Structure and Trends in Climate Parameters of Wine-Growing Regions in Slovenia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Climate Data
2.2. Climate Parameters and Bioclimatic Indices
3. Results and Discussion
3.1. Climatic Structure in the Wine-Growing Regions of SLOVENIA
3.2. Temperature Parameter Trends
3.3. Precipitation Parameters Trends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naulleau, A.; Gary, C.; Prévot, L.; Hossard, H. Strategies for adaptation to climate change in grapevine production—A systematic review. Front. Plant Sci. 2021, 11, 607859. [Google Scholar] [CrossRef]
- Schultz, H.R.; Lebon, E. Modelling the effect of climate change on grapevine water relations.VII International Symposium on Grapevine Physiology and Biotechnology. Acta Hortic. 2005, 689, 71–78. [Google Scholar] [CrossRef]
- Branković, Č.; Srnec, L.; Patarčić, M. An Assessment of Global and Regional Climate Change Based on the EH5OM Climate Model Ensemble. Clim. Chang. 2010, 98, 21–49. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Wilson, R.J.; Maclean, I.M.D. Climate change and crop exposure to adverse weather: Changes to frost risk and grapevine flowering conditions. PLoS ONE 2015, 10, e0141218. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Fraga, H. Climate change: A new challenge for the winemaking sector. Agronomy 2020, 10, 1465. [Google Scholar] [CrossRef]
- Carter, T.R.; Parry, M.L.; Porter, J.H. Climatic Change and Future Agroclimatic Potential in Europe. Int. J. Climatol. 1991, 11, 251–269. [Google Scholar] [CrossRef]
- Menzel, A.; Fabian, P. Growing season extended in Europe. Nature 1999, 397, 659. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Keller, M. Climate Change Impacts on Vineyards in Warm and Dry Areas: Challenges and Opportunities. Am. J. Enol. Vitic. 2023, 74, 0740033. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B.; Cahill, K.N.; Bonfils, C. Impacts of future climate change on Californian perennial crop yields: Model projections with climate and crop uncertainties. Agric. For. Meteorol. 2006, 141, 208–218. [Google Scholar] [CrossRef]
- Delrot, S.; Grimplet, J.; Carbonell-Bejerano, P.; Schwandner, A.; Bert, P.F.; Bavaresco, L.; Costa, L.D.; Di Gaspero, G.; Duchêne, E.; Hausmann, L.; et al. Genetic and genomic approaches for adaptation of grapevine to climate change. In Genomic Designing of Climate-Smart Fruit Crops; Kole, C., Ed.; Springer: Cham, Switzerland, 2020; pp. 157–270. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
- Laget, F.; Tondut, J.; Deloire, A.; Kelly, M.T. Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. J. Int. Sci. Vigne Vin. 2008, 42, 113–123. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate change and global wine quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- Salinari, F.; Giosuè, S.; Tubiello, F.N.; Rettori, A.; Rossi, V.; Spanna, F.; Rosenzweig, C.; Gullino, M.L. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob. Chang. Biol. 2006, 12, 1299–1307. [Google Scholar]
- Töpfer, R.; Trapp, O. A cool climate perspective on grapevine breeding: Climate change and sustainability are driving forces for changing varieties in a traditional market. Theor. Appl. Gen. 2022, 135, 3947–3960. [Google Scholar] [CrossRef]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, O. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Montagne, D.; Cornu, S. Do we need to include soil evolution module in models for prediction of future climate change? Clim. Chang. 2010, 98, 75–86. [Google Scholar] [CrossRef]
- Prior, B. Inventory management to adapt to climate change. Das Dtsch. Weinmagazin 2007, 10, 22–27. [Google Scholar]
- Vršič, S.; Ivančič, A.; Pulko, B.; Valdhuber, J. Effect of soil management systems on erosion and nutrition loss in vineyards on steep slopes. J. Environ. Biol. 2011, 32, 289–294. [Google Scholar]
- Vršič, S. Soil erosion and earthworm population responses to soil management systems in steep-slope vineyards. Plant Soil Environ. 2012, 57, 258–263. [Google Scholar] [CrossRef]
- Becker, N. Site Selection for Viticulture in Cooler Climates Using Local Climatic Information. In Proceedings of the International Symposium on Cool Climate Viticulture and Enology, the Valley River Inn, Eugene, Oregon, 25–28 June 1984; Oregon State University Technical Publication 7628: Corvallis, OR, USA, 1985; pp. 20–34. [Google Scholar]
- Kenny, G.J.; Shao, J. An assessment of a latitude–temperature index for predicting climate suitability for grapes in Europe. J. Hortic. Sci. 1992, 67, 239–246. [Google Scholar] [CrossRef]
- Jones, G.V.; Duff, A.A.; Hall, A.; Myers, J. Spatial analysis of climate in winegrape growing regions in the western United States. Am. J. Enol. Vitic. 2010, 61, 313–326. [Google Scholar] [CrossRef]
- Duchene, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef]
- Jorquera-Fontena, E.; Orrego-Verdugo, R. Impact of global warming on the phenology of a variety of grapevine grown in Southern Chile. Agrociencia 2010, 44, 427–435. [Google Scholar]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Observed trends in winegrape maturity in Australia. Glob. Change Biol. 2011, 17, 2707–2719. [Google Scholar] [CrossRef]
- Bernáth, S.; Paulen, O.; Šiška, B.; Kusá, Z.; Tóth, F. Influence of Climate Warming on Grapevine (Vitis vinifera L.) Phenology in Conditions of Central Europe (Slovakia). Plants 2021, 10, 1020. [Google Scholar] [CrossRef]
- Ogrin, D.; Repe, B.; Štaut, L.; Svetlin, D.; Ogrin, M. Climate classification of Slovenia based on data from the period 1991–2020. Dela 2023, 59, 5–89. [Google Scholar] [CrossRef]
- Vršič, S.; Pulko, B.; Perko, A. Climate change trends in the wine-growing regions of Slovenia. In Proceedings of the 6th Slovenian Viticulture and Wine Congress, Ptuj, Slovenia, 21–22 April 2023; Vršič, S., Ed.; Agricultural Forestry Institute Ptuj: Ptuj, Slovenia, 2023; pp. 97–111. [Google Scholar]
- ARSO (Slovenian Environment Agency). The Daily Precipitation and Temperature Values for the Period from 1952 to 2022; Slovenian Environment Agency: Ljubljana, Slovenia, 2024. [Google Scholar]
- Vršič, S.; Vodovnik–Plevnik, T. Reactions of vines varieties to climate changes in NE Slovenia. Plant Soil Environ. 2012, 58, 34–41. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliewer, W.M.; Lider, L.A. General Viticulture; University of California Press: Berkeley, CA, USA, 1974. [Google Scholar]
- Huglin, P. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. In Proc Symp Int sur L’ecologie de la Vigne; Ministére de l’Agriculture et de l’Industrie Alimentaire: Contança, Romania, 1978; pp. 89–98. [Google Scholar]
- Blanco-Ward, D.; Garcia-Queijeiro, J.M.; Jones, G.V. Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis 2007, 46, 63–70. [Google Scholar]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Vršič, S.; Pulko, B.; Vodovnik-Plevnik, T.; Perko, A. The Impact of Climatic Warming on Earlier Wine-Grape Ripening in Northeastern Slovenia. Horticulturae 2024, 10, 611. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Alexander, R.B.; Smith, R.A. Selection of methods for the detection and estimation of trends in water quality. Water Resour. Res. 1991, 27, 803–813. [Google Scholar] [CrossRef]
- Jones, G. Climate change and wine: Observations, impacts and future implications. Wine Ind. J. 2006, 21, 21–26. [Google Scholar]
- Ramos, M.C.; Jones, G.V.; Martínez-Casasnovas, J.A. Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim. Res. 2008, 38, 1–15. [Google Scholar] [CrossRef]
- Machar, I.; Vlckova, V.; Bucek, A.; Vrublova, K.; Filippovova, J.; Brus, J. Environmental Modelling of Climate Change Impact on Grapevines: Case Study from the Czech Republic. Pol. J. Environ. Stud. 2017, 26, 1927–1933. [Google Scholar] [CrossRef]
- Carroquino, J.; Garcia-Casarejos, N.; Gargallo, P. Classification of Spanish wineries according to their adoption of measures against climate change. J. Clean. Prod. 2020, 244, 142–155. [Google Scholar] [CrossRef]
- Olesen, J.E.; Bindi, M. Consequences of climate change for european agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2010, 16, 56–69. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thach, L. The impact of climate change on the global wine industry. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef]
- Jones, G.V.; Duchêne, E.; Tomasi, D.; Yuste, J.; Braslavska, O.; Schultz, H.; Martinez, C.; Boso, S.; Langellier, F.; Perucho, C.; et al. Changes in European Winegrape Phenology and Relationships with Climate; Proceedings GESCO: Geisenheim, Germany, 2005; pp. 55–61. [Google Scholar]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Ruml, M.; Korać, N.; Vujadinović, M.; Vuković, A.; Ivanišević, D. Response of grapevine phenology to recent temperature change and variability in the wine-producing area of Sremski Karlovci, Serbia. J. Agric. Sci. 2016, 154, 186–206. [Google Scholar] [CrossRef]
- Prša., I.; Rakić, V.; Rašić, D.; Vučetić, V.; Telišman Prtenjak, M.; Omazić, B.; Blašković, L.; Karoglan, M.; Preiner, D.; Drenjančević, M.; et al. Influence of Weather and Climatic Conditions on the Viticultural Production in Croatia. In Proceedings of the Terclim 2022, XIVth International Terroir Congress 2nd ClimWine Symposium, Bordeaux, France, 3–8 July 2022. [Google Scholar]
- Omazić, B.; Telišman Prtenjak, M.; Kvakić, M.; Meštrić, J.; Bubola, M.; Prša, I.; Karoglan, M. Changes in grapevine budburst and harvest dates in Croatia under current and future climate conditions. EGU24-4051. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Omazić, B.; Telišman Prtenjak, M.; Prša, I.; Belušić Vozila, A.; Vučetić, V.; Karoglan, M.; Karoglan Kontić, J.; Prša, Ž.; Anić, M.; Šimon, S.; et al. Climate change impacts on viticulture in Croatia: Viticultural zoning and future potential. Int. J. Climatol. 2020, 40, 5634–5655. [Google Scholar] [CrossRef]
- Kovacs, E.; Puskas, J.; Pozsgai, A. Positive Effects of Climate Change on the Field of Sopron Wine-Growing Region in Hungary. In Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P., Eds.; Springer Atmospheric Sciences: Cham, Switzerland, 2017. [Google Scholar]
- Gaal, M.; Moriondo, M.; Bindi, M. Modelling the impact of climate change on the Hungarian wine regionsusing random forest. Appl. Ecol. Environ. Res. 2012, 10, 121–140. [Google Scholar] [CrossRef]
- Vršič, S.; Šuštar, V.; Pulko, B.; Kraner-Šumenjak, T. Trends in climate parameters affecting winegrape ripening in northeastern Slovenia. Clim. Res. 2014, 58, 257–266. [Google Scholar] [CrossRef]
- Eitzinger, J.; Kubu, G.; Formayer, H.; Gerersdorfer, T. Climatic wine growing potential under future climate scenarious in Austria. In Proceedings of the Sustainable Development and Bioclimate: Reviewed Conference Proceedings, Vienna, Austria, 5–8 October 2009; pp. 146–147. [Google Scholar]
- Jones, G.V. Climate change in the western United States grape growing regions. Acta Hortic. 2005, 689, 41–60. [Google Scholar] [CrossRef]
- Duchêne, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Huglin, P. Biologie et Écologie de la Vigne; Lavoisier: Paris, France, 1986; 372p. [Google Scholar]
- White, M.A.; Diffenbaugh, N.S.; Jones, G.V.; Pal, J.S.; Giorgi, F. Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc. Natl. Acad. Sci. USA 2006, 103, 11217–11222. [Google Scholar] [CrossRef] [PubMed]
- Tate, A.B. Global warming’s impact on vine. J. Wine Res. 2001, 12, 95–109. [Google Scholar] [CrossRef]
- Ramos, M.C. Rainfall distribution patterns and their change over time in a Mediterranean area. Theor. Appl. Climatol. 2001, 69, 163–170. [Google Scholar] [CrossRef]
- Sumner, G.; Homar, V.; Ramis, C. Precipitation seasonality in eastern and southern coastal Spain. Int. J. Climatol. 2001, 21, 219–247. [Google Scholar] [CrossRef]
- Brunetti, M.; Maugeru, M.; Nanni, T.; Navarra, A. Droughts and extreme events in regional daily Italian precipitation series. Int. J. Climatol. 2002, 22, 543–558. [Google Scholar] [CrossRef]
- Lana, X.; Serra, C.; Burgueno, A. Trends affecting pluvio- metric indices at the Fabra observatory (Barcelona, NE Spain) from 1917 to 1999. Int. J. Climatol. 2003, 23, 315–332. [Google Scholar] [CrossRef]
- Peacock, B. Water Management for Grapevines. University of California, Tulare County, Pub. IG1-2005, 95. Available online: https://ucanr.edu/sites/Tulare_County/files/82035.pdf (accessed on 12 July 2024).
- Lebon, E. Changements climatiques: Quelles conséquences prévisibles sur la viticulture? In 6émes Rencontres Rhodaniennes; Institut Rhodanien: Orange, France, 2002; pp. 31–36. [Google Scholar]
- Stock, M. Klimaveränderungen fordern die Winzer—Bereitschaft zur Anpassung ist erforderlich. Geisenheimer Berichte 2005, 57, 29–48. [Google Scholar]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
Parameter | Parameter Description |
---|---|
Tavg | Average annual temperature, °C |
Tmax | Average annual maximum temperature, °C |
Tmin | Average annual minimum temperature, °C |
GSTavg | Average growing season temperature (April to October), °C |
GSTmax | Average growing season maximum temperature (April–October), °C |
GSTmin | Average growing season minimum temperature (April–October), °C |
HI | Huglin Index (April to September), °C units |
GDDs | Growing degree days (sum of temperature above 10 °C), °C units |
TMJ | Average temperature in May and June, °C |
NDTN20 | Tropical nights: number of days with TN > 20 °C days |
NDT25 | Number of days with maximum temperature > 25 °C |
NDT30 | Number of days with maximum temperature > 30 °C |
NDT35 | Number of days with maximum temperature > 35 °C |
NDF | Number of days with minimum temperature <0 °C (frost occurrence) |
NDFF | Number of days between last and first frost (frost-free period length) |
NDTN-2.5 | Moderate cold days: number of days with TN < −2.5 °C days |
NDTN-10 | Extreme cold days: number of days with TN < −10 °C days |
AP | Total annual precipitation, mm/m2 |
GSP | Total growing season precipitation (April to October), mm/m2 |
Wine-Growing Region/Station | Podravje/Maribor | Posavje/Novo Mesto | Primorska/Bilje | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Variable | Variable | |||||||||||||
Parameters | Mean | SD | Trend yr−1 | MK-Test | p | Mean | SD | Trend yr−1 | MK-Test | p | Mean | SD | Trend yr−1 | MK-Test | p |
Tavg | 10.3 | 0.99 | 0.037 | 0.628 | 0.001 | 10.2 | 1.00 | 0.051 | 0.603 | 0.001 | 12.6 | 0.79 | 0.017 | 0.299 | 0.001 |
Tmax | 15.5 | 1.14 | 0.038 | 0.542 | 0.001 | 15.7 | 1.19 | 0.051 | 0.440 | 0.001 | 18.5 | 0.82 | 0.021 | 0.367 | 0.060 |
Tmin | 5.7 | 1.06 | 0.042 | 0.66 | 0.001 | 5.4 | 1.10 | 0.053 | 0.672 | 0.001 | 7.3 | 1.03 | 0.021 | 0.305 | 0.001 |
GSTavg | 15.8 | 0.99 | 0.037 | 0.589 | 0.001 | 15.6 | 1.0 | 0.039 | 0.565 | 0.001 | 17.5 | 0.93 | 0.023 | 0.328 | 0.534 |
GSTmax | 21.5 | 1.15 | 0.038 | 0.491 | 0.001 | 21.8 | 1.3 | 0.034 | 0.371 | 0.001 | 24.0 | 0.97 | 0.024 | 0.315 | 0.001 |
GSTmin | 10.6 | 1.02 | 0.041 | 0.615 | 0.001 | 10.0 | 1.1 | 0.045 | 0.663 | 0.001 | 11.6 | 1.22 | 0.031 | 0.357 | 0.124 |
HI | 1839 | 206 | 7.03 | 0.559 | 0.001 | 1849 | 218 | 8.76 | 0.462 | 0.001 | 2197 | 188 | 6.18 | 0.386 | 0.020 |
GDDs | 1325 | 186 | 6.88 | 0.599 | 0.001 | 1291 | 192 | 8.35 | 0.573 | 0.001 | 1631 | 191 | 4.77 | 0.338 | 0.305 |
TMJ | 17.0 | 1.28 | 0.038 | 0.48 | 0.001 | 16.73 | 1.31 | 0.040 | 0.478 | 0.001 | 18.26 | 1.25 | 0.031 | 0.365 | 0.001 |
NDTN20 | 1.55 | 2.54 | 0.063 | 0.444 | 0.001 | 0.45 | 1.04 | 0.023 | 0.412 | 0.001 | 3.04 | 3.75 | 0.069 | 0.297 | 0.001 |
NDT25 | 63.5 | 17.6 | 0.63 | 0.549 | 0.001 | 68.07 | 18.9 | 0.52 | 0.387 | 0.001 | 95.2 | 15.6 | 0.29 | 0.236 | 0.004 |
NDT30 | 13.3 | 11.8 | 0.57 | 0.502 | 0.001 | 16 | 14.2 | 0.39 | 0.390 | 0.021 | 31.0 | 15.6 | 0.45 | 0.383 | 0.030 |
NDT35 | 0.75 | 1.64 | 0.025 | 0.275 | 0.003 | 1.31 | 3.29 | 0.055 | 0.263 | 0.005 | 2.14 | 3.70 | 0.10 | 0.465 | 0.001 |
NDF | 95 | 19 | −0.56 | −0.411 | 0.001 | 100 | 19 | −0.81 | −0.422 | 0.002 | 67 | 18.4 | 0.03 | −0.008 | 0.927 |
NDFF | 206 | 22 | 0.53 | 0.340 | 0.310 | 197 | 22 | 0.55 | 0.345 | 0.247 | 220 | 28.9 | −0.20 | −0.069 | 0.401 |
NDTN-2.5 | 54.9 | 16.1 | −0.49 | −0.411 | 0.001 | 54.51 | 16.1 | −0.44 | −0.394 | 0.001 | 36.2 | 14.7 | 0.045 | 0.0339 | 0.684 |
NDTN-10 | 8.2 | 7.77 | −0.22 | −0.447 | 0.001 | 9.06 | 7.76 | −0.20 | −0.448 | 0.001 | 1.39 | 2.39 | 0.014 | −0.041 | 0.659 |
AP | 998 | 150 | −2.88 | −0.252 | 0.002 | 1130 | 190 | 0.16 | −0.058 | 0.481 | 1424 | 289 | −2.78 | −0.139 | 0.087 |
GSP | 700 | 124 | −1.68 | −0.214 | 0.008 | 757 | 146 | −0.18 | −0.113 | 0.165 | 870 | 209 | −2.83 | −0.186 | 0.022 |
Podravje/Murska Sobota | Posavje/Črnomelj | Primorska/Koper | |||||||||||||
Tavg | 9.9 | 0.99 | 0.034 | 0.565 | 0.001 | 10.8 | 0.97 | 0.028 | 0.484 | 0.001 | 13.8 | 0.64 | 0.013 | 0.259 | 0.001 |
Tmax | 15.3 | 1.16 | 0.036 | 0.520 | 0.001 | 16.4 | 1.13 | 0.030 | 0.400 | 0.010 | 18.1 | 1.31 | 0.040 | 0.406 | 0.006 |
Tmin | 4.8 | 1.05 | 0.038 | 0.599 | 0.001 | 5.6 | 0.92 | 0.025 | 0.405 | 0.007 | 9.9 | 0.91 | −0.008 | −0.123 | 0.131 |
GSTavg | 15.5 | 1.0 | 0.033 | 0.511 | 0.001 | 16.3 | 1.0 | 0.034 | 0.452 | 0.001 | 18.6 | 0.86 | 0.020 | 0.283 | 0.001 |
GSTmax | 21.6 | 1.2 | 0.038 | 0.446 | 0.001 | 22.6 | 1.2 | 0.022 | 0.263 | 0.001 | 23.2 | 1.61 | 0.042 | 0.404 | 0.006 |
GSTmin | 9.7 | 1.0 | 0.037 | 0.576 | 0.001 | 10.3 | 1.0 | 0.033 | 0.466 | 0.001 | 14.2 | 0.93 | −0.007 | −0.106 | 0.192 |
HI | 1831 | 213 | 6.43 | 0.478 | 0.001 | 1985 | 209 | 9.37 | 0.366 | 0.064 | 2227 | 236 | 7.44 | 0.412 | 0.004 |
GDDs | 1278 | 186 | 6.21 | 0.532 | 0.001 | 1420 | 198 | 5.80 | 0.464 | 0.001 | 1855 | 180 | 4.18 | 0.277 | 0.001 |
TMJ | 16.8 | 1.25 | 0.037 | 0.475 | 0.001 | 17.44 | 1.33 | 0.035 | 0.388 | 0.001 | 18.99 | 1.23 | 0.025 | 0.35 | 0.001 |
NDTN20 | 0.49 | 0.88 | 0.021 | 0.429 | 0.001 | 1.13 | 2.25 | 0.061 | 0.446 | 0.001 | 17.8 | 12.1 | 0.033 | 0.586 | 0.558 |
NDT25 | 64.8 | 17.4 | 0.57 | 0.495 | 0.001 | 79.3 | 17.5 | 0.31 | 0.243 | 0.003 | 84.2 | 25.1 | 0.74 | 0.376 | 0.001 |
NDT30 | 14.1 | 12.1 | 0.37 | 0.447 | 0.001 | 22.2 | 13.9 | 0.35 | 0.282 | 0.001 | 22.2 | 20.7 | 0.70 | 0.437 | 0.001 |
NDT35 | 0.83 | 2.04 | 0.023 | 0.209 | 0.027 | 1.8 | 3.38 | 0.064 | 0.253 | 0.005 | 1.37 | 3.29 | 0.08 | 0.413 | 0.001 |
NDF | 110 | 18 | −0.43 | −0.374 | 0.050 | 100 | 16.7 | −0.76 | −0.138 | 0.092 | 29 | 17.6 | 0.24 | 0.225 | 0.006 |
NDFF | 188 | 18 | 0.41 | 0.359 | 0.111 | 193 | 20.3 | 0.41 | 0.265 | 0.001 | 264 | 31 | −0.38 | −0.181 | 0.039 |
NDTN-2.5 | 64.9 | 15.5 | −0.364 | −0.313 | 0.001 | 59.6 | 13.4 | −0.15 | −0.123 | 0.135 | 9.75 | 8.67 | 0.04 | 0.083 | 0.313 |
NDTN-10 | 13.0 | 10.0 | −0.264 | −0.417 | 0.001 | 10.9 | 7.43 | −0.21 | −0.272 | 0.001 | 0.11 | 0.43 | −0.003 | −0.151 | 0.117 |
AP | 801 | 112 | −0.17 | 0.021 | 0.800 | 1281 | 184 | 0.59 | 0.051 | 0.532 | 995 | 185 | −1.83 | −0.133 | 0.101 |
GSP | 574 | 94 | 0.28 | 0.037 | 0.655 | 803 | 165 | 0.62 | 0.057 | 0.487 | 612 | 152 | −1.85 | −0.208 | 0.010 |
Periods/Parameters | GSTavg ± SD | GSP ± SD | GDDs ± SD | HI ± SD | T > 30 °C ± SD | |||||
---|---|---|---|---|---|---|---|---|---|---|
MARIBOR * | ||||||||||
1952–2022 | 15.8 | ± 0.99 | 700.5 | ± 124.3 | 1324.9 | ± 186.5 | 1839.0 | ± 206.6 | 13.2 | ± 11.8 |
1961–1990 | 15.2 | ± 0.59 | 725.4 | ± 116.5 | 1205.5 | ± 108.0 | 1704.5 | ± 120.0 | 5.8 | ± 3.8 |
1991–2022 | 16.6 | ± 0.80 | 669.2 | ± 128.2 | 1496.5 | ± 155.9 | 2017.1 | ± 199.8 | 21.9 | ± 12.7 |
1991–2000 | 16.2 | ± 0.75 | 738.9 | ± 142.1 | 1415.8 | ± 130.2 | 1914.0 | ± 163.4 | 13.5 | ± 9.9 |
2001–2010 | 16.7 | ± 0.48 | 692.9 | ± 97.4 | 1496.5 | ± 121.9 | 1996.9 | ± 169.2 | 21.8 | ± 13.2 |
2011–2022 | 17.0 | ± 0.57 | 591.3 | ± 128.8 | 1540.5 | ± 106.4 | 2119.7 | ± 145.5 | 28.5 | ± 8.9 |
MURSKA SOBOTA * | ||||||||||
1952–2022 | 15.5 | ± 1.00 | 574.5 | ± 94.1 | 1277.9 | ± 186.3 | 1831.2 | ± 212.8 | 14.1 | ± 12.1 |
1961–1990 | 14.8 | ± 0.65 | 577.9 | ± 100.3 | 1142.9 | ± 111.1 | 1686.3 | ± 125.4 | 6.3 | ± 4.6 |
1991–2022 | 16.3 | ± 0.87 | 578.2 | ± 93.6 | 1432.3 | ± 168.5 | 2002.9 | ± 201.6 | 23.0 | ± 12.6 |
1991–2000 | 15.9 | ± 0.75 | 571.4 | ± 138.7 | 1364.3 | ± 125.7 | 1914.7 | ± 164.8 | 17.3 | ± 12.6 |
2001–2010 | 16.3 | ± 0.47 | 581.4 | ± 88.7 | 1414.4 | ± 119.3 | 1985.3 | ± 164.8 | 23.9 | ± 12.4 |
2011–2022 | 16.8 | ± 0.59 | 581.3 | ± 74.4 | 1518.5 | ± 107.1 | 2091.1 | ± 151.7 | 27.0 | ± 10.5 |
NOVO MESTO ** | ||||||||||
1952–2022 | 15.6 | ± 1.04 | 757.5 | ± 146.3 | 1291.2 | ± 193.8 | 1849.2 | ± 218.5 | 16.0 | ± 14.2 |
1961–1990 | 14.8 | ± 0.61 | 771.1 | ± 127.4 | 1146.4 | ± 109.2 | 1693.7 | ± 112.8 | 7.3 | ± 4.1 |
1991–2022 | 16.5 | ± 0.88 | 734.2 | ± 160.3 | 1450.2 | ± 161.4 | 2013.7 | ± 215.1 | 25.4 | ± 16.0 |
1991–2000 | 16.0 | ± 0.77 | 778.3 | ± 135.4 | 1374.4 | ± 127.2 | 1901.2 | ± 154.6 | 15.5 | ± 10.5 |
2001–2010 | 16.4 | ± 0.50 | 772.2 | ± 156.8 | 1443.4 | ± 122.8 | 1971.0 | ± 171.1 | 22.9 | ± 12.8 |
2011–2022 | 17.0 | ± 0.51 | 665.8 | ± 207.7 | 1538.9 | ± 90.0 | 2143.1 | ± 181.5 | 35.8 | ± 16.8 |
ČRNOMELJ ** | ||||||||||
1952–2022 | 16.3 | ± 1.03 | 802.6 | ± 165.5 | 1419.6 | ± 208.2 | 1984.6 | ± 208.7 | 22.2 | ± 13.9 |
1961–1990 | 15.6 | ± 0.60 | 793.9 | ± 181.8 | 1279.0 | ± 111.2 | 1834.5 | ± 127.3 | 12.9 | ± 7.2 |
1991–2022 | 17.1 | ± 1.07 | 789.5 | ± 205.5 | 1579.5 | ± 208.2 | 2137.8 | ± 223.8 | 30.5 | ± 15.5 |
1991–2000 | 16.5 | ± 10.8 | 816.6 | ± 129.0 | 1467.3 | ± 191.1 | 2003.5 | ± 189.6 | 17.9 | ± 11.9 |
2001–2010 | 17.1 | ± 059 | 781.9 | ± 153.7 | 1581.1 | ± 137.8 | 2133.7 | ± 172.6 | 30.8 | ± 11.8 |
2011–2022 | 17.7 | ± 0.58 | 773.3 | ± 323.8 | 1696.1 | ± 115.2 | 2253.3 | ± 133.8 | 40.7 | ± 11.1 |
BILJE *** | ||||||||||
1952–2022 | 17.5 | ± 0.93 | 869.6 | ± 209.0 | 1631.3 | ± 190.8 | 2196.7 | ± 187.8 | 31.0 | ± 15.5 |
1961–1990 | 16.8 | ± 0.66 | 890.4 | ± 194.8 | 1479.0 | ± 133.9 | 2062.3 | ± 121.0 | 22.0 | ± 8.0 |
1991–2022 | 18.2 | ± 0.98 | 842.7 | ± 218.0 | 1753.2 | ± 199.0 | 2327.0 | ± 200.9 | 41.2 | ± 16.9 |
1991–2000 | 17.6 | ± 0.60 | 1026.9 | ± 220.2 | 1648.0 | ± 116.2 | 2190.6 | ± 123.3 | 29.6 | ± 9.8 |
2001–2010 | 18.1 | ± 0.47 | 758.4 | ± 219.4 | 1752.0 | ± 116.0 | 2313.9 | ± 162.3 | 38.6 | ± 14.6 |
2011–2022 | 18.7 | ± 0.64 | 759.3 | ± 195.5 | 1877.3 | ± 126.3 | 2451.5 | ± 118.3 | 53.1 | ± 14.6 |
KOPER *** | ||||||||||
1952–2022 | 18.6 | ± 0.86 | 612.7 | ± 152.4 | 1854.6 | ± 181.4 | 2227.4 | ± 236.3 | 22.2 | ± 20.7 |
1961–1990 | 18.3 | ± 0.60 | 653.8 | ± 165.7 | 1794.1 | ± 125.1 | 2068.3 | ± 138.3 | 8.2 | ± 7.9 |
1991–2022 | 18.9 | ± 0.99 | 573.5 | ± 155.6 | 1904.7 | ± 205.4 | 2399.6 | ± 260.2 | 38.2 | ± 23.3 |
1991–2000 | 18.2 | ± 0.62 | 598.8 | ± 126.3 | 1774.5 | ± 124.2 | 2225.7 | ± 144.2 | 22.8 | ± 13.7 |
2001–2010 | 18.6 | ± 0.50 | 574.7 | ± 171.8 | 1854.1 | ± 112.4 | 2343.1 | ± 144.4 | 33.7 | ± 14.8 |
2011–2022 | 19.9 | ± 1.07 | 551.4 | ± 147.7 | 2115.1 | ± 221.2 | 2591.7 | ± 204.3 | 54.8 | ± 19.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vršič, S.; Pulko, B.; Perko, A. Structure and Trends in Climate Parameters of Wine-Growing Regions in Slovenia. Horticulturae 2024, 10, 854. https://doi.org/10.3390/horticulturae10080854
Vršič S, Pulko B, Perko A. Structure and Trends in Climate Parameters of Wine-Growing Regions in Slovenia. Horticulturae. 2024; 10(8):854. https://doi.org/10.3390/horticulturae10080854
Chicago/Turabian StyleVršič, Stanko, Borut Pulko, and Andrej Perko. 2024. "Structure and Trends in Climate Parameters of Wine-Growing Regions in Slovenia" Horticulturae 10, no. 8: 854. https://doi.org/10.3390/horticulturae10080854
APA StyleVršič, S., Pulko, B., & Perko, A. (2024). Structure and Trends in Climate Parameters of Wine-Growing Regions in Slovenia. Horticulturae, 10(8), 854. https://doi.org/10.3390/horticulturae10080854