Confirmation of Glucose Transporters through Targeted Mutagenesis and Transcriptional Analysis in Clostridium acetobutylicum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Generation of ClosTron Mutants
2.2. Batch and Continuous Fermentation Experiments
2.3. Analytical Methods
2.4. DNA Microarray Experiments
3. Results and Discussion
3.1. Generation and Verification of the Mutants C. acetobutylicum glcG::int(1224), glcCE::int(193) and glcG::int(1224)-glcCE::int(193)
3.2. The Phenotypes of Wild Type and the Mutant C. acetobutylicum glcG::int(1224) in Batch and Phosphate-Limited Continuous Fermentations
3.3. Transcription Analysis of the Mutant C. acetobutylicum glcG::int(1224) as Compared to Wild Type
3.4. The Phenotypes and Transcription Analysis of Wild Type and the Mutant C. acetobutylicum glcCE::int(193) in Batch and Phosphate-Limited Continuous Fermentations
3.5. The Phenotype of the Mutant C. acetobutylicum glcG::int(1224)-glcCE::int(193) in Batch and Phosphate-Limited Continuous Fermentations
3.6. Transcription Analysis of the Phosphotransferase Systems of the Mutant C. acetobutylicum glcG::int(1224)-glcCE::int(193) Compared to Wild Type
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, W.J.; Tangney, M. Carbohydrate Uptake by the Phosphotransferase System and Other Mechanisums; Durre, P., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 155–175. [Google Scholar]
- Servinsky, M.D.; Kiel, J.T.; Dupuy, N.F.; Sund, C.J. Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. Microbiology 2010, 156, 3478–3491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saier, M.H., Jr.; Reizer, J. Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: Sugar phosphotransferase system. J. Bacteriol. 1992, 174, 1433–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Mitchell, W.J.; Tangney, M.; Blaschek, H.P. Evidence for the presence of an alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent-hyperproducing mutant BA101. Appl. Environ. Microbiol. 2005, 71, 3384–3387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, W.J. The Phosphotransferase System in Solventogenic Clostridia. J. Mol. Microbiol. Biotechnol. 2015, 25, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Gu, Y.; Ning, Y.; Yang, Y.; Mitchell, W.J.; Jiang, W.; Yang, S. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl. Environ. Microbiol. 2011, 77, 7886–7895. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, J. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2008, 11, 87–93. [Google Scholar] [CrossRef]
- Wang, X.; Xia, K.; Yang, X.; Tang, C. Growth strategy of microbes on mixed carbon sources. Nat. Commun. 2019, 10, 1279. [Google Scholar] [CrossRef] [Green Version]
- Viana, R.; Monedero, V.; Dossonnet, V.; Vadeboncoeur, C.; Perez-Martinez, G.; Deutscher, J. Enzyme I and HPr from Lactobacillus casei: Their role in sugar transport, carbon catabolite repression and inducer exclusion. Mol. Microbiol. 2000, 36, 570–584. [Google Scholar] [CrossRef]
- Doucette, C.D.; Schwab, D.J.; Wingreen, N.S.; Rabinowitz, J.D. Alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat. Chem. Biol. 2011, 7, 894–901. [Google Scholar] [CrossRef] [Green Version]
- Magasanik, B. The Regulation of Nitrogen-Utilization in Enteric Bacteria. J. Cell Biochem. 1993, 51, 34–40. [Google Scholar] [CrossRef]
- Ninfa, A.J.; Jiang, P. PII signal transduction proteins: Sensors of alpha-ketoglutarate that regulate nitrogen metabolism. Curr. Opin. Microbiol. 2005, 8, 168–173. [Google Scholar] [CrossRef]
- Lee, C.R.; Cho, S.H.; Yoon, M.J.; Peterkofsky, A.; Seok, Y.J. Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. Proc. Natl. Acad. Sci. USA 2007, 104, 4124–4129. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Ryu, S. Regulation of Iron Uptake by Fine-Tuning the Iron Responsiveness of the Iron Sensor Fur. Appl. Environ. Microbiol. 2019, 85, e03026-18. [Google Scholar] [CrossRef] [Green Version]
- Luttmann, D.; Heermann, R.; Zimmer, B.; Hillmann, A.; Rampp, I.S.; Jung, K.; Gorke, B. Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIA(Ntr) in Escherichia coli. Mol. Microbiol. 2009, 72, 978–994. [Google Scholar] [CrossRef]
- Yoo, W.; Kim, D.; Yoon, H.; Ryu, S. Enzyme IIA(Ntr) Regulates Salmonella Invasion Via 1,2-Propanediol And Propionate Catabolism. Sci. Rep. 2017, 7, 44827. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Seo, H.S.; Jeong, J.; Yoon, H. Understanding the multifaceted roles of the phosphoenolpyruvate: Phosphotransferase system in regulation of Salmonella virulence using a mutant defective in ptsI and crr expression. Microbiol. Res. 2019, 223–225, 63–71. [Google Scholar] [CrossRef]
- Zhi, Y.; Lin, S.M.; Jang, A.Y.; Ahn, K.B.; Ji, H.J.; Guo, H.C.; Lim, S.; Seo, H.S. Effective mucosal live attenuated Salmonella vaccine by deleting phosphotransferase system component genes ptsI and crr. J. Microbiol. 2019, 57, 64–73. [Google Scholar] [CrossRef]
- Dalebroux, Z.D.; Swanson, M.S. ppGpp: Magic beyond RNA polymerase. Nat. Rev. Microbiol. 2012, 10, 203–212. [Google Scholar] [CrossRef]
- Karstens, K.; Zschiedrich, C.P.; Bowien, B.; Stulke, J.; Gorke, B. Phosphotransferase protein EIIA(Ntr) interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16. Microbiology 2014, 160, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Park, Y.H.; Kim, Y.R.; Seok, Y.J.; Lee, C.R. Dephosphorylated NPr is involved in an envelope stress response of Escherichia coli. Microbiology 2015, 161, 1113–1123. [Google Scholar] [CrossRef]
- Wu, S.Y.; Yu, P.L.; Wheeler, D.; Flint, S. Transcriptomic study on persistence and survival of Listeria monocytogenes following lethal treatment with nisin. J. Glob. Antimicrob. Resist. 2018, 15, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Nolling, J.; Breton, G.; Omelchenko, M.V.; Makarova, K.S.; Zeng, Q.; Gibson, R.; Lee, H.M.; Dubois, J.; Qiu, D.; Hitti, J.; et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 2001, 183, 4823–4838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangney, M.; Mitchell, W.J. Characterisation of a glucose phosphotransferase system in Clostridium acetobutylicum ATCC 824. Appl. Microbiol. Biotechnol. 2007, 74, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Boos, W.; Shuman, H. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 1998, 62, 204–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinsiek, S.; Bettenbrock, K. Glucose transport in Escherichia coli mutant strains with defects in sugar transport systems. J. Bacteriol. 2012, 194, 5897–5908. [Google Scholar] [CrossRef] [Green Version]
- Hunter, I.S.; Kornberg, H.L. Glucose transport of Escherichia coli growing in glucose-limited continuous culture. Biochem. J. 1979, 178, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Deutscher, J.; Francke, C.; Postma, P.W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria (vol 70, pg 939, 2006). Microbiol. Mol. Biol. Rev. 2008, 72, 555. [Google Scholar] [CrossRef] [Green Version]
- Amador-Noguez, D.; Brasg, I.A.; Feng, X.J.; Roquet, N.; Rabinowitz, J.D. Metabolome remodeling during the acidogenic-solventogenic transition in Clostridium acetobutylicum. Appl. Environ. Microbiol. 2011, 77, 7984–7997. [Google Scholar] [CrossRef] [Green Version]
- Monot, F.; Martin, J.R.; Petitdemange, H.; Gay, R. Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium. Appl. Environ. Microbiol. 1982, 44, 1318–1324. [Google Scholar] [CrossRef] [Green Version]
- Alsaker, K.V.; Papoutsakis, E.T. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J. Bacteriol. 2005, 187, 7103–7118. [Google Scholar] [CrossRef]
- Durre, P. Biobutanol: An attractive biofuel. Biotechnol. J. 2007, 2, 1525–1534. [Google Scholar] [CrossRef]
- Jones, D.T.; Woods, D.R. Acetone-butanol fermentation revisited. Microbiol. Rev. 1986, 50, 484–524. [Google Scholar] [CrossRef]
- Janssen, H.; Doring, C.; Ehrenreich, A.; Voigt, B.; Hecker, M.; Bahl, H.; Fischer, R.J. A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl. Microbiol. Biotechnol. 2010, 87, 2209–2226. [Google Scholar] [CrossRef] [Green Version]
- Bahl, H.; Andersch, W.; Gottschalk, G. Continuous Production of Acetone and Butanol by Clostridium acetobutylicum in a 2-Stage Phosphate Limited Chemostat. Eur. J. Appl. Microbiol. 1982, 15, 201–205. [Google Scholar] [CrossRef]
- Grimmler, C.; Janssen, H.; Krausse, D.; Fischer, R.J.; Bahl, H.; Durre, P.; Liebl, W.; Ehrenreich, A. Genome-Wide Gene Expression Analysis of the Switch between Acidogenesis and Solventogenesis in Continuous Cultures of Clostridium acetobutylicum. J. Mol. Microbiol. Biotechnol. 2011, 20, 1–15. [Google Scholar] [CrossRef]
- Ehrenreich, A. DNA microarray technology for the microbiologist: An overview. Appl. Microbiol. Biotechnol. 2006, 73, 255–273. [Google Scholar] [CrossRef]
- Wiesenborn, D.P.; Rudolph, F.B.; Papoutsakis, E.T. Thiolase from Clostridium acetobutylicum ATCC 824 and Its Role in the Synthesis of Acids and Solvents. Appl. Environ. Microbiol. 1988, 54, 2717–2722. [Google Scholar] [CrossRef] [Green Version]
- Heap, J.T.; Kuehne, S.A.; Ehsaan, M.; Cartman, S.T.; Cooksley, C.M.; Scott, J.C.; Minton, N.P. The ClosTron: Mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods 2010, 80, 49–55. [Google Scholar] [CrossRef]
- Heap, J.T.; Pennington, O.J.; Cartman, S.T.; Carter, G.P.; Minton, N.P. The ClosTron: A universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 2007, 70, 452–464. [Google Scholar] [CrossRef]
- Cooksley, C.M.; Zhang, Y.; Wang, H.; Redl, S.; Winzer, K.; Minton, N.P. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab. Eng. 2012, 14, 630–641. [Google Scholar] [CrossRef]
- Sambrook, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory, Ed.; Cold Spring Harbor: Long Island, NY, USA, 2001. [Google Scholar]
- Fischer, R.J.; Oehmcke, S.; Meyer, U.; Mix, M.; Schwarz, K.; Fiedler, T.; Bahl, H. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J. Bacteriol. 2006, 188, 5469–5478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, H.; Grimmler, C.; Ehrenreich, A.; Bahl, H.; Fischer, R.J. A transcriptional study of acidogenic chemostat cells of Clostridium acetobutylicum—Solvent stress caused by a transient n-butanol pulse. J. Biotechnol. 2012, 161, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.; Honicke, D.; Ehrenreich, A.; Schmidt, M.; Weuster-Botz, D.; Bahl, H.; Lutke-Eversloh, T. Modifying the product pattern of Clostridium acetobutylicum: Physiological effects of disrupting the acetate and acetone formation pathways. Appl. Microbiol. Biotechnol. 2012, 94, 743–754. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Xin, X.; Bai, F.; Xue, C. Synergetic Engineering of Central Carbon, Energy, and Redox Metabolisms for High Butanol Production and Productivity by Clostridium acetobutylicum. Ind. Eng. Chem. Res. 2020, 59, 17137–17146. [Google Scholar] [CrossRef]
- Maier, A.; Volker, B.; Boles, E.; Fuhrmann, G.F. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res. 2002, 2, 539–550. [Google Scholar] [CrossRef]
ORF | Protein | glcG::int(1224) | glcCE::int(193) | ||
---|---|---|---|---|---|
pH 5.7 t = 120 h | pH 4.5 t = 240 h | pH 5.7 t = 120 h | pH 4.5 t = 240 h | ||
CA_P0066 | PTS, mannose-specific IIAB component | — | — | — | — |
CA_P0067 | PTS, mannose/fructose-specific IIC component | — | — | — | — |
CA_P0068 | PTS, mannose-specific IID component | — | — | — | — |
CAC0154 | PTS, mannitol-specific IIBC component | 1.34 | 1.10 | 1.01 | 1.05 |
CAC0156 | PTS, mannitol-specific IIA domain | n.d. | n.d. | n.d. | n.d. |
CAC0233 | PTS, fructose-specific IIA component | 4.99 | 3.74 | −1.11 | n.d. |
CAC0234 | PTS, fructose-specific IIBC component | 2.06 | 1.88 | −1.43 | n.d. |
CAC0383 | PTS, cellobiose-specific IIA component | 13.89 | 23.18 | n.a. | n.a. |
CAC0384 | PTS, cellobiose-specific IIB component | 28.11 | 7.17 | n.a. | n.a. |
CAC0386 | PTS, cellobiose-specific IIC component | 40.23 | 2.83 | n.a. | n.a. |
CAC0423 | Fusion PTS, beta-glucosides specific IIABC component | — | — | — | — |
CAC0532 | PTS, arbutin-like IIBC component | — | — | — | — |
CAC0570 | PTS enzyme II, ABC component | n.a. | n.a. | −1.01 | 1.02 |
CAC1353 | PTS, N-acetylglucosamine-specific IIBC component, | 1.06 | n.d. | −1.49 | n.d. |
CAC1354 | PTS, N-acetylglucosamine-specific IIA component | 1.08 | 1.54 | −1.58 | −1.81 |
CAC1407 | PTS, beta-glucosides-specific IIABC component | — | — | — | — |
CAC1457 | PTS, fructose(mannose)-specific IIA component | — | — | — | — |
CAC1458 | PTS, fructose(mannose)-specific IIB | — | — | — | — |
CAC1459 | PTS, fructose(mannose)-specific IIC | — | — | — | — |
CAC2956 | PTS, galactitol/fructose specific IIC component | — | — | — | — |
CAC2957 | PTS, galactitol/fructose specific IIB component | — | — | — | — |
CAC2958 | PTS, galactitol/fructose specific IIA component | — | — | — | — |
CAC2964 | PTS, lactose-specific enzyme IIBC component | — | — | — | — |
CAC2965 | PTS, lactose-specific enzyme IIA component | — | — | — | — |
CAC3425 | PTS, possibly glucose-specific IIBC component | n.d. | n.d. | n.d. | n.d. |
CAC3427 | PTS, possibly glucose-specific IIA component | 1.15 | n.d. | n.d. | −1.40 |
ORF | Protein | glcG::int(1224)-glcCE::int(193) |
---|---|---|
t = 12 h | ||
CA_P0066 | PTS, mannose-specific IIAB component | — |
CA_P0067 | PTS, mannose/fructose-specific IIC component | — |
CA_P0068 | PTS, mannose-specific IID component | — |
CAC0154 | PTS, mannitol-specific IIBC component | 2.80 |
CAC0156 | PTS system, mannitol-specific IIA domain | n.d. |
CAC0233 | PTS, fructose-specific IIA component | −1.46 |
CAC0234 | PTS, fructose-specific IIBC component | n.d. |
CAC0383 | PTS, cellobiose-specific IIA component | n.a. |
CAC0384 | PTS, cellobiose-specific BII component | n.a. |
CAC0386 | PTS, cellobiose-specific IIC component | n.a. |
CAC0423 | Fusion PTS, beta-glucosides specific IIABC component | — |
CAC0532 | PTS, arbutin-like IIBC component | — |
CAC0570 | PTS enzyme II, ABC component | n.a. |
CAC1353 | PTS, N-acetylglucosamine-specific IIBC component, | −1.34 |
CAC1354 | PTS, N-acetylglucosamine-specific IIA component | −2.22 |
CAC1407 | PTS, beta-glucosides-specific IIABC component | — |
CAC1457 | PTS, fructose(mannose)-specific IIA component | — |
CAC1458 | PTS, fructose(mannose)-specific IIB | — |
CAC1459 | PTS, fructose(mannose)-specific IIC | — |
CAC2956 | PTS, galactitol/fructose specific IIC component | — |
CAC2957 | PTS, galactitol/fructose specific IIB component | — |
CAC2958 | PTS, galactitol/fructose specific IIA component | — |
CAC2964 | PTS, lactose-specific enzyme IIBC component | — |
CAC2965 | PTS, lactose-specific enzyme IIA component | — |
CAC3425 | PTS, possibly glucose-specific IIBC component | — |
CAC3427 | PTS, possibly glucose-specific IIA component | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Jiang, D.; Liebl, W.; Wang, M.; Gu, L.; Liu, Z.; Ehrenreich, A. Confirmation of Glucose Transporters through Targeted Mutagenesis and Transcriptional Analysis in Clostridium acetobutylicum. Fermentation 2023, 9, 64. https://doi.org/10.3390/fermentation9010064
Zhang K, Jiang D, Liebl W, Wang M, Gu L, Liu Z, Ehrenreich A. Confirmation of Glucose Transporters through Targeted Mutagenesis and Transcriptional Analysis in Clostridium acetobutylicum. Fermentation. 2023; 9(1):64. https://doi.org/10.3390/fermentation9010064
Chicago/Turabian StyleZhang, Kundi, Dandan Jiang, Wolfgang Liebl, Maofeng Wang, Lichuan Gu, Ziyong Liu, and Armin Ehrenreich. 2023. "Confirmation of Glucose Transporters through Targeted Mutagenesis and Transcriptional Analysis in Clostridium acetobutylicum" Fermentation 9, no. 1: 64. https://doi.org/10.3390/fermentation9010064
APA StyleZhang, K., Jiang, D., Liebl, W., Wang, M., Gu, L., Liu, Z., & Ehrenreich, A. (2023). Confirmation of Glucose Transporters through Targeted Mutagenesis and Transcriptional Analysis in Clostridium acetobutylicum. Fermentation, 9(1), 64. https://doi.org/10.3390/fermentation9010064