Quality Evaluation of Complementary Food Produced by Solid-State Fermentation of Fonio, Soybean and Orange-Fleshed Sweet Potato Blends
Abstract
:1. Introduction
2. Materials and Method
2.1. Procurement of Raw Materials
2.2. Culture Preparation
2.3. Preparation of Raw Materials
2.4. Proximate Composition
2.5. Determination of Iron Using Atomic Absorption Spectrophotometer (AAS)
2.5.1. Sample Preparation
2.5.2. Determination of Zinc
2.5.3. Determination of Calcium
2.5.4. Determination of Beta-Carotene
- Df
- = dilution factor;
- E
- = extinction coefficient.
2.5.5. Determination of Vitamin C
2.5.6. Determination of Vitamin B1
2.6. Functional Properties Analysis
2.6.1. Measurement of pH
2.6.2. Determination of Titratable Acidity
2.6.3. Determination of Viscosity
2.7. Determination of Water Activity (Aw)
2.8. Determination of Water Absorption Capacities (WAC)
2.9. Determination of Swelling Capacity
- W1
- = the weight of the centrifuge tube;
- W2
- = the weight of the centrifuge plus the sample.
2.10. Microbial Analysis
2.10.1. Total Viable Count
2.10.2. Mold Count
2.11. Determination of Selected Anti-Nutrient Content of Samples
2.11.1. Determination of Tannin Content
- An
- = absorbance of the test sample;
- As
- = absorbance of the standard solution;
- C
- = concentration of the standard solution;
- W
- = weight of the sample used;
- Vf
- = total volume of the extract;
- Va
- = volume of the extract analyzed.
2.11.2. Determination of Phytate Content
2.12. Sensory Evaluation
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effect of Fermentation (SSF) Time on the Proximate Composition (%) of the Fermenting Raw Material
3.2. Proximate Composition (%) of Complementary Food Formulated from Fonio, Soybean and Orange-Fleshed Sweet Potato Flour Blends
3.3. Effects of SSF on the Functional Properties of the Complementary Food
3.4. Micronutrient Content of the Formulated Complementary Food
Minerals
3.5. Effect of SSF on the Retention of Beta-Carotene Content in OFSP
3.6. Effects of Solid-State Fermentation on the Anti-Nutritional Content of the Fermented Complementary Food
3.6.1. Phytate
3.6.2. Tannin
3.7. Effects of Fermentation (SSF) Time on the Total Viable Count and Mold Counts of the Fermenting Raw Materials
3.8. Sensory Properties of Complementary Food Formulated from Fonio, Soybean and Orange-Fleshed Sweet Potato Flour Blends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dewey, K. Guiding Principles for Complementary Feeding of the Breastfed Child; Pan American Health Organization: Washington, DC, USA, 2003. [Google Scholar]
- Black, R.E.; Allen, L.H.; Bhutta, Z.A.; Caulfield, L.E.; De Onis, M.; Ezzati, M. Maternal and Child Under-nutrition: Global and Regional Exposures and Health Consequences. Lancet 2008, 371, 243–260. [Google Scholar] [CrossRef] [PubMed]
- WHO; UNICEF. Global Strategy for Infant and Young Child Feeding; World Health Organisation: Geneva, Switzerland, 2003; Available online: https://www.who.int/publications/i/item/9241562218 (accessed on 25 December 2020).
- Bhutta, Z.A.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S. Evidence-Based Interventions for Improvement of Maternal and Child Nutrition: What Can Be Done and At What Cost? Lancet 2013, 383, 452–477. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Feeding and Nutrition of Infants and Young Children: Guidelines for the WHO European Region with Emphasis on the Former Soviet Countries; WHO Region Publication, European Series no. 87; WHO—Regional Office for Europe: Copenhagen, Denmark, 2005. [Google Scholar]
- Krebs, N.F. Food Based Complementary Feeding Strategies for Breastfed Infants: What’s the Evidence that it matters? Nutr. Today 2014, 49, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, K.; Dewey, K.; Allen, L. Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge; World Health Organisation: Geneva, Switzerland, 1998. [Google Scholar]
- Jorge, E.M.; Wolfgang, H.P.; Beyer, P. Bio-fortified Crops to Alleviate Micronutrient Malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar]
- Fernandez, R.A.; Vanderjagt, J.D.; Williams, M.; Huang, Y.S.; Chuang, L.-F.; Millson, M.; Andrew, R.; Pastuszyn, A.; Glew, H.R. Fatty acid, amino acid and trace element analysis of five weaning food from Jos, Nigeria. Plant Foods Hum. Nutr. 2002, 57, 257–274. [Google Scholar] [CrossRef] [PubMed]
- Duranti, M. Grain Legume Proteins and Nutraceutical Properties—Review. Fitoterapia 2006, 77, 67–82. [Google Scholar] [CrossRef]
- Ojinnaka, M.C.; Ebinyasi, C.S.; Ihemeje, A.; Okorie, S.U. Nutritional Evaluation of Complementary Food Gruels Formulated from Blends of Soybean Flour and Ginger Modified Cocoyam Starch. Adv. J. Food Sci. Technol. 2013, 5, 1325–1330. [Google Scholar] [CrossRef]
- Egounlety, M. Production of Legume-fortified Weaning foods. Food Res. Int. 2002, 35, 233–237. [Google Scholar] [CrossRef]
- Hachmeister, K.A.; Fung, D.Y.C. Tempeh: A mold-modified indigenous fermented food from soybeans and/or cereal-grains. Crit. Rev. Microbiol. 1993, 19, 137–188. [Google Scholar] [CrossRef]
- Vodouhe, S.R.; Zannou, A.; Achigan-Dako, G.E. Actes du premier atelier sur la diversite genetique du fonio (Digitaria exilis Stapf. en Afrique de l’Ouest. In Proceedings of the 1st Workshop on Genetic Diversity of Fonio (Digitaria exilis staph) in West Africa, Conakry, Guinea, 4–6 August 1998; IPGRI: Rome, Italy. [Google Scholar]
- Pampluna, G.D.; Roger, M.D. Health Foods; Ibegraphi: San Feranado, CA, USA, 2004. [Google Scholar]
- Dashiell, K.E. Soybean production and utilization in Nigeria. In Proceedings of the National Workshop on Small Scale and Industrial Level for Processing of Soybean, Ibadan, Nigeria, 27–29 July 2008. [Google Scholar]
- Alian, M.M.M.; Isreal, M.P.; Rene, M.S. Improving the nutritional quality of cowpea and Bambara bean flours use in infant feeding. Pak. J. Nutr. 2007, 6, 660–664. [Google Scholar]
- Petrikkou, E.; Rodriguez-Tudela, J.L.; Cuenca-Estrella, M.; Gomez, A.; Molleja, A.; Mellado, E. Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. J. Clin. Microbiol. 2001, 39, 1345–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes-Moreno, C.; Cuevas-Rodríguez, E.O.; Milán-Carrillo, J.; Cárdenas-Valenzuela, O.G.; Barrón-Hoyos, J. Solid State Fermentation Process for Producing Chickpea (Cicerarietinum L.) Tempeh Flour. Physicochemical and Nutritional Characteristics of the Product. J. Sci. Food Agric. 2004, 84, 271–278. [Google Scholar] [CrossRef]
- A.O.A.C. Official Methods of Analysis. Association of Official Analytical Chemists, 18th ed.; AOAC International: Washinton, DC, USA, 2010. [Google Scholar]
- Olokodona, F.A. Analysis of Fruit Drinks and Fruit Juices. Institute of Public Analysts of Nigeria. IPAN Bull. 2005, 6, 9–14. [Google Scholar]
- Sathe, S.K.; Salunkhe, D.K. Functional Properties of the Great Northern Beans (Phaseolus vulgaris L.) Proteins: Emulsion, Foaming, Viscosity and Gelation Properties. J. Food Sci. 1981, 46, 71–74. [Google Scholar] [CrossRef]
- Lin, M.J.Y.; Humbert, E.S.; Sosulski, F. Certain Functional Properties of Sunflower Meal Products. J. Food Sci. 1974, 39, 368. [Google Scholar] [CrossRef]
- Harrigan, W.F.; McCance, M.E. Laboratory Methods in Food and Dairy Microbiology; Academic Press Inc. Limited: London, UK, 1976. [Google Scholar]
- Pearson, D.A. Chemical Analysis of Foods, 7th ed.; Churchill Living Stone: Edinburgh, UK, 1976. [Google Scholar]
- Kirk, H.; Sawyer, R. Frait Pearson Chemical Analysis of Food, 8th ed.; Longman Scientific and Technical: Edinburgh, UK, 1998; pp. 211–212. [Google Scholar]
- Ihekoronye, A.I.; Ngoddy, P.O. Integrated Food Science and Technology for the Tropics; Macmillian Publishers Limited: London, UK, 1985; pp. 236–253. [Google Scholar]
- Steel, G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill Book Company Inc.: New York, NY, USA, 1980. [Google Scholar]
- Torres, A.; Frias, J.; Granito, M.; Vidal-Valverde, C. Fermented Pigeon Pea (Cajanuscajan) Ingredients in Pasta Products. J. Agric. Food Chem. 2006, 54, 6685–6691. [Google Scholar] [CrossRef]
- Reyes-Bastidas, M.; Reyes-Fernández, E.Z.; López-Cervantes, J.; Milán-Carrillo, J.; Loarca-Piña, G.F. Physicochemical, Nutritional and Antioxidant Properties of Tempeh Flour from Common Bean (Phaseolus vulgaris L.). Food Sci. Technol. Int. 2010, 16, 427–434. [Google Scholar] [CrossRef]
- Ruiz-Teran, F.; Owens, J.D. Chemical and Enzymatic Changes during the Fermentation of Bacteria-free Soya Bean Tempe. J. Sci. Food Agric. 1996, 71, 523–530. [Google Scholar] [CrossRef]
- Nout, M.J.R.; Kiers, J.L. Tempeh Fermentation, Innovation and Functionality: Update into the third millinium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef]
- Rubina, N.; Muhammad, N.; Muhammad, I.; Quratulain, S. Nutritional Enhancement of Barley in Solid state Fermentation by Rhizopus Oligosporus ML-10. Nutr. Food Sci. Int. J. 2018, 6, 555700. [Google Scholar] [CrossRef]
- Sefa-Dedeh, S.; Kluvitse, Y.M. Development of cowpea-fortified weaning foods: Functional and chemical properties. In Proceedings of the Annual Meeting of the Institute of Food Technologists, Atlanta, GA, USA, 3–7 June 1995. [Google Scholar]
- Obadina, A.O.; Akinola, O.J.; Shittu, T.A.; Bakare, H.A. Effect of Natural Fermentation on the Chemical and Nutritional Composition of Fermented Soymilk Nono. Niger. Food J. 2015, 31, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, R.A.O.; Akinyosoye, F.A.; Adetuyi, F.C. Nutritional composition of Canavaliaensiformis (L.) (Jack Beans) as affected by the use of Mould starter cultures for fermentation. Trends Appl. Sci. Res. 2011, 6, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Sanni, A.I.; Onilude, A.A.; Ibidapo, O.F. Physicochemical Characteristics of Weaning Food Formulated from Different Blends of Cereal and Soybean. Z. Für Lebensm. Forsch. A 1999, 208, 221–224. [Google Scholar] [CrossRef]
- Cuevas-Rodríguez, E.O.; MiIán-Carrillo, J.; Mora-Escobedo, R.; Cárdenas-Valenzuela, O.G.; Reyes-Moreno, C. Quality Protein Maize (Zea mays L.) and Tempeh Flour through Solid State Fermentation Process. LWT Food Sci. Technol. 2004, 37, 59–67. [Google Scholar] [CrossRef]
- Lena, G.I.; Patroni, E.; Quaglia, G. Improving the nutritional value of wheat bran by a white-rot fungus. Int. J. Food Sci. Technol. 2008, 32, 513–519. [Google Scholar] [CrossRef]
- Origbemisoye, B.A.; Ifesan, B.O.T. Chemical Compostion of Kiaat (Pteropcarpusangolensis) bark and the effect of herb pastes on the quality changes in marinated cat fish during chilled storage. Food Biol. 2019, 82, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Codex, A.C. Corn Soya Sugar Blend for Young Children and Adults; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Brons, C.; Jensen, C.B.; Storggard, H.; Alibegovic, A.; Jacobsen, S.; Nilsson, E.; Astrup, A.; Quistroff, B.; Vaag, A. Mitochondrial function in skeletal muscle is normal and unrelated to insulin action in young men born with low birth weight. J. Clin. Endocrinol. Metab. 2008, 93, 3885–3892. [Google Scholar] [CrossRef]
- Abidin, P.E.; Amoaful, E.F. Healthy Eating for Mothers, Babies and Children: Facilitator Guide for use By Community Health Workers in Ghana; International Potato Center (CIP): Lima, Peru; Sub-Saharan Africa (SSA)—Nutrition Department of the Ghana Health Service: Accra, Ghana, 2015; p. 16. [Google Scholar]
- Oboh, G. Nutrient Enrichment of Cassava Peels Using a Mixed Culture of Saccharomyces cerevisae and Lactobacillus spp. Solid Media Fermentation Techniques. Electron. J. Biotechnol. 2006, 9, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Piermaria, J.; Mariano, L.; Abraham, A.G. Gelling properties of Kefiran, a food-grade polysaccharide obtained from Kefir grain. Food Hydrocoll. 2008, 22, 1520–1527. [Google Scholar] [CrossRef]
- Singh, U. Functional properties of grain legume flours. J. Food Sci. Technol. 2001, 38, 191–199. [Google Scholar]
- Adeyeye, E.I.; Aye, P.A. The Effect of Sample Preparation on Proximate Composition and the Functional Properties of African Yam Bean Flours (Sphenostylisstenocarpa Hoshst ex A. rich) Flours. Ital. Rev. Fat. Subst. 1998, 75, 253–261. [Google Scholar]
- Chandrasekar, V.; Ganapathy, S.; Karthikeyan, S. Enhancing Alpha Amylase Activity of Finger Millet (Eluesinecoracana) for Improving Baking Property through Solid State Fermentation. Adv. Life Sci. 2016, 5, 4069–4076. [Google Scholar]
- John, L. Why Iron is Important in Infant Development. J. Nutr. 2008, 138, 2534–2536. [Google Scholar] [CrossRef] [Green Version]
- USDA. Nutrition and Your Health: Dietary Guidelines for Americans; US Department of Agriculture: Washington, DC, USA; US Department of Health and Human Services: Washington, DC, USA, 2012.
- UNICEF; UNU; WHO; MI. Preventiing iron dficiency in women and children. Technical consensus on key issues. In Proceedings of the Technical Workshop, New York, NY, USA, 7–9 October 1998; International Nutrition Foundation: Boston, MA, USA, 1998. [Google Scholar]
- Lucretia, L.; Patience, C.E.; Enobong, M. Proximte Composition, Micronutrient and Sensory Properties of Complementary Food Formulated from Fermented Maize, Soybeans and Carrot flours. Sky J. Food Sci. 2017, 6, 33–39. [Google Scholar]
- Shiriki, D.; Igyor, M.A.; Gernah, D.I. Effect of Moringa oleifera leaf powder supplementation on the micronutrient and toxicant content of maize-soybean-peanut complementary food formulations. Int. J. Food Process. Technol. 2014, 1, 7–12. [Google Scholar]
- Waquas, U.; Daniel, W. Zinc Supplementationin the Management of Diarrhoea; World Healh Organization (WHO): Toronto, ON, Canada, 2011; Available online: https://www.who.int/elena/titles/bbc/zinc_diarrhoea/en/ (accessed on 25 December 2020).
- Shankar, A.H. Influence of zinc supplementation on morbidity due to plasmodium falciparum: A randomized trial in preschool children in Papua New Guinea. Am. J. Trop. Med. Hyg. 2000, 62, 663–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO; WHO. Essential amino acid and minerals. In Report of a Joint FAO/WHO Experts Consultations; Food and Agricultural Organizations of the United Nations: Rome, Italy, 1991; p. 280. [Google Scholar]
- Ekweagwu, E.; Awu, A.E.; Madukwe, E. The role of micronutrients in children health: A review of the Literature. Afr. J. Biotechnol. 2008, 7, 3804–3810. [Google Scholar]
- Kolawole, F.L.; Balogun, M.A.; Sanni-Olayiwola, H.O.; Abdulkadir, S.O. Physical and chemical characteristics of moringa-fortified orange sweet potato flour for complementary food. Croat. J. Food Technol. Biotechnol. Nutr. 2017, 12, 37–43. [Google Scholar]
- Sultana, N.; Azam, M.Z.; Amin, M.Z.; Shams, B.; Satter, M.A.; Masum, S.M. Vitamin B and Essential minerals contents of mixed solid state fermented millet (Steria italic) and Bengal gram by Rhizopus oligosporus. Bangladesh J. Sci. Ind. Res. 2011, 46, 1–8. [Google Scholar] [CrossRef] [Green Version]
- USDA. Nutrition and Your Health: Dietary Guidelines for Americans; US Department of Agriculture: Washington, DC, USA; US Department of Health and Human Services: Washington, DC, USA, 2005.
- CIP. International Potato Centre. 2017. Available online: www.internationalpotatocentre.com (accessed on 25 December 2020).
- Oloo, B.O.; Shitandi, A.A.; Mahungu, S.; Malinga, J.B.; Rose, O.B. Effects of Lactic Acid Fermentation on the Retention of Beta-carotene Content in Orange Fleshed Sweet Potatoes. Int. J. Food Stud. 2014, 3, 13–33. [Google Scholar] [CrossRef]
- Sharma, A.; Khetarpaul, N. Effect of Fermentation on Phytic Acid Content and Invitro Digestibility of Starch and Protein of Rice-Black Gram Dhal-Wheat Blends. J. Food Sci. Technol. 1997, 34, 20–30. [Google Scholar]
- Reyes-moreno, C.; Romero-urias, C.; Milan-Carrillo, J.; Valdez-Torres, B.; Zarate-Marquez, E. Optimization of the Solid State Fermentation Process to Obtain Tempeh from Hardened Chickpea (Cicerarietinum L.). Plant Foods Hum. Nutr. 2000, 55, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.R.; Pierson, M.D.; Sathe, S.K.; Salunkhe, D.K. Dry Beans Tannins: A Review of Nutritional Implications. J. Am. Oil Chem. Soc. 1985, 62, 541–549. [Google Scholar] [CrossRef]
- Deshpande, S.S.; Sathe, S.K.; Salunkhe, D.K.; Cornforth, D.P. Effect of Dehulling on Phytic acid, Polyphenols and Enzyme Inhibition of Dry Beans (Phaseolus vulgaris L.). J. Food Sci. 1982, 47, 1846–1850. [Google Scholar] [CrossRef]
- Mugula, K. Evaluation of the Nutritive Value of Maize-Soybean Tempe as a Potential Food in Tanzania. Int. J. Food Sci. Nutr. 1992, 43, 113–119. [Google Scholar] [CrossRef]
- Onilude, A.A.; Sanni, A.I.; Ighalo, M.I. Process Upgrade and the Microbiological, Nutritional and Consumer Acceptability of Infant Weaning Food from Fermented Composite Blends of Cereals and Soybean. J. Food Agric. Environ. 2004, 2, 64–68. [Google Scholar]
- Centre for Food Safety. Microbiological Guidelines for Food: For Ready to Eat Foods in General and Specific Food Items; Revised ed.; Food and Environmental Hygiene Department: Hong Kong, China, 2014.
- Kikafuda, J.K.; Abenakyo, L.; Lukwago, F.B. Nutritional and sensory properties of high energy/nutrient dense composite flour porridges from germinated maize and roasted beans for child-weaning in developing countries: A case for Uganda. Ecol. Food Nutr. 2006, 45, 279–294. [Google Scholar] [CrossRef]
- Alawode, E.K.; Idowu, M.A.; Adeola, A.A.; Oke, E.K.; Omoniyi, S.A. Some quality attributes of complementary food produced from flour blends of orange flesh sweet potato, sorghum, and soybean. Croat. J. Food Sci. Technol. 2017, 9, 122–129. [Google Scholar] [CrossRef]
- Osman, M.A. Changes in Nutrient Composition, Trypsin inhibitor, Phytate, Tannins and Protein Digestibility of Dolichos Lablab Seeds (Lablab purpureus (L) sweet) occurring during Germination. J. Food Technol. 2007, 5, 294–299. Available online: https://medwelljournals.com/abstract/?doi=jftech.2007.294.299 (accessed on 25 December 2020).
Samples | Moisture | Protein | Fat | Fiber | ASH | CHO | pH | TTA |
---|---|---|---|---|---|---|---|---|
AS0 | 54.97 a ± 0.08 | 17.10 a ± 0.13 | 5.81 d ± 0.07 | 7.08 a ± 0.16 | 2.09 a ± 0.14 | 12.95 a ± 0.12 | 4.72 c ± 0.22 | 0.16 a ± 0.07 |
AS24 | 55.39 b ± 0.03 | 17.32 b ± 0.04 | 5.41 c ± 0.05 | 7.30 b ± 0.02 | 2.21 a b ± 0.04 | 12.37 b ± 0.02 | 3.99 b ± 0.03 | 0.29 b ± 0.01 |
AS48 | 56.27 c ± 0.18 | 17.61 c ± 0.12 | 5.18 b ± 0.08 | 7.39 b c ± 0.01 | 2.33 b ± 0.02 | 11.37 c ± 0.14 | 3.68 a b ± 0.16 | 0.39 b c ± 0.01 |
AS72 | 56.27 c ± 0.18 | 19.02 d ± 0.99 | 4.52 a ± 0.06 | 7.60 c ± 0.02 | 2.38 a ± 0.02 | 10.21 d ± 1.88 | 3.59 a ± 0.14 | 0.48 c ± 0.04 |
Samples | Moisture | Protein | Fat | Fiber | ASH | CHO |
---|---|---|---|---|---|---|
CTRL | 2.42 a ± 0.05 | 22.5 a ± 0.01 | 6.25 a ± 0.02 | 2.8 a ± 0.16 | 1.5 a ± 0.14 | 64.53 c ± 0.12 |
AS | 3.38 b ± 0.03 | 30.5 b ± 0.03 | 8.4 c ± 0.08 | 5.18 b ± 0.02 | 3.18 b ± 0.04 | 49.36 a ± 0.02 |
ASO | 3.39 b ± 0.21 | 29.8 c ± 0.15 | 7.48 b ± 0.05 | 5.05 b ± 0.01 | 3.40 b ± 0.02 | 50.56 b ± 0.14 |
Sample | pH | Viscosity (cP) | Water Activity (%) | Water Absorption Capacity (%) | Swelling Capacity (g/g) |
---|---|---|---|---|---|
CTRL | 6.8 b ± 0.2 | 8200 a ± 1.71 | 0.20 a ± 0.01 | 450.29 a ± 1.48 | 2.25 a ± 0.03 |
AS | 5.0 a ± 0.1 | 18400 c ± 3.36 | 0.15 b ± 0.01 | 691.9 c ± 1.27 | 3.41 b ± 0.07 |
ASO | 5.3 a ± 0.1 | 15400 b ± 0.00 | 0.17 a b ± 0.01 | 551.3 b ± 1.73 | 3.31 b ± 0.31 |
Sample | Iron (mg/100 g) | Zinc (mg/100 g) | Calcium (mg/100 g) | VIT. A (µg/100 g) | VIT. C (mg/100 g) | VIT. B1 (mg/100 g) |
---|---|---|---|---|---|---|
CTRL | 8.41 c ± 0.12 | 5.52 c ± 0.03 | 327.12 c ± 0.08 | 1316 b ± 0.02 | 65.01 c ± 3.1 | 0.5 a ± 1.21 |
AS | 7.25 b ± 0.02 | 3.48 c ± 0.02 | 104.21 b ± 0.04 | 1134 a ± 0.60 | 18.32 a ± 0.02 | 0.9 b ± 0.32 |
ASO | 6.57 a ± 0.02 | 2.43 a ± 0.01 | 96.23 a ± 0.04 | 2560 c ± 0.20 | 22.42 b ± 2.01 | 1.05 c ± 2.01 |
Sample | Tannin (mg/g) | Phytate (mg/g) |
---|---|---|
CTRL | 0.09 a ± 156 | 0.06 a ± 0.04 |
AS | 0.13 ab ± 0.141 | 0.18 a ± 0.50 |
ASO | 0.11 a ± 0.057 | 0.16 a ± 0.13 |
Samples | TVC (cfu/mL) | Mold (cfu/mL) |
---|---|---|
AS0 | 2.8 × 105 | 2.0 × 10 |
AS24 | 2.2 × 105 | 4.0 × 10 |
AS48 | 4.0 × 104 | 2.0 × 10 |
AS72 | 1.7 × 104 | 1.0 × 10 |
AS | 2.0 × 104 | 1.8 × 10 |
ASO | 2.4 × 104 | 2.0 × 10 |
Samples | Color | Taste | Aftertaste | Flavor | Mouthfeel | Texture | Consistency | Overall Acceptability |
---|---|---|---|---|---|---|---|---|
CTRL | 7.15 a ± 1.42 | 7.65 b ± 0.93 | 7.35 b ± 1.14 | 7.85 b ± 1.18 | 6.75 a ± 1.65 | 6.50 ab ± 1.73 | 7.40 a ± 1.00 | 7.80 b ± 0.70 |
AS | 7.70 a ± 1.08 | 7.15 ab ± 1.42 | 6.10a ± 1.97 | 6.80 a ± 1.80 | 6.80 a ± 2.07 | 6.85 b ± 1.57 | 7.35 a ± 0.93 | 7.55 b ± 1.37 |
ASO | 7.55 a ± 1.10 | 6.45 a ± 1.15 | 5.80 a ± 1.61 | 6.20 a ± 1.61 | 5.75 b ± 1.62 | 5.75 a ± 1.59 | 7.05 a ± 1.10 | 6.20 a ± 1.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoronkwo, N.C.; Okoyeuzu, C.F.; Eze, C.R.; Mbaeyi-Nwaoha, I.E.; Agbata, C.P. Quality Evaluation of Complementary Food Produced by Solid-State Fermentation of Fonio, Soybean and Orange-Fleshed Sweet Potato Blends. Fermentation 2023, 9, 250. https://doi.org/10.3390/fermentation9030250
Okoronkwo NC, Okoyeuzu CF, Eze CR, Mbaeyi-Nwaoha IE, Agbata CP. Quality Evaluation of Complementary Food Produced by Solid-State Fermentation of Fonio, Soybean and Orange-Fleshed Sweet Potato Blends. Fermentation. 2023; 9(3):250. https://doi.org/10.3390/fermentation9030250
Chicago/Turabian StyleOkoronkwo, Ngozi C., Chigozie F. Okoyeuzu, Chinwe R. Eze, Ifeoma E. Mbaeyi-Nwaoha, and Chidinma P. Agbata. 2023. "Quality Evaluation of Complementary Food Produced by Solid-State Fermentation of Fonio, Soybean and Orange-Fleshed Sweet Potato Blends" Fermentation 9, no. 3: 250. https://doi.org/10.3390/fermentation9030250
APA StyleOkoronkwo, N. C., Okoyeuzu, C. F., Eze, C. R., Mbaeyi-Nwaoha, I. E., & Agbata, C. P. (2023). Quality Evaluation of Complementary Food Produced by Solid-State Fermentation of Fonio, Soybean and Orange-Fleshed Sweet Potato Blends. Fermentation, 9(3), 250. https://doi.org/10.3390/fermentation9030250