Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress
Abstract
:1. Introduction
2. Effects of AMF on Plant Growth under Temperature Stress
Host | Stress Mode | Mycorrhizal Species | Reaction after Inoculation | Reference |
---|---|---|---|---|
Zea mays L. | Low-temperature stress | Glomus etunicatum | Root dry weight and shoot fresh weight increased by 95.45% and 26.85%. | [29] |
High-temperature stress | G. Etunicatum; F. geosporum | Root SOD and CAT activities increased by 30% and 79%; Pn, Gs, and Tr increased by 31.47%, 37.65%, and 11.91%; Ci decreased by 92.01% | [51,52] | |
Cucumis sativus L. | Low-temperature stress | Funneliformis mosseae | Fresh mass, dry mass of root, root–shoot ratio of fresh mass increased by 51.33%, 31.03%, and 26.06%; phenols, flavonoids, and lignin increased by 73.11%, 50.64%, and 26.96%; the expression of ATPase gene increased and the activity of H+-ATPase was enhanced. | [30,53] |
Glycine max (L.) Merr. | High-temperature stress | Rhizophagus irregularis, Funneliformis mosseae, Funneliformis geosporum | Pn and Tr increased by 32% and 27%, respectively, and the yield was increased. | [48] |
Solanum melongena L. | Low-temperature stress | C. etunicatum | Shoot and root dry weight increased by 93.62% and 53.85%. | [49] |
Tectona grandis L. f. | Low-temperature stress | Glomus versiforme | SOD activity increased by 10.6%. | [51] |
Lilium brownii var. viridulum Baker | High-temperature stress | Funneliformis mosseae, Glomus versiforme | The contents of proline and soluble protein were increased by 14% and 15%. | [54] |
Lactuca sativa var. ramosa Hort. | High-temperature stress | Funneliformis mosseae | Pn and Tr increased by 7.7% and 5.9%. | [55] |
Citrus reticulata Blanco | Low-temperature stress | Glomus etunicatum | Pn, Tr, and Gs increased by 22.59%, 52.08%, and 46.94%. | [56] |
Triticum aestivum L. | High-temperature stress | Rhizophagus intraradices, Funneliformis mosseae, F. geosporum | Chlorophyll content increased by 26%. | [57] |
Camellia sinensis (L.) O. Kuntze | Low-temperature stress | Clariodeoglomus etunicatum | Caffeine content increased by 89.8%. | [58] |
3. Effects of AMF on Plant Physiology and Biochemistry under Temperature Stress
3.1. Effects of AMF on Plant Oxidation Systems under Temperature Stress
3.2. Effects of AMF on Plant Osmotic Balance under Temperature Stress
4. Effects of AMF on Plant Photosynthesis under Temperature Stress
4.1. Effects of AMF on Plant Photosynthetic Characteristics under Temperature Stress
4.2. Effects of AMF on Plant Chlorophyll under Temperature Stress
5. Effects of AMF on Plant Secondary Metabolism under Temperature Stress
5.1. Effects of AMF on Plant Terpenoids under Temperature Stress
5.2. Effects of AMF on Plant Phenolic Compounds under Temperature Stress
5.3. Effects of AMF on Nitrogen-Containing Compounds in Plants under Temperature Stress
5.4. Effect of AMF on Plant Volatile Organic Compounds under Temperature Stress
5.5. Effect of AMF on Plant Polyamines under Temperature Stress
6. Effects of AMF on Plant Related Protein and Gene Expression under Temperature Stress
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chandrasekeran, A.; Mahalingam, P.U. Diversity of Arbuscular Mycorrhizae Fungi from Orchard Ecosystem. J. Plant Pathol. Microbiol. 2014, 4, 230. [Google Scholar] [CrossRef]
- Mills, M.W. Bringing Light to below Ground Patterns: Arbuscular Mycorrhizae Fungi Diversity Along an Elevation Gradient in Southern California; California State University: Long Beach, CA, USA, 2015. [Google Scholar]
- Liu, C.-Y.; Wang, P.; Zhang, D.-J.; Zou, Y.-N.; Kuča, K.; Wu, Q.-S. Mycorrhiza-induced change in root hair growth is associated with IAA accumulation and expression of EXPs in trifoliate orange under two P levels. Sci. Hortic. 2018, 234, 227–235. [Google Scholar] [CrossRef]
- Sun, M.; Yuan, D.; Hu, X.; Zhang, D.J. Effects of mycorrhizal fungi on plant growth, nutrient absorption and phytohormones levels in tea under shading condition. Not. Bot. Horti Agrobot. 2020, 48, 2006–2020. [Google Scholar] [CrossRef]
- Aliasgharzad, N.; Bolandnazar, S.A.; Neyshabouri, M.R.; Chaparzadeh, N. Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa). Biologia 2009, 64, 512–515. [Google Scholar] [CrossRef]
- Liao, D.; Wang, S.; Cui, M.; Liu, J.; Chen, A.; Xu, G. Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. Int. J. Mol. Sci. 2018, 19, 3146. [Google Scholar] [CrossRef] [PubMed]
- Limonard, T. Book Reviews. Acta Bot. Neerl. 1985, 34, 443–444. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes. Front. Microbiol. 2016, 19, 1559. [Google Scholar] [CrossRef] [PubMed]
- Ebbisa, A. Arbuscular Mycorrhizal Fungi (AMF) in Optimizing Nutrient Bioavailability and Reducing Agrochemicals for Maintaining Sustainable Agroecosystems; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Torres-Barragán, A.; Zavaleta-Mejía, E.; González-Chávez, C.; Ferrera-Cerrato, R. The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza 1996, 6, 253–257. [Google Scholar] [CrossRef]
- Affokpon, A.; Coyne, D.L.; Lawouin, L.; Tossou, C.; Agbèdè, R.D.; Coosemans, J. Effectiveness of native West African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes. Biol. Fertil. Soils 2011, 47, 207–217. [Google Scholar] [CrossRef]
- Bagyaraj, D.J.; Sreeramulu, K.R. Preinoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant Soil 1982, 69, 375–381. [Google Scholar] [CrossRef]
- Séry, D.J.M.; Kouadjo, Z.G.C.; Voko, B.R.R.; Zeze, A. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions. Front. Microbiol. 2016, 22, 2063. [Google Scholar] [CrossRef] [PubMed]
- Hijri, M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 2016, 26, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Guo, H.; Zhang, Q.; Guo, H.; Zhang, L.; Zhang, C.; Gou, Z.; Liu, Y.; Wei, J.; Chen, A.; et al. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci. Rep. 2020, 10, 2084. [Google Scholar] [CrossRef] [PubMed]
- Allakhverdiev, S.I.; Kreslavski, V.D.; Klimov, V.V.; Los, D.A.; Carpentier, R.; Mohanty, P. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 2008, 98, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, Y.; Hirano, I.; Sassa, D.; Koshikawa, K. Alleviation of High Temperature Stress in Strawberry Plants Infected with Arbuscular Mycorrhizal Fungi. Environ. Control Biol. 2004, 2, 105–111. [Google Scholar] [CrossRef]
- Gavito, M.E.; Olsson, P.A.; Rouhier, H.; Medina-Peñafiel, A.; Jakobsen, I.; Bago, A.; Azcón-Aguilar, C. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytol. 2005, 168, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Tian, X. Effect of High Temperature Stress on Some Physiological Characteristics of Buckwheat. J. Anhui Agric. Sci. 2008, 36, 13519–13520. [Google Scholar] [CrossRef]
- Khattak, A.M.; Pearson, S. Spectral Filters and Temperature Effects on the Growth and Development of Chrysanthemums under Low Light Integral. Plant Growth Regul. 2006, 49, 61–68. [Google Scholar] [CrossRef]
- Eun-Joo, H.; Young-Ryul, C.; Yong-Beom, L. Air Temperature and Relative Humidity Affect the Growth of Chrysanthemum Plantlets in the Microponic System. Hortic. Environ. Biotechnol. 1998, 39, 625–628. [Google Scholar]
- Luo, N.; Wei, S.; Li, J.; Gu, W.; He, D.; Qu, T.; Qiao, T.; Yang, Z. Effects of low-temperature stress on root system characteristics and electric conductivity of maize seedlings. Chin. J. Ecol. 2014, 33, 2694–2699. [Google Scholar]
- An, D.; Yang, J.; Zhang, P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress. BMC Genom. 2012, 13, 64. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.J.; Zwieniecki, M.A.; Passioura, J.B.; Randall, L.B.; Holbrook, N.M.; St. Clair, D.A. Water relations under root chilling in a sensitive and tolerant tomato species. Plant Cell Environ. 2004, 27, 971–979. [Google Scholar] [CrossRef]
- Li, Y.; Matsubara, Y.; Miyawaki, C.; Liu, Y. Temperature stress tolerance and increase in antioxidative enzyme activities in mycorrhizal strawberry plants. Acta Hortic. 2008, 774, 391–396. [Google Scholar] [CrossRef]
- Abdel Latef, A.A.H.; He, C. Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Acta Physiol. Plant. 2011, 33, 1217–1225. [Google Scholar] [CrossRef]
- Maya, M.A.; Matsubara, Y.I. Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 2013, 23, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.C.; Song, F.B.; Xu, H.W. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 2010, 331, 129–137. [Google Scholar] [CrossRef]
- Chen, S.; Jin, W.; Liu, A.; Zhang, S.; Liu, D.; Wang, F.; Lin, X.; He, C. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci. Hortic. 2013, 160, 222–229. [Google Scholar] [CrossRef]
- Andersen, C.P.; Sucoff, E.I.; Dixon, R.K. The influence of low soil temperature on the growth of vesicular–arbuscular mycorrhizal Fraxinus pennsylvanica. Can. J. For. Res. 1987, 17, 951–956. [Google Scholar] [CrossRef]
- Lizaso, J.I.; Ruiz-Ramos, M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sánchez, D.; García, E.; Rodríguez, A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 2018, 216, 129–140. [Google Scholar] [CrossRef]
- Felicetti, D.A.; Schrader, L.E. Changes in pigment concentrations associated with sunburn browning of five apple cultivars. I. Phenolics. Plant Sci. 2009, 176, 78–83. [Google Scholar] [CrossRef]
- Cara, J.; Richard, T.; Brent, K. Chickpea tolerance to temperature stress: Status and opportunity for improvement. J. Plant Physiol. 2021, 267, 153555. [Google Scholar] [CrossRef]
- Drzejuk, J.; Lukaszewska, A.; Rabiza-Świder, J.; Skutnik, E. Low temperature forcing reduces oxidative stress in lilac flowers. Hortic. Environ. Biotechnol. 2016, 57, 625–632. [Google Scholar] [CrossRef]
- Ballard, J.K. Frost control in pear orchards. Childers Ordering Address 1982, 11, 290–301. [Google Scholar]
- Segeťa, V. Physiology of the cold-resistance of maize during Germination. the reaction of maize (Zea mays L.) to low temperature during germination and its cold-resistance. Biol. Plant. 1964, 6, 189–197. [Google Scholar] [CrossRef]
- Bhantana, P.; Malla, R.; Vista, S.P.; Rana, S.; Mohamed, G.M.; Das Joshi, B.; Shah, S.; Khadka, D.; Timsina, G.P.; Poudel, K.; et al. Use of Arbuscular Mycorrhizal Fungi (AMF) and Zinc Fertilizers in an Adaptation of Plant from Drought and Heat Stress. Biomed. J. Sci. Tech. Res. 2021, 38, 30357–30373. [Google Scholar] [CrossRef]
- Kanchan, J.; Singh, V.B.; Sunita, K.; Alamri, S.A.; Siddiqui, M.H.; Rastogi, A. Inoculation with arbuscular mycorrhizal fungi alleviates the adverse effects of high temperature in soybean. Plants 2022, 11, 2210. [Google Scholar] [CrossRef] [PubMed]
- Pasbani, B.; Salimi, A.; Aliasgharzad, N.; Hajiboland, R. Colonization with arbuscular mycorrhizal fungi mitigates cold stress through improvement of antioxidant defense and accumulation of protecting molecules in eggplants. Sci. Hortic. 2020, 272, 109575. [Google Scholar] [CrossRef]
- Giovannetti, M.; Azzolini, D.; Citernesi, A.S. Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl. Environ. Microbiol. 1999, 65, 5571–5575. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Hu, J.; Wu, F.; Lin, X. The function and potential application of disease suppression by arbuscular mycorrhizal fungi. Chin. J. Appl. Environ. Biol. 2018, 24, 941–951. [Google Scholar] [CrossRef]
- Deng, J. Mechanisms of the Effects of Arbuscular Mycorrhizal Fungus and Grass Endophyte on Leaf Spot of Perennial Ryegrass; Lanzhou University: Lanzhou, China, 2021. (In Chinese) [Google Scholar]
- Zhu, X.; Song, F.; Liu, S.; Liu, T.; Zhou, X. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. Under drought stress. Plant Soil Environ. 2012, 58, 186–191. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Agarwal, R.M. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.). Protoplasma 2017, 254, 1471–1486. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Mummey, D.L. Mycorrhizas and soil structure. New Phytol. New Phytol. 2006, 171, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Neagoe, A.; Iordache, V.; Bergmann, H.; Kothe, E. Patterns of effects of arbuscular mycorrhizal fungi on plants grown in contaminated soil. J. Plant Nutr. Soil Sci. 2013, 176, 273–286. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Yano-Melo, A.M.; Orivaldo, J.S., Jr.; Maia, L.C. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric. Ecosyst. Environ. 2003, 95, 343–348. [Google Scholar] [CrossRef]
- Kapulnik, Y.; Douds, D.D. Mycorrhizal Fungi Influence Soil Structure. In Arbuscular Mycorrhizas: Physiology and Function; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Zhu, X.; Song, F.; Xu, H. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 2010, 20, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Sharma, M.P.; Jajoo, A. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J. Photochem. Photobiol. B Biol. 2018, 180, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Chen, S.; Chang, R.; Liu, D.; Chen, H.; Ahammed, G.J.; Lin, X.; He, C. Arbuscular mycorrhizae improve low temperature tolerance in cucumber via alterations in H2O2 accumulation and ATPase activity. J. Plant Res. 2014, 127, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.S.; Zhang, R.; Guo, S.X. Arbuscular mycorrhizal fungi under high temperature stress on the influence of the heat resistant lily. J. Qingdao Agric. Univ. Nat. Sci. Ed. 2018, 35, 7. (In Chinese) [Google Scholar]
- Yan, Z.; Ma, T.; Guo, S.; Liu, R.; Li, M. Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Sci. Hortic. 2021, 280, 109933. [Google Scholar] [CrossRef]
- Xian, C.Z.; Feng, B.S.; Hong, W.X. Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Chin. J. Appl. Ecol. 2010, 21, 470. [Google Scholar] [CrossRef]
- Paradis, R.Y.; Dalpé, Y.; Charest, C. The combined effect of arbuscular mycorrhizas and short-term cold exposure on wheat. New Phytol. 2010, 129, 637–642. [Google Scholar] [CrossRef]
- Lei, A.Q.; Zhou, J.H.; Rong, Z.Y.; Alqahtani, M.D.; Gao, X.B.; Wu, Q.S. Mycorrhiza-triggered changes in leaf food quality and secondary metabolite profile in tea at low temperatures. Rhizosphere 2024, 29, 100840. [Google Scholar] [CrossRef]
- Hossain, M.; Bhattacharjee, S.; Armin, S.; Qian, P.; Xin, W.; Li, H.-Y.; Burritt, D.J.; Fujita, M.; Tran, L.S.P. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging. Front. Plant Sci. 2015, 6, 420. [Google Scholar] [CrossRef] [PubMed]
- Nosaka, Y.; Nosaka, A.Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336. [Google Scholar] [CrossRef] [PubMed]
- Robson, C.A.; Zhao, D.; Vanlerberghe, G.C. Interactions between mitochondrial electron transport, reactive oxygen species, and the susceptibility of Nicotiana tabacum cells to programmed cell death. Botany 2008, 86, 278–290. [Google Scholar] [CrossRef]
- Blum, A.; Ebercon, A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 1981, 21, 43–47. [Google Scholar] [CrossRef]
- Zou, M.Q.; Yuan, L.Y.; Zhu, S.D.; Liu, S.; Ge, J.; Wang, C. Effects of heat stress on photosynthetic characteristics and chloroplast ultrastructure of a heat-sensitive and heat-tolerant cultivar of wucai (Brassica campestris L.). Acta Physiol. Plant. 2017, 39, 30. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, W.B.; Huang, J.Z.; Chen, Q.B. Effects of high temperature stress on physiological indexes of wild Hubei lily. J. Northwest For. Coll. 2019, 34, 62–68. (In Chinese) [Google Scholar]
- Chaitanya, K.V.; Sundar, D.; Masilamani, S.; Reddy, A.R. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul. 2002, 36, 175–180. [Google Scholar] [CrossRef]
- Almeselmani, M.; Deshmukh, P.; Sairam, R.; Kushwaha, S.; Singh, T. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 2006, 171, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Mohanty, N. Response of seedlings to heat-stress in cultivars of wheat: Growth temperature-dependent differential modulation of photosystem 1 and 2 activity, and foliar antioxidant defense capacity. J. Plant Physiol. 2002, 159, 49–59. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, K.; Gu, Y.; Zhang, L.; Li, W.; Li, Z. Effects of Low-Temperature Stress and Brassinolide Application on the Photosynthesis and Leaf Structure of Tung Tree Seedlings. Front. Plant Sci. 2020, 10, 1767. [Google Scholar] [CrossRef]
- Feng, Z.; Guo, A.; Feng, Z. Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul. 2003, 39, 277–283. [Google Scholar] [CrossRef]
- Li, M.A.; Guo, T.; Chen, X.; Zang, D.; Gong, X.; Sun, J.; Qiu, Y.; Wang, Y. Physiological Responses of Actinidia arguta (Seib.et.Zucc.) to Low Temperature Stress. Agric. Sci. Technol. 2017, 18, 767–770, 776. [Google Scholar]
- Baek, K.H.; Skinner, D.Z. Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Sci. 2003, 165, 1221–1227. [Google Scholar] [CrossRef]
- Zhu, X.; Song, F.; Liu, F. Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants. In Arbuscular Mycorrhizas and Stress Tolerance of Plants; Wu, Q.S., Ed.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, H.; Liang, K.; Huang, G.; Pinyopusarerk, K. Improved Tolerance of Teak (Tectona grandis L.f.) Seedlings to Low-Temperature Stress by the Combined Effect of Arbuscular Mycorrhiza and Paclobutrazol. J. Plant Growth Regul. 2012, 31, 427–435. [Google Scholar] [CrossRef]
- Abou-Elwafa, S.F.; Amein, K.A. Genetic Diversity and Potential High Temperature Tolerance in Barley (Hordeum vulgare). World J. Agric. Res. 2016, 4, 1–8. [Google Scholar]
- Hong, E.; Xia, X.; Ji, W.; Li, T.; Xu, X.; Chen, J.; Chen, X.; Zhu, X. Effects of High Temperature Stress on the Physiological and Biochemical Characteristics of Paeonia ostii. Int. J. Mol. Sci. 2023, 24, 11180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.H.; Zhou, G.; Sun, B.T.; Li, X.H.; Wang, S.S.; Shan, W. Physiological and Biochemical Effects of High Temperature Stress on the Seedlings of Two Rhododendron Species of Subgenus Hymenanthes. J. Plant Sci. 2011, 29, 362–369. [Google Scholar]
- Li, Z.G.; Yuan, L.X.; Wang, Q.L.; Ding, Z.L.; Dong, C.Y. Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol. Plant. 2013, 35, 2127–2136. [Google Scholar] [CrossRef]
- Haagenson, D.M.; Cunningham, S.M.; Volenec, J.J. Root Physiology of Less Fall Dormant, Winter Hardy Alfalfa Selections. Crop Sci. 2003, 43, 1441–1447. [Google Scholar] [CrossRef]
- Bornman, C.H.; Jansson, E.; Nicotiana tabacum callus studies. X. ABA increases resistance to cold damage. Physiol. Plant. 2010, 48, 491–493. [Google Scholar] [CrossRef]
- Chae, W.B. Factors Affecting Tolerance to Low Night Temperature Differ by Fruit Types in Tomato. Agriculture 2021, 11, 681. [Google Scholar] [CrossRef]
- Ali, Z.S.; Sandhya, V.; Grover, M.; Kishore, N.; Rao, L.V.; Venkateswarlu, B. Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol. Fertil. Soils 2009, 46, 45–55. [Google Scholar] [CrossRef]
- Zhu, X.; Song, F.; Liu, F.; Liu, S.; Tian, C. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress. Crop Pasture Sci. 2015, 66, 62–70. [Google Scholar] [CrossRef]
- Berry, J.A.; Bjorkman, O. Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annu. Rev. Plant Physiol. 2003, 31, 491–543. [Google Scholar] [CrossRef]
- Xu, Q.; Paulsen, A.Q.; Guikema, J.A.; Paulsen, G.M. Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environ. Exp. Bot. 1995, 35, 43–54. [Google Scholar] [CrossRef]
- AL-Khatib, K.; Paulsen, G. High-temperature effects on photosynthetic processes in temperate and tropical cereals. Crop Sci. 1999, 39, 119–125. [Google Scholar] [CrossRef]
- Hendrickson, L.; Ball, M.C.; Wood, J.T.; Chow, W.S.; Furbank, R.T. Low temperature effects on photosynthesis and growth of grapevine. Plant Cell Environ. 2010, 27, 795–809. [Google Scholar] [CrossRef]
- Chugunova, N.G.; Chermnykh, L.N.; Kosobryukhov, A.A.; Karpilova, I.F.; Chermnykh, R.M. Interrelationship of growth processes and photosynthesis during cucumber leaf ontogeny under low night temperature. Fiziol. Rastenij 1980, 9, 127–141. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N. Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Sci. Hortic. 2010, 125, 289–293. [Google Scholar] [CrossRef]
- Ma, J.; Janoušková, M.; Yan, Y.; Yu, X.; Zou, Z.; Li, Y.; He, C. The photoprotective role of arbuscular mycorrhizal fungi (AMF) in cucumber seedlings under cold stress. Acta Hortic. 2018, 305–318. [Google Scholar] [CrossRef]
- Buttery, B.R.; Buzzell, R.I. The relationship between chlorophyll content and rate of photosynthesis in soybeans. Can. J. Plant Sci. 1977, 57, 1. [Google Scholar] [CrossRef]
- Ristic, Z.; Bukovnik, U.; Prasad, P.V.V. Correlation between Heat Stability of Thylakoid Membranes and Loss of Chlorophyll in Winter Wheat under Heat Stress. Crop Sci. 2007, 47, 2067–2073. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, S.; Tripathi, A.N. Gender-specific responses of Piper betle L. to low temperature stress: Changes in chlorophyllase activity. Biol. Plant. 2006, 50, 705–708. [Google Scholar] [CrossRef]
- de Oliveira, J.G.; da Costa Aguiar Alves, P.L.; Vitória, A.P. Alterations in chlorophyll a fluorescence, pigment concentrations and lipid peroxidation to chilling temperature in coffee seedlings. Environ. Exp. Bot. 2009, 67, 71–76. [Google Scholar] [CrossRef]
- Ma, J.; Janouková, M.; Yan, Y.; Yu, X.; Li, Y.; He, C. Arbuscular mycorrhizal fungi (AMF) increase carbohydrate content in cucumber subjected to low temperature stress. In Proceedings of the ISHS Acta Horticulturae, International Horticultural Congress IHC2018: III International Symposium on Innovation and New Technologies in Protected Cultivation, Istanbul, Turkey, 20 March 2020; pp. 359–364. [Google Scholar] [CrossRef]
- Caradonia, F.; Francia, E.; Morcia, C.; Ghizzoni, R.; Moulin, L.; Terzi, V.; Ronga, D. Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria Avoid Processing Tomato Leaf Damage during Chilling Stress. Agronomy 2019, 9, 299. [Google Scholar] [CrossRef]
- Degenhardt, J.; Köllner, T.G.; Gershenzon, J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 2009, 70, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Sharma, R.A. Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015, 5, 129–151. [Google Scholar] [CrossRef] [PubMed]
- Machiani, M.A.; Javanmard, A.; Machiani, R.H.; Sadeghpour, A. Arbuscular mycorrhizal Fungi and Changes in Primary and Secondary Metabolites. Plants 2022, 11, 2183. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Biosci. Biotechnol. Biochem. 2007, 71, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Heikham, E.; Rupam, K.; Bhoopander, G. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef]
- Chen, X.Y.; Song, F.B.; Liu, F.L.; Tian, C.J.; Liu, S.Q.; Xu, H.W.; Zhu, X.C. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes. Sci. World J. 2014, 2014, 956141. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Mahawar, S.; Jain, D.; Udpadhay, S.K.; Mohanty, S.R.; Singh, A.; Maharjan, E. Boosting Sustainable Agriculture by Arbuscular Mycorrhiza under Stress Condition: Mechanism and Future Prospective. Biomed. Res. Int. 2022, 2022, 5275449. [Google Scholar] [CrossRef] [PubMed]
- Dehne, H.W.; Schonbeck, F. Investigations on the influence of endotrophic mycorrhiza on plant diseaseas. II. Phenol metabolism and lignification. Phytopathology 1979, 86, 210–216. [Google Scholar] [CrossRef]
- Hajiboland, R.; Joudmand, A.; Aliasgharzad, N.; Tolrá, R.; Poschenrieder, C. Arbuscular mycorrhizal fungi alleviate low-temperature stress and increase freezing resistance as a substitute for acclimation treatment in barley. Crop Pasture Sci. 2019, 70, 218–233. [Google Scholar] [CrossRef]
- Torres, N.; Goicoechea, N.; Morales, F.; Antolín, M.C. Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. Crop Past 2016, 67, 961–977. [Google Scholar] [CrossRef]
- Hussein, R.A.; El-Anssary, A.A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. In Herbal Medicine; Builders, P.F., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Wei, G.T.; Wang, H.G. Effects of VA mycorrhizal fungi on growth, nutrient uptake and effective compounds in Chinese medicinal herb Datura stramonium L. Sci. Agric. Sin. 1989, 25, 56–61. [Google Scholar]
- Abu-Zeyad, R.; Khan, A.; Khoo, C. Occurrence of arbuscular mycorrhiza in Castanospermum austral A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 1999, 9, 111–117. [Google Scholar]
- Blande, J.D.; Glinwood, R. Deciphering Chemical Language of Plant Communication. Springer: Berlin/Heidelberg, Germany, 2016.
- Dong, F.; Fu, X.; Watanabe, N.; Su, X.; Yang, Z. Recent advances in the emission and functions of plant vegetative volatiles. Molecules 2016, 21, 124. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, A.; Valenzuela, M.; Carvajal, M.; Fiaschi, G.; Avio, L.; Giovannetti, M.; D'Onofrio, C.; Seeger, M. The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiol. Biochem. 2020, 155, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Israel, A.; Langrand, J.; Fontaine, J.; Sahraoui, A.L.-H. Significance of arbuscular mycorrhizal fungi in mitigating abiotic environmental stress in medicinal and aromatic plants: A review. Foods 2022, 11, 2591. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ma, W.; Li, X.; Miao, W.; Zheng, L.; Cheng, B. Polyamines stimulate hyphal branching and infection in the early stage of Glomus etunicatum colonization. World J. Microb. Biotechnol. 2012, 28, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.M.; Zheng, F.L.; Wu, Q.S. Elucidating the dialogue between arbuscular mycorrhizal fungi and polyamines in plants. World J. Microbiol. Biotechnol. 2022, 38, 159. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.S.; He, X.H.; Zou, Y.N.; Liu, C.Y.; Xiao, J.; Li, Y. Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul. 2012, 68, 27–35. [Google Scholar] [CrossRef]
- Hashem, A.; Abd_Allah, E.F.; Alqarawi, A.A.; Aldubise, A.; Egamberdieva, D. Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J. Plant Interact. 2015, 10, 230–242. [Google Scholar] [CrossRef]
- Priya, M.; Sharma, L.; Kaur, R.; Bindumadhava, H.; Nair, R.M.; Siddique, K.H.M.; Nayyar, H. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants. Sci. Rep. 2019, 9, 7788. [Google Scholar] [CrossRef] [PubMed]
- Evelin, H.; Giri, B.; Kapoor, R. Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 2013, 23, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Ramazan, S.; Nazir, I.; Yousuf, W.; John, R. Environmental stress tolerance in maize (Zea mays): Role of polyamine metabolism. Funct Plant Biol. 2022, 50, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Ouledali, S.; Ennajeh, M.; Ferrandino, A.; Khemira, H.; Schubert, A.; Secchi, F. Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by ABA in drought-stressed olive plants. S. Afr. J. Bot. 2019, 121, 152–158. [Google Scholar] [CrossRef]
- Plouznikoff, K.; Declerck, S.; Calonne-Salmon, M. Mitigating abiotic stresses in crop plants by arbuscular mycorrhizal fungi. In Belowground Defence Strategies in Plants. Signaling and Communication in Plants; Vos, C.M.F., Kazan, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 341–400. [Google Scholar] [CrossRef]
- Reddy, P.S.; Mallikarjuna, G.; Kaul, T.; Chakradhar, T.; Mishra, R.N.; Sopory, S.K.; Reddy, M.K. Molecular cloning and characterization of gene encoding for cytoplasmic Hsc70 from Pennisetum glaucum may play a protective role against abiotic stresses. Mol. Genet. Genom. 2010, 283, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Scharf, K.D.; Berberich, T.; Ebersberger, I.; Nover, L. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim. Biophys. Acta 2012, 1819, 104–119. [Google Scholar] [CrossRef] [PubMed]
- Sailaja, B.; Subrahmanyam, D.; Neelamraju, S.; Vishnukiran, T.; Rao, Y.V.; Vijayalakshmi, P.; Voleti, S.R.; Bhadana, V.P.; Mangrauthia, S.K. Integrated Physiological, Biochemical, and Molecular Analysis Identifies Important Traits and Mechanisms Associated with Differential Response of Rice Genotypes to Elevated Temperature. Front. Plant Sci. 2015, 6, 1044. [Google Scholar] [CrossRef] [PubMed]
- Zha, Q.; Xi, X.; He, Y.; Jiang, A. Transcriptomic analysis of the leaves of two grapevine cultivars under high-temperature stress. Sci. Hortic. 2020, 265, 109265. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, X.-Q.; Liu, X.-R.; Li, Q.-S.; Abd_Allah, E.F.; Wu, Q.-S. Mycorrhizal cucumber with Diversispora versiformis has active heat stress tolerance by up-regulating expression of both CsHsp70s and CsPIPs genes. Sci. Hortic. 2023, 319, 112194. [Google Scholar] [CrossRef]
- Zheng, G.; Tian, B.; Zhang, F.; Tao, F.; Li, W. Plant adaptation to frequent alterations between high and low temperatures: Remodelling of membrane lipids and maintenance of unsaturation levels. Plant Cell Env. 2011, 34, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Janoušková, M.; Li, Y.; Yu, X.; Yan, Y.; Zou, Z.; He, C. Impact of arbuscular mycorrhizal fungi (AMF) on cucumber growth and phosphorus uptake under cold stress. Funct. Plant Biol. 2015, 42, 1158–1167. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Ma, L.N.; He, X.Y.; Tian, C.J. Water strategy of mycorrhizal rice at low temperature through the regulation of PIP aquaporins with the involvement of trehalose. Appl. Soil Ecol. 2014, 84, 185–191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, P.; Zha, Q.; Hui, X.; Tong, C.; Zhang, D. Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress. Horticulturae 2024, 10, 855. https://doi.org/10.3390/horticulturae10080855
Jian P, Zha Q, Hui X, Tong C, Zhang D. Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress. Horticulturae. 2024; 10(8):855. https://doi.org/10.3390/horticulturae10080855
Chicago/Turabian StyleJian, Panyu, Qian Zha, Xinran Hui, Cuiling Tong, and Dejian Zhang. 2024. "Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress" Horticulturae 10, no. 8: 855. https://doi.org/10.3390/horticulturae10080855
APA StyleJian, P., Zha, Q., Hui, X., Tong, C., & Zhang, D. (2024). Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress. Horticulturae, 10(8), 855. https://doi.org/10.3390/horticulturae10080855