De Novo Assembly of First Mitochondrial Genome in Melicope pteleifolia (Rutaceae): Resolving Inter-Organellar Gene Transfer Events Through Integrated Chloroplast Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and DNA Extraction
2.2. Genomic Sequencing
2.3. Genomic Assembly
2.4. Genome Annotation
2.5. Analyses of RNA Editing Site, RSCU, and Homologous Sequence
2.6. Repeat Analysis
2.7. Pi and Ka/Ks
2.8. Phylogenetic Analysis
3. Results
3.1. Organelle Genome Assembly and Annotation
3.2. Organelle Genome Repeat Sequences
3.3. Gene Codon Preference
3.4. Gene Codon Preference
3.5. Plastid DNA Transfer
3.6. Phylogenetic Analysis
3.7. Nucleotide Diversity (Pi)
3.8. Nonsynonymous Substitution Rate/Synonymous Substitution Rate (Ka/Ks) Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
cp | chloroplast |
mt | mitochondrial |
bp | base pair |
LSC | large single copy |
SSC | small single copy |
IR | inverted repeat |
RSCU | relative synonymous codon usage |
SSR | simple sequence repeats |
Pi | nucleotide variability |
PCGs | protein-coding genes |
MTPT | mitochondrial plastid DNA |
Ka | nonsynonymous substitutions |
Ks | synonymous substitutions |
References
- Yao, Q.; Gao, Y.; Lai, C.; Wu, C.; Zhao, C.-L.; Wu, J.-L.; Tang, D.-X. The phytochemistry, pharmacology and applications of Melicope pteleifolia: A review. J. Ethnopharmacol. 2020, 251, 112546. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Huang, M.; Guo, L.; Hu, X. Effects and its mechanism of Evodia lepta on anti-inflammation and abirritation. China J. Exp. Tradit. Med. Formulae 2011, 17, 125. [Google Scholar]
- Kabir, M.F.; Mohd Ali, J.; Abolmaesoomi, M.; Hashim, O.H. Melicope ptelefolia leaf extracts exhibit antioxidant activity and exert anti-proliferative effect with apoptosis induction on four different cancer cell lines. BMC Complement. Altern. Med. 2017, 17, 252. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Zhang, L.; Ren, L.; Yang, P. Study on the scavenging effect of evodia lepta on hydroxyl radical. J. Chin. Clin. Med. 2003, 4, 32–34. [Google Scholar]
- Nguyen, N.H.; Ha, T.K.Q.; Choi, S.; Eum, S.; Lee, C.H.; Bach, T.T.; Chinh, V.T.; Oh, W.K. Chemical constituents from Melicope pteleifolia leaves. Phytochemistry 2016, 130, 291–300. [Google Scholar] [CrossRef]
- Pang, H.; Yu, Y.H.; Tang, G.F. Protective effects of Evodia lepta extracts on experimental liver injury in mice. J. Guangxi Med. Univ. 2006, 23, 961–962. [Google Scholar]
- Flora of China Editorial Committee. Flora of China; The Chinese Academy of Sciences, Beijing Science Press: Beijing, China, 1997; pp. 59–63. [Google Scholar]
- Huang, X.; Coulibaly, D.; Tan, W.; Ni, Z.; Shi, T.; Li, H.; Hayat, F.; Gao, Z. The analysis of genetic structure and characteristics of the chloroplast genome in different Japanese apricot germplasm populations. BMC Plant Biol. 2022, 22, 354. [Google Scholar] [CrossRef]
- Li, Y.-X.; Li, Z.-H.; Schuiteman, A.; Chase, M.W.; Li, J.-W.; Huang, W.-C.; Hidayat, A.; Wu, S.-S.; Jin, X.-H. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes. Mol. Phylogenetics Evol. 2019, 139, 106540. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, L.; Xing, J.; Li, Y.; Wang, Y.; Yao, H. The complete chloroplast genome of Melicope pteleifolia (Champ. ex Benth.) TG Hartley (Rutaceae). Mitochondrial DNA Part B 2021, 6, 1339–1340. [Google Scholar] [CrossRef]
- Yu, J.; Chen, L.; Mao, J.; Jin, X.; Shen, J. The complete chloroplast genome of Melicope pteleifolia (Rutaceae), a traditional medicinal plant in Southeast China. Mitochondrial DNA Part B 2021, 6, 60–61. [Google Scholar] [CrossRef]
- Abdel-Latif, A.; Osman, G. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods 2017, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Shapiro, J.A.; von Sternberg, R. Why repetitive DNA is essential to genome function. Biol. Rev. 2005, 80, 227–250. [Google Scholar] [CrossRef]
- Stern, D.B.; Palmer, J.D. Recombination sequences in plant mitochondrial genomes: Diversity and homologies to known mitochondrial genes. Nucleic Acids Res. 1984, 12, 6141–6157. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Tan, H.; Liu, X.; Zhang, C.; Dong, Y. Analysis and comparison on characteristic of mitochondrial genome of eight plants. Biotechnol. Bull 2011, 10, 156–162. [Google Scholar]
- Zhou, P.; Zhang, Q.; Li, F.; Huang, J.; Zhang, M. Assembly and comparative analysis of the complete mitochondrial genome of Ilex metabaptista (Aquifoliaceae), a Chinese endemic species with a narrow distribution. BMC Plant Biol. 2023, 23, 393. [Google Scholar] [CrossRef]
- Guo, L.; Lao, G.; He, L.; Xiao, D.; Zhan, J.; Wang, A. De novo assembly and comparative analysis of mitochondrial genomes of two Pueraria montana varieties. Int. J. Mol. Sci. 2024, 25, 5656. [Google Scholar] [CrossRef]
- Castandet, B.; Araya, A. RNA editing in plant organelles. Why make it easy? Biochemistry 2011, 76, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Stern, D.B.; Lonsdale, D.M. Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 1982, 299, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Alverson, A.J.; Wei, X.; Rice, D.W.; Stern, D.B.; Barry, K.; Palmer, J.D. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. 2010, 27, 1436–1448. [Google Scholar] [CrossRef] [PubMed]
- Torke, B.M.; Cardoso, D.; Chang, H.; Li, S.-J.; Niu, M.; Pennington, R.T.; Stirton, C.H.; Xu, W.-B.; Zartman, C.E.; Chung, K.-F. A dated molecular phylogeny and biogeographical analysis reveals the evolutionary history of the trans-pacifically disjunct tropical tree genus Ormosia (Fabaceae). Mol. Phylogenetics Evol. 2022, 166, 107329. [Google Scholar] [CrossRef]
- Fay, J.C.; Wu, C.-I. Sequence divergence, functional constraint, and selection in protein evolution. Annu. Rev. Genom. Hum. Genet. 2003, 4, 213–235. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhao, X.-Q.; Wang, J.; Wong, G.K.-S.; Yu, J. KaKs_Calculator: Calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinform. 2006, 4, 259–263. [Google Scholar] [CrossRef]
- Miao, X.; Yang, W.; Li, D.; Wang, A.; Li, J.; Deng, X.; He, L.; Niu, J. Assembly and comparative analysis of the complete mitochondrial and chloroplast genome of Cyperus stoloniferus (Cyperaceae), a coastal plant possessing saline-alkali tolerance. BMC Plant Biol. 2024, 24, 628. [Google Scholar] [CrossRef]
- Kozik, A.; Rowan, B.A.; Lavelle, D.; Berke, L.; Schranz, M.E.; Michelmore, R.W.; Christensen, A.C. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLoS Genet. 2019, 15, e1008373. [Google Scholar] [CrossRef]
- Xia, C.; Li, J.; Zuo, Y.; He, P.; Zhang, H.; Zhang, X.; Wang, B.; Zhang, J.; Yu, J.; Deng, H. Complete mitochondrial genome of Thuja sutchuenensis and its implications on evolutionary analysis of complex mitogenome architecture in Cupressaceae. BMC Plant Biol. 2023, 23, 84. [Google Scholar] [CrossRef]
- Janouškovec, J.; Liu, S.-L.; Martone, P.T.; Carré, W.; Leblanc, C.; Collén, J.; Keeling, P.J. Evolution of red algal plastid genomes: Ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS ONE 2013, 8, e59001. [Google Scholar] [CrossRef]
- Sloan, D.B.; Alverson, A.J.; Chuckalovcak, J.P.; Wu, M.; McCauley, D.E.; Palmer, J.D.; Taylor, D.R. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012, 10, e1001241. [Google Scholar] [CrossRef] [PubMed]
- Kan, S.-L.; Shen, T.-T.; Ran, J.-H.; Wang, X.-Q. Both Conifer II and Gnetales are characterized by a high frequency of ancient mitochondrial gene transfer to the nuclear genome. BMC Biol. 2021, 19, 146. [Google Scholar] [CrossRef] [PubMed]
- Kitazaki, K.; Kubo, T. Cost of having the largest mitochondrial genome: Evolutionary mechanism of plant mitochondrial genome. J. Bot. 2010, 2010, 620137. [Google Scholar] [CrossRef]
- Yu, F.; Bi, C.; Wang, X.; Qian, X.; Ye, N. The complete mitochondrial genome of Citrus sinensis. Mitochondrial DNA Part B 2018, 3, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, S.; Lü, P.; Gong, X.; Sun, M.; Tang, M. De novo assembly and characterization of the complete mitochondrial genome of Phellodendron amurense reveals three repeat-mediated recombination. Gene 2024, 935, 149031. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.-H.; Jiang, X.-M.; Du, L.-M.; Xiao, G.-S.; Hu, T.-Z.; Yue, B.-S.; Quan, Q.-M. Genome-wide survey and analysis of microsatellite sequences in bovid species. PLoS ONE 2015, 10, e0133667. [Google Scholar] [CrossRef]
- Hong, C.P.; Piao, Z.Y.; Kang, T.W.; Batley, J.; Yang, T.-J.; Hur, Y.-K.; Bhak, J.; Park, B.-S.; Edwards, D.; Lim, Y.P. Genomic distribution of simple sequence repeats in Brassica rapa. Mol. Cells 2007, 23, 349–356. [Google Scholar] [CrossRef]
- Stam, M.; Belele, C.; Dorweiler, J.E.; Chandler, V.L. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev. 2002, 16, 1906–1918. [Google Scholar] [CrossRef]
- Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 2013, 14, 49–61. [Google Scholar] [CrossRef]
- Veilleux, R.E.; Mills, K.P.; Baxter, A.J.; Upham, K.T.; Ferguson, T.J.; Holt, S.H.; Lu, N.; Ruiz-Rojas, J.J.; Pantazis, C.J.; Davis, C.M. Transposon tagging in diploid strawberry. Plant Biotechnol. J. 2012, 10, 985–994. [Google Scholar] [CrossRef]
- Choi, K.-S.; Park, S. Complete plastid and mitochondrial genomes of Aeginetia indica reveal intracellular gene transfer (IGT), horizontal gene transfer (HGT), and cytoplasmic male sterility (CMS). Int. J. Mol. Sci. 2021, 22, 6143. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Liu, T.-J.; Hao, G.; Ge, X.-J.; Yan, H.-F. Comparative analyses of three complete Primula mitogenomes with insights into mitogenome size variation in Ericales. BMC Genom. 2022, 23, 770. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, Y.-W.; Shih, A.C.-C.; Wu, C.-S.; Wang, Y.-N.; Chaw, S.-M. Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol. Biol. Evol. 2007, 24, 2040–2048. [Google Scholar] [CrossRef]
- Bergthorsson, U.; Adams, K.L.; Thomason, B.; Palmer, J.D. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 2003, 424, 197–201. [Google Scholar] [CrossRef]
- Hao, W.; Liu, G.; Wang, W.; Shen, W.; Zhao, Y.; Sun, J.; Yang, Q.; Zhang, Y.; Fan, W.; Pei, S. RNA editing and its roles in plant organelles. Front. Genet. 2021, 12, 757109. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, M.; Sugita, M. RNA editing and its molecular mechanism in plant organelles. Genes 2016, 8, 5. [Google Scholar] [CrossRef]
- Small, I.D.; Schallenberg-Rüdinger, M.; Takenaka, M.; Mireau, H.; Ostersetzer-Biran, O. Plant organellar RNA editing: What 30 years of research has revealed. Plant J. 2020, 101, 1040–1056. [Google Scholar] [CrossRef]
- Han, K.; Shi, C.; Li, L.; Seim, I.; Lee, S.M.Y.; Xu, X.; Yang, H.; Fan, G.; Liu, X. Lineage-specific evolution of mangrove plastid genomes. Plant Genome 2020, 13, e20019. [Google Scholar] [CrossRef]
- Cadorna, C.A.E.; Pahayo, D.G.; Rey, J.D. The first mitochondrial genome of Calophyllum soulattri Burm. f. Sci. Rep. 2024, 14, 5112. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Shi, W.; Luo, Y.; Gao, K.; Huang, J.; Wei, H.; Liang, P.; He, L.; Xiao, D.; Zhan, J.; et al. De Novo Assembly of First Mitochondrial Genome in Melicope pteleifolia (Rutaceae): Resolving Inter-Organellar Gene Transfer Events Through Integrated Chloroplast Analysis. Horticulturae 2025, 11, 628. https://doi.org/10.3390/horticulturae11060628
Guo L, Shi W, Luo Y, Gao K, Huang J, Wei H, Liang P, He L, Xiao D, Zhan J, et al. De Novo Assembly of First Mitochondrial Genome in Melicope pteleifolia (Rutaceae): Resolving Inter-Organellar Gene Transfer Events Through Integrated Chloroplast Analysis. Horticulturae. 2025; 11(6):628. https://doi.org/10.3390/horticulturae11060628
Chicago/Turabian StyleGuo, Lijun, Wenwen Shi, Yatao Luo, Kai Gao, Jingli Huang, Hong Wei, Pan Liang, Longfei He, Dong Xiao, Jie Zhan, and et al. 2025. "De Novo Assembly of First Mitochondrial Genome in Melicope pteleifolia (Rutaceae): Resolving Inter-Organellar Gene Transfer Events Through Integrated Chloroplast Analysis" Horticulturae 11, no. 6: 628. https://doi.org/10.3390/horticulturae11060628
APA StyleGuo, L., Shi, W., Luo, Y., Gao, K., Huang, J., Wei, H., Liang, P., He, L., Xiao, D., Zhan, J., Zeng, G., & Wang, A. (2025). De Novo Assembly of First Mitochondrial Genome in Melicope pteleifolia (Rutaceae): Resolving Inter-Organellar Gene Transfer Events Through Integrated Chloroplast Analysis. Horticulturae, 11(6), 628. https://doi.org/10.3390/horticulturae11060628