulturae, 11(9), 1020. https://doi.org/10.3390/horticulturae11091020