Morphological and Physiological Responses of Cymbopogon citratus and Pennisetum alopecuroides to Saline Water Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Treatments
2.3. Plant Harvest and Data Collection
2.4. Leaf Greenness and Chlorophyll Fluorescence
2.5. Gas Exchange
2.6. Mineral Analysis
2.7. Experimental Design and Data Analysis
3. Results and Discussion
3.1. EC of Leachate
3.2. Visual Quality
3.3. Height
3.4. Growth Index
3.5. Leaf Area
3.6. Number of Tillers
3.7. Shoot DW
3.8. Leaf Greenness and Chlorophyll Fluorescence
3.9. Gas Exchange
3.10. Ion Content
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amacher, J.K.; Rich, K.; Boyd, K. Salinity and Plant Tolerance. All Archived Publications 2000. Available online: https://www.researchgate.net/publication/237537841_SALINITY_AND_PLANT_TOLERANCE (accessed on 12 March 2025).
- Gulzar, S.; Khan, M.A.; Ungar, I.A. Salt tolerance of a coastal salt marsh grass. Commun. Soil Sci. Plant Anal. 2003, 34, 2595–2605. [Google Scholar] [CrossRef]
- Pearen, J.R.; Pahl, M.D.; Wolynetz, M.S.; Hermesh, R. Association of salt tolerance at seedling emergence with adult plant performance in slender wheatgrass. Can. J. Plant Sci. 1997, 77, 81–89. [Google Scholar] [CrossRef]
- LeCompte, J.S.; Wright, A.N.; LeBleu, C.M.; Kessler, J.R. Saline irrigation affects growth and leaf tissue nutrient concentration of three native landscape plant species. HortTechnology 2016, 26, 309–313. [Google Scholar] [CrossRef]
- Wang, Y.X.; Sun, Y.P.; Niu, G.H.; Deng, C.Y.; Wang, Y.; Gardea-Torresdey, J. Growth, gas exchange, and mineral nutrients of ornamental grasses irrigated with saline water. HortScience 2019, 54, 1840–1846. [Google Scholar] [CrossRef]
- Sun, Y.P.; Palmer, A.L. Responses of ornamental grass and grasslike plants to saline water irrigation. HortTechnology 2018, 28, 799–806. [Google Scholar] [CrossRef]
- McKenney, C.B.; Mahato, T.R.; Schuch, U.K. Salinity tolerance of ornamental grasses adapted to semi-arid environments. Horticulturae 2016, 1112, 95–99. [Google Scholar] [CrossRef]
- Kiani, H.S.; Ali, A.; Zahra, S.; Hassan, Z.U.; Kubra, K.T.; Azam, M.; Zahid, H.F. Phytochemical composition and pharmacological potential of lemongrass (Cymbopogon) and impact on gut microbiota. AppliedChem 2022, 2, 229–246. [Google Scholar] [CrossRef]
- Mukarram, M.; Khan, M.M.A.; Zehra, A.; Petrik, P.; Kurjak, D. Suffer or survive: Decoding salt-sensitivity of lemongrass and its implication on essential oil productivity. Front. Plant Sci. 2022, 13, 903954. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, X.; Allington, G.R.H.; Wang, L.; Huang, W.; Zhang, R.; Luo, Y.; Xu, Z. Photosynthesis and growth of Pennisetum centrasiaticum (C4) is superios to Calamagrostis pseudophragmites (C3) during drought and recovery. Plants 2020, 9, 991. [Google Scholar] [CrossRef]
- Mircea, D.M.; Estrelles, E.; Hassan, M.A.; Soriano, P.; Sestras, R.E.; Boscaiu, M.; Sestras, A.F.; Vicente, O. Effect of water deficit on germination, growth and biochemical responses of four potentially invasive ornamental grass species. Plants 2023, 12, 1260. [Google Scholar] [CrossRef]
- Muscolo, A.; Panuccio, M.R.; Eshel, A. Ecophysiology of Pennisetum clandestinum: A valuable salt tolerant grass. Envionmental Exp. Bot. 2013, 92, 55–63. [Google Scholar] [CrossRef]
- Ullah, M.A.; Rasheed, M.; Hyder, S.I. Medicinal plant lemon grass (Cymbopogon citratus) growth under salinity and sodicity. Korean J. Food Health Converg. 2020, 6, 9–15. [Google Scholar] [CrossRef]
- Yang, J.; Yoon, Y.H.; Ju, J.H. Desalinization effect of Pennisetum Alopecuroides and characteristics of leachate depending on Calcium Chloride (CaCl2) concentration. J. People Plants Environ. 2020, 4, 445–453. [Google Scholar] [CrossRef]
- Barker, B.; Yost, M.; Rivers, E.; Miller, R.; Taylor, K.; Evans, T. Irrigation Water Quality Sampling Guide; Utah State University Extension: Logan, UT, USA, 2023; Available online: https://extension.usu.edu/irrigation/research/irrigation-water-quality-sampling-guide (accessed on 3 June 2025).
- Xing, H.F.; Julie, H.; Asmita, P.; Sun, Y.P.; Chen, J.J.; Dai, X.; Matthew, C. Morphological and physiological responses of ornamental grass to saline water irrigation. HortScience 2021, 56, 678–686. [Google Scholar] [CrossRef]
- Torres, A.P.; Mickelbart, M.V.; Lopez, R.G. Leachate volume effects on pH and electrical conductivity measurements in containers obtained using the pour-through method. HortTechnology 2010, 20, 608–611. [Google Scholar] [CrossRef]
- Sun, Y.P.; Niu, G.; Perez, C. Relative salt tolerance of seven of Texas Superstar perennials. HortScience 2015, 50, 1562–1566. [Google Scholar] [CrossRef]
- Lalk, G.T.; Bi, G.; Stafne, E.T.; Li, T. Fertilizer type and irrigation frequency affect plant growth, yield, and gas exchange of containerized strawberry cultivars. Technol. Hortic. 2023, 3, 3. [Google Scholar] [CrossRef]
- Gavlak, R.G.; Horneck, D.A.; Miller, R.O.B. Soil, Plant and Water Reference Methods for the Western Region, 3rd ed.; Western Regional Extension Publication (WREP-125): San Jose, CA, USA, 2005; Available online: https://www.naptprogram.org/files/napt/western-states-method-manual-2005.pdf (accessed on 12 March 2025).
- Liu, Q.; Sun, Y.P.; Niu, G.H.; Altland, J.; Chen, L.; Jiang, L. Morphological and physiological responses of ten ornamental taxa to saline water irrigation. HortScience 2017, 52, 1816–1822. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Carla, C.; Daniela, R.; Timothy, J.F. The response of ornamental plants to saline irrigation water. Irrig.-Water Manag. Pollut. Altern. Strateg. 2012, 131, 131–158. [Google Scholar] [CrossRef]
- Niu, G.H.; Cabrera, R.I. Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience 2010, 45, 1605–1609. [Google Scholar] [CrossRef]
- Niu, G.H.; Rodriguez, D.S. Relative salt tolerance of five herbaceous perennials. HortScience 2006, 41, 1493–1497. [Google Scholar] [CrossRef]
- Hunter, K.A.M.; Wu, L. Morphological and physiological response of five California native grass species to moderate salt spray: Implications for landscape irrigation with reclaimed water. J. Plant Nutr. 2005, 28, 247–270. [Google Scholar] [CrossRef]
- Acosta-Motos, J.R.; Ortuño, M.F.; Álvarez, S.; López-Climent, M.F.; Gómez-Cadenas, A.; Sánchez-Blanco, M.J. Changes in growth, physiological parameters and the hormonal status of Myrtus communis L. plants irrigated with water with different chemical compositions. J. Plant Physiol. 2016, 191, 12–21. [Google Scholar] [CrossRef]
- Triston, H.; Niu, G.H. Relative salt tolerance of four Herbaceous Perennial ornamentals. Horticulturae 2019, 5, 36. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants response to salinity stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef]
- Mane, A.V.; Karadge, B.A.; Samant, J.S. Salt stress induced alteration in growth characteristics of a grass Pennisetum alopecuroides. J. Environ. Biol. 2011, 32, 753–758. [Google Scholar] [CrossRef]
- Dash, M.; Panda, S.K. Salt stress induced changes in growth and enzyme activities in germinating phaseolus mungo seeds. Biologia. Plant. 2001, 44, 587–589. [Google Scholar] [CrossRef]
- Agarwal, S.; Pandey, V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia. Plant. 2004, 48, 555–560. [Google Scholar] [CrossRef]
- Zapryanova, N.; Atanassova, B. Effects of salt stress on growth and flowering of ornamental annual species. Biotechnol. Biotechnological. Eq. 2009, 23 (Suppl. S1), 177–179. [Google Scholar] [CrossRef]
- Miyamoto, S. Salt Tolerance of Landscape Plants Common to the Southwest; Texas Agrilife Research Center: El Paso, TX, USA, 2008; Volume 316, Available online: https://agrilife.org/elpaso/files/2011/10/TR-316-FINAL-TOLERANCE-REPORT_updated_.pdf (accessed on 12 March 2025).
- WateReuse Foundation. Salinity Management Guide. 2007. Available online: https://watereuse.org/salinity-management (accessed on 12 March 2025).
- Henschke, M. Growth of ornamental grasses under salinity stress. J. Hortic. Res. 2016, 24, 5–11. [Google Scholar] [CrossRef]
- Paudel, A.; Sun, Y.P. Effect of salt stress on the growth, physiology, and mineral nutrients of two penstemon species. HortScience 2024, 59, 209–219. [Google Scholar] [CrossRef]
- Banon, S.; Miralles, J.; Ochoa, J.; Sanchez-Blanco, M.J. The effect of salinity and high boron on growth, photosynthetic activity and mineral contents of two ornamental shrubs. Hort. Sci. 2012, 39, 188–194. [Google Scholar] [CrossRef]
- Ashraf, M.; McNeilly, T.; Bradshaw, A.D. The response of selected salt-tolerant and normal lines of four grass species to NaCl in sand culture. New Phytol. 1986, 104, 453–461. [Google Scholar] [CrossRef]
- Belligno, A.; Cutore, L.; Leo, M.D.; Sardo, V.; Brancato, R. Response of two grasses to irrigation with diluted seawater. Proc. IS Salination Hort. Prod. Hortic. 2022, 573, 353–356. [Google Scholar] [CrossRef]
- Belligno, A.; Loggia, F.L.; Sambuco, F.; Sardo, V.; Brancato, R. Salinity tolerance in Elytrigia (Agropyron elongatum). Acta Hortic. 2002, 573, 349–351. [Google Scholar] [CrossRef]
- Cicek, N.; Cakirlar, H. The effect of salinity on some physiological parameters in two maize cultivars. Bulg. J. Plant Physiol 2002, 28, 66–74. Available online: http://www.bio21.bas.bg/ipp/gapbfiles/v-28/02_1-2_66-74.pdf (accessed on 20 February 2025).
- Jaleel, C.A.; Beemarao, S.; Ramalingam, S.; Rajaram, P. Soil salinity alters growth, chlorophyll content and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Biol 2008, 32, 79–83. Available online: https://journals.tubitak.gov.tr/biology/vol32/iss2/2 (accessed on 12 March 2025).
- Khosravinejad, F.; Heydari, R.; Faboodnia, T. Growth and inorganic solute accumulation of two barley varieties in salinity. Pak. J. Biol. Sci. 2009, 12, 168–172. [Google Scholar] [CrossRef]
- Tantawy, A.S.; Abdel-Mawgoud, A.M.R.; El-Nemr, M.A.; Chamoun, Y.G. Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Eur. J. Sci. Res 2009, 30, 484–494. Available online: https://www.eurojournals.com/ejsr.htm (accessed on 12 March 2025).
- Rodriguez, I.; Miller, G.L. Using a chlorophyll meter to determine the chlorophyll concentration, nitrogen concentration, and visual quality of St. Augustine grass. HortScience 2000, 35, 751–754. [Google Scholar] [CrossRef]
- Alshammary, S.F.; Qian, Y.L.; Wallner, S.J. Growth response of four turfgrass species to salinity. Agric. Water Manag. 2004, 66, 97–111. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Ortuño, M.F.; Nortes, P.A.; Bernavé, A.; Fernández, F.; Sánchez-Blanco, M.J. Effectiveness of bacterial inoculation in alleviation of salinity on water status, mineral content, gas exchange and photosynthetic parameters of Viburnum tinus L. plants. Sci. Hortic. 2018, 237, 303–310. [Google Scholar] [CrossRef]
- Bano, H.; Athar, H.U.; Zafar, Z.U.; Kalaji, H.M.; Ashraf, M. Linking changes in chlorophyll a fluorescence with drought stress susceptibility in mung bean [Vigna radiata (L.) Wilczek]. Physiol. Plant. 2021, 172, 1244–1254. [Google Scholar] [CrossRef]
- Shin, Y.K.; Bhandari, S.R.; Lee, J.G. Monitoring of salinity, temperature, and drought stress in grafted watermelon seedlings using chlorophyll fluorescence. Front. Plant Sci 2021, 12, 786309. [Google Scholar] [CrossRef]
- Colmer, T.D.; Muniz, R.; Flowers, T.J. Improving salt tolerance of wheat and barley: Future prospects. Aust. J. Exp. Agric. 2005, 45, 1425–1443. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Troyo-Diegues, E.; Garcia-Hernandez, J.L.; Lopez-Aguilar, R.; Avila-Serrano, N.Y.; Zamora-Salgado, S.; Rueda-Puente, E.O.; Kaya, C. Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci. Hortic 2006, 108, 423–441. [Google Scholar] [CrossRef]
- Dong, J.; Chen, X.; Yang, Q.; Zhang, H.Y.; Chen, Y.E. Effect of high light, water and salt stress on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops 2018, 38, 315–322. [Google Scholar] [CrossRef]
- Zhu, J.K. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 2003, 6, 441–445. [Google Scholar] [CrossRef]
- Richards, I. Magnesium as a Nutrient for Crops and Grass; Potash Development Association: York, UK, 2017; Available online: https://www.pda.org.uk/magnesium-nutrient-crops-grass/ (accessed on 12 March 2025).
- Esechie, H.A.; Rodriguez, V. Does salinity inhibit alfalfa leaf growth by reducing tissue concentration of essential mineral nutrients? J. Agron. Crop Sci. 2001, 182, 273–278. [Google Scholar] [CrossRef]
- Candan, N.; Tarhan, L. Relationship among chlorophyll and carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol. Biochem. 2003, 41, 35–40. [Google Scholar] [CrossRef]
- Tozlu, I.; Moore, A.G.; Guy, L.C. Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata. Funct. Plant Biol. 2000, 27, 35–42. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier/Academic Press: London, MA, USA, 2012; pp. 191–248. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Rasheed, R.; Rizwan, M.; Hussain, I.; Aslam, R.; Qureshi, F.F.; Hafiza, B.S.; Bashir, R.; Ali, S. Effect of exogenous taurine on pea (Pisum sativum L.) plants under salinity and iron deficiency stress. Env. Res 2023, 223, 115448. [Google Scholar] [CrossRef]
- Salar, F.; Kazem, G. Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicol. Environ. Safesy 2021, 211, 111904. [Google Scholar] [CrossRef]
- Lu, X.; Gao, Y.; Luo, J.; Yan, S.H.; Wang, T.; Liu, L.Z.; Zhang, Z.H. Interactive effects of Tetracyclines and copper on plant growth and nutrient uptake by Eichhornia crassipes. CLEAN-Soil Air Water 2016, 44, 96–104. [Google Scholar] [CrossRef]
- Fageria, N.K.; Stone, L.F.; Santos, A.B. Molybdenum requirements of dry bean with and without limiting. Commun. Soil Sci. Plant Anal. 2015, 46, 965–978. [Google Scholar] [CrossRef]
Harvest y | C. citratus | |||
---|---|---|---|---|
Control | EC 5.0 | EC 10.0 | ||
SPAD | First harvest | 36.84 ± 1.88 ab x | 41.13 ± 0.81 a | 34.89 ± 1.39 b |
Second harvest | 33.74 ± 3.14 a | 36.04 ± 1.57 a | 36.08 ± 2.03 a | |
Fv/Fm | First harvest | 0.71 ± 0.04 a | 0.76 ± 0.01 a | 0.72 ± 0.01 a |
Second harvest | 0.72 ± 0.01 a | 0.70 ± 0.03 a | 0.74 ± 0.01 a | |
PIabs | First harvest | 1.90 ± 0.63 a | 2.92 ± 0.39 a | 2.01 ± 0.37 a |
Second harvest | 1.83 ± 0.25 a | 1.88 ± 0.52 a | 2.09 ± 0.48 a |
Pn (µmol·m−2·s−1) | gs (mmol·m−2·s−1) | E (mmol·m−2·s−1) | WUE (mmol CO2·mol−1 H2O) | |
---|---|---|---|---|
Control | 14.3 a x | 140.3 a | 2.7 a | 5.5 a |
EC 5.0 | 11.7 ab | 100.7 ab | 2.1 a | 5.8 a |
EC 10.0 | 8.4 b | 71.2 b | 1.7 a | 5.5 a |
Species | Treatment | Ion Content (mg/g) | Ratio | ||||
---|---|---|---|---|---|---|---|
Na+ | Cl− | Ca2+ | K+ | Ca2+/Na+ | K+/Na+ | ||
Cymbopogon citratus | Control | 0.07 b | 1.88 c | 3.89 c | 19.18 a | 78.74 a | 383.32 a |
EC 5.0 | 1.42 ab | 19.20 b | 6.67 b | 18.00 a | 5.10 b | 14.67 b | |
EC 10.0 | 2.70 a | 43.17 a | 9.18 a | 18.30 a | 3.75 b | 7.57 b | |
Pennisetum alopecuroides | Control | 0.08 c y | 3.76 c | 5.60 b | 17.11 a | 74.52 a | 209.83 a |
EC 5.0 | 2.21 b | 14.94 b | 8.24 ab | 18.52 a | 3.84 b | 8.56 b | |
EC 10.0 | 3.92 a | 23.27 a | 12.58 a | 14.80 a | 3.16 b | 3.92 b | |
Species | * x | * | * | NS | NS | NS | |
Treatment | **** | **** | *** | NS | *** | ** | |
Species × Treatment | NS | * | NS | NS | NS | NS |
Species | Treatment | Ion Content (mg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mg2+ | P | Zn2+ | Fe3+ | Mn2+ | Cu2+ | S | B | Mo3+ | ||
Cymbopogon citratus | Control | 2.80 a | 2.33 a | 0.02 b | 0.05 a | 0.08 c | 0.004 a | 1.25 a | 0.01 a | 0.004 a |
EC 5.0 | 2.22 b | 1.99 b | 0.02 b | 0.07 a | 0.19 b | 0.004 a | 1.21 a | 0.01 a | 0.002 b | |
EC 10.0 | 1.90 c | 2.29 a | 0.03 a | 0.05 a | 0.38 a | 0.005 a | 1.42 a | 0.01 a | 0.002 b | |
Pennisetum alopecuroides | Control | 2.78 a y | 3.45 a | 0.06 a | 0.62 a | 0.35 c | 0.015 a | 2.21 a | 0.02 a | 0.001 a |
EC 5.0 | 2.99 a | 3.99 a | 0.08 a | 0.38 a | 0.56 b | 0.013 a | 2.33 a | 0.02 a | 0.002 a | |
EC 10.0 | 3.01 a | 3.87 a | 0.08 a | 0.65 a | 0.73 a | 0.017 a | 2.91 a | 0.02 a | 0.001 a | |
Species | **** x | **** | **** | *** | **** | **** | **** | *** | ** | |
Treatment | NS | NS | NS | NS | **** | NS | NS | NS | * | |
Species × Treatment | ** | NS | NS | NS | NS | NS | NS | NS | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, H.; Paudel, A.; Hershkowitz, J.; Sun, Y. Morphological and Physiological Responses of Cymbopogon citratus and Pennisetum alopecuroides to Saline Water Irrigation. Horticulturae 2025, 11, 670. https://doi.org/10.3390/horticulturae11060670
Xing H, Paudel A, Hershkowitz J, Sun Y. Morphological and Physiological Responses of Cymbopogon citratus and Pennisetum alopecuroides to Saline Water Irrigation. Horticulturae. 2025; 11(6):670. https://doi.org/10.3390/horticulturae11060670
Chicago/Turabian StyleXing, Haifeng, Asmita Paudel, Julie Hershkowitz, and Youping Sun. 2025. "Morphological and Physiological Responses of Cymbopogon citratus and Pennisetum alopecuroides to Saline Water Irrigation" Horticulturae 11, no. 6: 670. https://doi.org/10.3390/horticulturae11060670
APA StyleXing, H., Paudel, A., Hershkowitz, J., & Sun, Y. (2025). Morphological and Physiological Responses of Cymbopogon citratus and Pennisetum alopecuroides to Saline Water Irrigation. Horticulturae, 11(6), 670. https://doi.org/10.3390/horticulturae11060670