Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temperature Assessment
3.2. Phenology
3.3. Correlation of GDDs and JD of Phenology Stages
3.4. Composition of the Must at the Time of Harvest
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC Summary for Policymakers. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Volume 1, pp. 1–30. ISBN 9788578110796. [Google Scholar]
- Petrie, P.R.; Sadras, V.O. Advancement of Grapevine Maturity in Australia between 1993 and 2006: Putative Causes, Magnitude of Trends and Viticultural Consequences. Aust. J. Grape Wine Res. 2008, 14, 33–45. [Google Scholar] [CrossRef]
- Neethling, E.; Barbeau, G.; Bonnefoy, C.; Quénol, H. Change in Climate and Berry Composition for Grapevine Varieties Cultivated in the Loire Valley. Clim. Res. 2012, 53, 89–101. [Google Scholar] [CrossRef]
- Clingeleffer, P.R.; Davis, H.P. Assessment of Phenology, Growth Characteristics and Berry Composition in a Hot Australian Climate to Identify Wine Cultivars Adapted to Climate Change. Aust. J. Grape Wine Res. 2022, 28, 255–275. [Google Scholar] [CrossRef]
- Huglin, M.P. Nouveau Mode d’évaluation Des Possibilités Héliothermiques d’un Milieu Viticole. Comptes Rendus l’Acad. d’Agric. Fr. 1978, 64, 1117–1126. [Google Scholar]
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the Phenology and Composition of Wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Observed Trends in Winegrape Maturity in Australia. Glob. Chang. Biol. 2011, 17, 2707–2719. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Bhend, J.; Darbyshire, R.; Briggs, P.R.; Barlow, E.W.R. Earlier Wine-Grape Ripening Driven by Climatic Warming and Drying and Management Practices. Nat. Clim. Chang. 2012, 2, 259–264. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive Capacity of Winegrape Varieties Cultivated in Greece to Climate Change: Current Trends and Future Projections. Oeno One 2020, 54, 1201–1219. [Google Scholar] [CrossRef]
- Ruml, M.; Korac, N.; Vujadinovic, M.; Vukovic, A.; Ivaniševic, D. Response of Grapevine Phenology to Recent Temperature Change and Variability in the Wine-Producing Area of Sremski Karlovci, Serbia. J. Agric. Sci. 2016, 154, 186–206. [Google Scholar] [CrossRef]
- De Cortázar-Atauri, I.G.; Duchêne, É.; Destrac-Irvine, A.; Barbeau, G.; De Rességuier, L.; Lacombe, T.; Parker, A.K.; Saurin, N.; Van Leeuwen, C. Grapevine Phenology in France: From Past Observations to Future Evolutions in the Context of Climate Change. Oeno One 2017, 51, 115–126. [Google Scholar] [CrossRef]
- Cameron, W.; Petrie, P.R.; Barlow, E.W.R.; Patrick, C.J.; Howell, K.; Fuentes, S. Advancement of Grape Maturity: Comparison between Contrasting Cultivars and Regions. Aust. J. Grape Wine Res. 2020, 26, 53–67. [Google Scholar] [CrossRef]
- Muñoz-Organero, G.; Espinosa, F.E.; Cabello, F.; Zamorano, J.P.; Urbanos, M.A.; Puertas, B.; Lara, M.; Domingo, C.; Puig-Pujol, A.; Valdés, M.E.; et al. Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. [Google Scholar] [CrossRef]
- Lough, J.M.; Wigley, T.M.L.; Palutikof, J.P. Climate and Climate Impact Scenarios for Europe in a Warmer World (England, Wales). J. Clim. Appl. Meteorol. 1983, 22, 1673–1684. [Google Scholar] [CrossRef]
- Nemani, R.R.; White, M.A.; Cayan, D.R.; Jones, G.V.; Running, S.W.; Coughlan, J.C.; Peterson, D.L. Asymmetric Warming over Coastal California and Its Impact on the Premium Wine Industry. Clim. Res. 2001, 19, 25–34. [Google Scholar] [CrossRef]
- Eric Duchêne, C.S. Grapevine and Climatic Changes: A Glance at the Situation in Alsace. Agron. Sustain. Dev. 2005, 23, 93–99. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Jones, G.V.; White, M.A.; Cooper, O.R.; Storchmann, K. Climate Change and Global Wine Quality. Clim. Chang. 2005, 73, 319–343. [Google Scholar] [CrossRef]
- De Castro, M.; Martin-Vide, J.; Alonso, S. 1. The Climate of Spain: Past, Present and Scenarios for the 21st Century; Ministerio de Medio Ambiente: Madrid, Spain, 2005.
- MMARM. Los Impactos del Cambio Climático en Europa: Evaluación Basada en Indicadores—Informe Conjunto de la AEMA, el CCI y la OMS; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2011.
- Cabello, F.; Rodriguez, I.; Muñoz-Organero, G.; Rubio, C.; Benito, A.; García-Beneytez, S. La Colección de Variedades de Vid “el Encín”; Cie Dossat: Madrid, Spain, 2003; ISBN 8445124110. [Google Scholar]
- Aranda, X.; Armengol, J.; Arroyo, T.; Baroja, E.; Cabello, F.; Cabellos, J.M.; de Andrés, M.T.; de Herralde, F.; de la Fuente, M.; Escalona, J.M.; et al. Variedades ancestrales. Recuperación y evaluación de su interés en un escenario de cambio climático. Enoviticultura 2019, 59, 39–49. [Google Scholar]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Modelled Impact of Future Climate Change on the Phenology of Winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Friant, P.; Choné, X.; Tregoat, O.; Koundouras, S.; Dubourdieu, D. Influence of Climate, Soil, and Cultivar on Terroir. Am. J. Enol. Vitic. 2004, 55, 207–217. [Google Scholar] [CrossRef]
- Jones, P.D.; Mann, M.E. Climate over Past Millennia. Rev. Geophys. 2004, 42, 2. [Google Scholar] [CrossRef]
- Clingeleffer, P. Terroir: The Application of an Old Concept in Modern Viticulture. Encycl. Agric. Food Syst. 2014, 5, 277–288. [Google Scholar] [CrossRef]
- Fraga, H.; Costa, R.; Moutinho-Pereira, J.; Correia, C.M.; Dinis, L.T.; Gonçalves, I.; Silvestre, J.; Eiras-Dias, J.; Malheiro, A.C.; Santos, J.A. Modeling Phenology, Water Status, and Yield Components of Three Portuguese Grapevines Using the STICS Crop Model. Am. J. Enol. Vitic. 2015, 66, 482–491. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling Climate Change Impacts on Viticultural Yield, Phenology and Stress Conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef] [PubMed]
- Morales-Castilla, I.; de Cortázar-Atauri, I.G.; Cook, B.I.; Lacombe, T.; Parker, A.; van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity Buffers Winegrowing Regions from Climate Change Losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Ollat, N.; Touzard, J.-M. Long-Term Adaptation to Climate Change in Viticulture and Enology: The Laccave Project. J. Int. Sci. Vigne Vin 2014, 1–7. [Google Scholar]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Suter, B.; Destrac Irvine, A.; Gowdy, M.; Dai, Z.; van Leeuwen, C. Adapting Wine Grape Ripening to Global Change Requires a Multi-Trait Approach. Front. Plant Sci. 2021, 12, 624867. [Google Scholar] [CrossRef]
- Mira de Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Godden, P.; Wilkes, E.; Johnson, D. Trends in the Composition of Australian Wine 1984–2014. Aust. J. Grape Wine Res. 2015, 21, 741–753. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The Challenge of Adapting Grapevine Varieties to Climate Change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef]
- Galet, P. Dictionnaire Encyclopédique des Cépages et de Leurs Synonymes; Libre & Solidaire: Paris, France, 2015; ISBN 9782847300369. [Google Scholar]
- Wolkovich, E.M.; García De Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the World’s Future Wine-Growing Regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Ortiz, J.M.; Martín, J.P.; Borrego, J.; Chávez, J.; Rodríguez, I.; Muñoz, G.; Cabello, F. Molecular and Morphological Characterization of a Vitis Gene Bank for the Establishment of a Base Collection. Genet. Resour. Crop Evol. 2004, 51, 403–409. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- AEMET. Calendario Meteorológico 2023. Información Meteorológica y Climatológica de España; Agencia Estatal de Meteorología, Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2023.
- Zschenderlein, P.; Wernli, H. The Unusually Long Cold Spell and the Snowstorm Filomena in Spain in January 2021. Nat. Hazards Earth Syst. Sci. Discuss. 2022, 1–21. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological Growth Stages of the Grapevine (Vitis vinifera L. ssp. vinifera)—Codes and Descriptions According to the Extended BBCH Scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Amerine, M.A.; Winkler, A.J. Composition and Quality of Musts and Wines of California Grapes. Hilgardia 1944, 15, 493–675. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.A.; Kliewere, W.M.; Lider, L. General Viticulture, 2nd ed.; University of California Press: Berkeley, CA, USA, 1974; ISBN 9780520025912. [Google Scholar]
- Piña-rey, A.; Ribeiro, H.; Fernández-gonzález, M.; Abreu, I.; Javier Rodríguez-Rajo, F. Phenological Model to Predict Budbreak and Flowering Dates of Four Vitis Vinifera l. Cultivars Cultivated in Do. Ribeiro (North-west Spain). Plants 2021, 10, 502. [Google Scholar] [CrossRef]
- Eloy, S.N. Revista de Extensión Agraria; Ministerio de Agricultura: Madrid, Spain, 1978; pp. 187–191.
- Rustioni, L.; Maghradze, D.; Popescu, C.F.; Cola, G.; Abashidze, E.; Aroutiounian, R.; Brazão, J.; Coletti, S.; Cornea, V.; Dejeu, L.; et al. First Results of the European Grapevine Collections’ Collaborative Network: Validation of a Standard Eno-Carpological Phenotyping Method. Vitis-J. Grapevine Res. 2014, 53, 219–226. [Google Scholar]
- Santoso, S.; Lengkap, P. SPSS Version 23; Elex Media Komputindo: Jakarta, Indonesia, 2016; ISBN 9786020280479. [Google Scholar]
- Togores, J.H.; Hidalgo, L. Tratado de Viticultura, 5th ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2011; Volume 1–2, ISBN 9788484767510. [Google Scholar]
- Ramos, M.C.; Martínez de Toda, F. Influence of Weather Conditions and Projected Climate Change Scenarios on the Suitability of Vitis Vinifera Cv. Carignan in Rioja DOCa, Spain. Int. J. Biometeorol. 2022, 66, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- Piña Rey, A. Influencia del Cambio Climático Sobre Vitis Vinifera en el Noroeste de la Península Ibérica. Doctoral Dissertation, Universidade de Vigo, Vigo, Spain, 2022. [Google Scholar]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine Phenology and Climate Change: Relationships and Trends in the Veneto Region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Antonio Ibacache, G. Cómo Influye La Temperatura Sobre La Época de Cosecha En Vides. Tierra Adentro 2008, 81, 8–10. [Google Scholar]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Response of Viticulture-Related Climatic Indices and Zoning to Historical and Future Climate Conditions in Greece. Int. J. Climatol. 2017, 38, 2097–2111. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Fyllas, N.M.; Theocharis, S.; Jones, G.V. Greek Wine Quality Assessment and Relationships with Climate: Trends, Future Projections and Uncertainties. Water 2022, 14, 573. [Google Scholar] [CrossRef]
- Marcilla, J. Nociones de Ampelografía. Los Productores Directos. Las Vides Viniferas. In Tratado Práctico de Viticultura y Enología Españolas; Saeta: Madrid, Spain, 1954; pp. 102–121. [Google Scholar]
- Lezcano, J.F. Manual de Ampelografía General; Consejo Regulador de la Denominación de Origen Cigales: Valladolid, Spain, 1991. [Google Scholar]
- Cabello, F.; Ortíz Marcide, J.M.; Muñoz-Organero, G.; Rodriguez Torres, I.; Benito Barba, A.; Rubio de Miguel, C.; García-Muñoz, S.; Sáiz Sáiz, R.; De Andrés, M.T. Variedades de Vid en España, 2nd ed.; Grupo Editorial Agricola Española, S.A.: Madrid, Spain, 2019; ISBN 978-84-17884-07-9. [Google Scholar]
Variety | Skin Color | Prospected Region |
---|---|---|
Airén | white | Castilla-La Mancha |
Albillo del Pozo | white | Castilla-La Mancha |
Aurea | white | Castilla y León |
Azargón | red | Castilla-La Mancha |
Benedicto | red | Galicia |
Cadrete | red | Aragón |
Castellana Blanca | white | Castilla y León |
Crepa | red | Castilla-La Mancha |
Folgasao | white | Galicia |
Garnacha Tinta | red | Andalucía |
Granadera | red | Castilla-La Mancha |
Hebén | white | Castilla y León |
Jarrosuelto | white | Castilla-La Mancha |
Listan Prieto | red | Canarias |
Lucomol | white | Castilla-La Mancha |
Malvar | white | Castilla-La Mancha |
Marfileña | white | Castilla-La Mancha |
Montonera | white | Castilla-La Mancha |
Morate | red | Navarra |
Pintada | white | Castilla-La Mancha |
Rayada Melonera | red | Comunidad de Madrid |
Rubeliza | red | Castilla-La Mancha |
Salvador | white | Castilla y León |
Sanguina | red | Cataluña |
Tazazonal | red | Navarra |
Tempranillo | red | Navarra |
Terriza | red | Castilla-La Mancha, Madrid, Navarra |
Tinto Bastardo | red | Castilla-La Mancha |
Tinto de Navalcarnero | red | Castilla y León |
Tinto Fragoso | red | Castilla-La Mancha |
Tortozón | white | Extremadura |
Tortozona Tinta | red | Castilla-La Mancha |
Verdejo Serrano | white | Castilla y León |
Zurieles | white | Castilla-La Mancha |
Phenology Stage | Year | JD | SD | GDD | SD | Cases |
---|---|---|---|---|---|---|
Bud break | 2020 | 6.36 | 3.16 | 5.65 | 7.47 | 23 |
2021 | 6.24 | 4.13 | 15.46 | 8.78 | 34 | |
2022 | 8.62 | 5.53 | 20.14 | 7.58 | 34 | |
2023 | 4.41 | 1.92 | 14.37 | 10.83 | 34 | |
Bloom | 2020 | 5.57 | 1.16 | 61.08 | 16.39 | 23 |
2021 | 4.21 | 1.65 | 52.89 | 20.58 | 34 | |
2022 | 6.94 | 1.94 | 75.92 | 22.32 | 34 | |
2023 | 8.55 | 3.29 | 61.09 | 22.38 | 34 | |
Veraison | 2020 | 8.50 | 7.82 | 135.79 | 128.02 | 26 |
2021 | 11.62 | 6.39 | 178.29 | 105.68 | 34 | |
2022 | 7.41 | 4.06 | 129.56 | 66.68 | 34 | |
2023 | 7.38 | 3.28 | 126.66 | 56.61 | 34 | |
Harvest | 2020 | 28.42 | 13.23 | 370.44 | 164.76 | 26 |
2021 | 22.41 | 9.75 | 303.30 | 140.74 | 34 | |
2022 | 25.68 | 9.51 | 385.08 | 130.08 | 34 | |
2023 | 30.68 | 13.97 | 444.39 | 166.72 | 34 | |
Complete cycle | 2020 | 172.73 | 11.64 | 1800.47 | 113.83 | 26 |
2021 | 163.32 | 12.08 | 1641.72 | 126.01 | 34 | |
2022 | 150.12 | 12.97 | 1846.05 | 177.37 | 34 | |
2023 | 160.21 | 16.72 | 1798.96 | 197.75 | 34 |
Kendall Tau-b Correlation | 2020 | 2021 | 2022 | 2023 | |
---|---|---|---|---|---|
Bud break | Coefficient | −0.111 | 0.603 ** | 0.434 ** | 0.362 * |
Bilateral significance | 0.525 | 0.000 | 0.001 | 0.011 | |
N | 22 | 34 | 34 | 34 | |
Bloom | Coefficient | 0.006 | 0.917 ** | 0.788 ** | 0.788 ** |
Bilateral significance | 0.973 | 0.000 | 0.000 | 0.000 | |
N | 23 | 34 | 34 | 33 | |
Veraison | Coefficient | 0.894 ** | 0.854 ** | 0.824 ** | 0.909 ** |
Bilateral significance | <0.001 | 0.000 | 0.000 | 0.000 | |
N | 26 | 34 | 34 | 34 | |
Harvest | Coefficient | 0.899 ** | 0.791 ** | 0.827 ** | 0.864 ** |
Bilateral significance | <0.001 | 0.000 | 0.000 | 0.000 | |
N | 26 | 34 | 34 | 34 | |
Complete cycle | Coefficient | 0.838 ** | 0.728 ** | 0.685 ** | 0.922 ** |
Bilateral significance | <0.001 | 0.000 | 0.000 | 0.000 | |
N | 26 | 34 | 34 | 34 |
Maturation Cluster (BBCH 89) | Year | °Brix Means | pH Means | Titratable Acidity Means | |||
---|---|---|---|---|---|---|---|
Average | SD 1 | Average | SD 1 | Average | SD 1 | ||
Very early | 2020 | 21.00 | . | 3.02 | . | 6.06 | . |
2021 | 22.04 | 1.09 | 3.66 | 0.28 | 4.86 | 2.22 | |
2022 | 22.03 | 1.40 | 3.35 | 0.20 | 6.35 | 0.79 | |
2023 | 22.89 | 1.37 | 3.49 | 0.26 | 5.52 | 1.30 | |
Early | 2020 | 22.60 | 0.32 | 3.41 | 0.16 | 4.31 | 1.05 |
2021 | 22.37 | 1.62 | 3.55 | 0.18 | 4.84 | 1.12 | |
2022 | 22.46 | 1.99 | 3.51 | 0.24 | 5.24 | 1.48 | |
2023 | 22.54 | 1.25 | 3.56 | 0.20 | 4.88 | 1.39 | |
Medium | 2020 | 22.44 | 1.24 | 3.59 | 0.28 | 4.55 | 1.01 |
2021 | 21.80 | 2.40 | 3.33 | 0.31 | 6.95 | 1.48 | |
2022 | 22.09 | 2.65 | 3.58 | 0.17 | 4.35 | 1.07 | |
2023 | 21.73 | 2.06 | 3.68 | 0.10 | 4.05 | 0.49 | |
Late | 2020 | 21.40 | 2.80 | 3.60 | 0.09 | 4.25 | 0.87 |
2021 | 21.91 | 2.96 | 3.61 | 0.18 | 4.43 | 0.51 | |
2022 | 21.20 | 1.27 | 3.61 | 0.28 | 4.24 | 1.37 | |
2023 | 22.36 | 1.12 | 3.53 | 0.16 | 3.95 | 0.64 | |
Very late | 2020 | 20.30 | . | 3.79 | . | 4.50 | . |
2021 | 21.50 | . | 3.80 | . | 3.50 | . | |
2022 | 18.48 | 2.02 | 3.67 | 0.18 | 4.05 | 0.07 | |
2023 | 20.06 | 2.12 | 3.42 | 0.25 | 4.97 | 1.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinosa-Roldán, F.E.; García-Díaz, A.; Raboso, E.; Crespo, J.; Cabello, F.; Martínez de Toda, F.; Muñoz-Organero, G. Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change. Horticulturae 2024, 10, 353. https://doi.org/10.3390/horticulturae10040353
Espinosa-Roldán FE, García-Díaz A, Raboso E, Crespo J, Cabello F, Martínez de Toda F, Muñoz-Organero G. Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change. Horticulturae. 2024; 10(4):353. https://doi.org/10.3390/horticulturae10040353
Chicago/Turabian StyleEspinosa-Roldán, Francisco Emmanuel, Andrés García-Díaz, Eva Raboso, Julia Crespo, Félix Cabello, Fernando Martínez de Toda, and Gregorio Muñoz-Organero. 2024. "Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change" Horticulturae 10, no. 4: 353. https://doi.org/10.3390/horticulturae10040353
APA StyleEspinosa-Roldán, F. E., García-Díaz, A., Raboso, E., Crespo, J., Cabello, F., Martínez de Toda, F., & Muñoz-Organero, G. (2024). Phenological Evaluation of Minority Grape Varieties in the Wine Region of Madrid as a Strategy for Adaptation to Climate Change. Horticulturae, 10(4), 353. https://doi.org/10.3390/horticulturae10040353