Application of Augmented Reality in the Sensory Evaluation of Yogurts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Food Stimuli
2.3. Sensory Procedure
2.3.1. The 9-Point Hedonic Scale Questioning
2.3.2. Just-About-Right (JAR) Scale Questioning
2.3.3. Check-All-That-Apply (CATA) Questioning
2.3.4. Emotions
2.3.5. Purchase Intent, Demographics, and Consumption Questions
2.4. Contextual Settings (Environments)
2.4.1. Coconut View Environment
2.4.2. Dairy View Environment
2.5. Statistical Analysis
3. Results
3.1. Hedonic Results
3.2. JAR Results and Penalty Analysis
3.3. CATA Analysis of Attribute Terms of Yogurt Samples in Different Environments
3.4. Emotional Responses
3.5. Principal Component and Cluster Analyses of Yogurt Samples under the Three Contexts
3.6. The Purchase Intent of Yogurt Samples under Different Environments
3.7. The Results of Consumers Consumption Behaviour on Yogurt
4. Discussion
4.1. The Effect of Contexts on Consumer Acceptability of Yogurt Products
4.2. JAR Results
4.3. Attribute Terms and Emotional Responses of Yogurts
4.4. Purchase Intent and Consumption Behaviors
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Irzik, G.; Nola, R. Worldviews and their relation to science. In Science, Worldviews and Education; Matthews, M.R., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 81–97. [Google Scholar]
- Chapman, C.A.; Huffman, M.A. Why do we want to think humans are different? Anim. Sentience 2018, 3. [Google Scholar] [CrossRef]
- Sillar, B. The social agency of things? Animism and materiality in the Andes. Camb. Archaeol. J. 2009, 19, 367–377. [Google Scholar] [CrossRef]
- Rout, M.; Reid, J. Embracing indigenous metaphors: A new/old way of thinking about sustainability. Sustain. Sci. 2020, 15, 945–954. [Google Scholar] [CrossRef]
- Jaeger, S.; Hort, J.; Porcherot, C.; Ares, G.; Pecore, S.; MacFie, H. Future directions in sensory and consumer science: Four perspectives and audience voting. Food Qual. Prefer. 2017, 56, 301–309. [Google Scholar] [CrossRef]
- Torrico, D.D.; Sharma, C.; Dong, W.; Fuentes, S.; Viejo, C.G.; Dunshea, F.R. Virtual reality environments on the sensory acceptability and emotional responses of no-and full-sugar chocolate. LWT 2020, 137, 110383. [Google Scholar] [CrossRef]
- Wedel, M.; Bigné, E.; Zhang, J. Virtual and augmented reality: Advancing research in consumer marketing. Int. J. Res. Mark. 2020, 37, 443–465. [Google Scholar] [CrossRef]
- Das, S.M.; Sridhara, V.; Khorashadi, B. Systems and Methods Involving Augmented Menu Using Mobile Device. U.S. Patent No. 9,179,278, 3 November 2015. [Google Scholar]
- Crofton, E.C.; Botinestean, C.; Fenelon, M.; Gallagher, E. Potential applications for virtual and augmented reality technologies in sensory science. Innov. Food Sci. Emerg. Technol. 2019, 56, 102178. [Google Scholar] [CrossRef]
- Kong, Y.; Sharma, C.; Kanala, M.; Thakur, M.; Li, L.; Xu, D.; Harrison, R.; Torrico, D.D. Virtual Reality and Immersive Environments on Sensory Perception of Chocolate Products: A Preliminary Study. Foods 2020, 9, 515. [Google Scholar] [CrossRef] [Green Version]
- Sinesio, F.; Moneta, E.; Porcherot, C.; Abbà, S.; Dreyfuss, L.; Guillamet, K.; Bruyninckx, S.; Laporte, C.; Henneberg, S.; McEwan, J.A. Do immersive techniques help to capture consumer reality? Food Qual. Prefer. 2019, 77, 123–134. [Google Scholar] [CrossRef]
- Zandstra, E.; Kaneko, D.; Dijksterhuis, G.; Vennik, E.; De Wijk, R. Implementing immersive technologies in consumer testing: Liking and Just-About-Right ratings in a laboratory, immersive simulated café and real café. Food Qual. Prefer. 2020, 84, 103934. [Google Scholar] [CrossRef]
- Sinesio, F.; Saba, A.; Peparaio, M.; Civitelli, E.S.; Paoletti, F.; Moneta, E. Capturing consumer perception of vegetable freshness in a simulated real-life taste situation. Food Res. Int. 2018, 105, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Ammann, J.; Stucki, M.; Siegrist, M. True colours: Advantages and challenges of virtual reality in a sensory science experiment on the influence of colour on flavour identification. Food Qual. Prefer. 2020, 86, 103998. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Htun, N.N.; Charleer, S.; De Croon, R.; Verbert, K. Designing augmented reality applications for personal health decision-making. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Lawless, H.T.; Heymann, H. Sensory Evaluation of Food: Principles and Practices; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar]
- Li, B.; Hayes, J.E.; Ziegler, G.R. Just-about-right and ideal scaling provide similar insights into the influence of sensory attributes on liking. Food Qual. Prefer. 2014, 37, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Chetachukwu, A.S.; Thongraung, C.; Yupanqui, C.T. Development of reduced-fat coconut yoghurt: Physicochemical, rheological, microstructural and sensory properties. Int. J. Dairy Technol. 2019, 72, 524–535. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Lee, P.Y.; Xia, Y.; Chheang, S.L.; Roigard, C.M.; Ares, G. Using the emotion circumplex to uncover sensory drivers of emotional associations to products: Six case studies. Food Qual. Prefer. 2019, 77, 89–101. [Google Scholar] [CrossRef]
- Janiaski, D.; Pimentel, T.; Cruz, A.; Prudencio, S. Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product? J. Dairy Sci. 2016, 99, 5273–5283. [Google Scholar] [CrossRef]
- Gutjar, S.; de Graaf, C.; Kooijman, V.; de Wijk, R.A.; Nys, A.; ter Horst, G.J.; Jager, G. The role of emotions in food choice and liking. Food Res. Int. 2015, 76, 216–223. [Google Scholar] [CrossRef]
- Schouteten, J.J.; De Steur, H.; Sas, B.; De Bourdeaudhuij, I.; Gellynck, X. The effect of the research setting on the emotional and sensory profiling under blind, expected, and informed conditions: A study on premium and private label yogurt products. J. Dairy Sci. 2017, 100, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Nestrud, M.A.; Meiselman, H.L.; King, S.C.; Lesher, L.L.; Cardello, A.V. Development of EsSense25, a shorter version of the EsSense Profile®. Food Qual. Prefer. 2016, 48, 107–117. [Google Scholar] [CrossRef]
- Sketchfab. Available online: https://sketchfab.com/3d-models/palms-f34a5b4ccc774d68b9fc51b3e59690db (accessed on 28 November 2020).
- Sketchfab. Available online: https://sketchfab.com/3d-models/coconut-b68fd365187f45cf843e316d2ea23260 (accessed on 29 November 2020).
- Pixabay. Available online: https://pixabay.com/photos/palm-trees-trees-tropical-palm-4968319/ (accessed on 29 November 2020).
- YouTube. Available online: https://www.youtube.com/watch?v=QX4j_zHAlw8&t=146s (accessed on 29 November 2020).
- Sketchfab. Available online: https://sketchfab.com/3d-models/cow-99d333e3b4e4470a8d7d38436489c001 (accessed on 28 November 2020).
- Sketchfab. Available online: https://sketchfab.com/3d-models/milk-5e8d71045e2040ba8f6619d86d204cf5 (accessed on 28 November 2020).
- Pixabay. Available online: https://pixabay.com/photos/cows-pasture-land-animals-meadow-3636937/ (accessed on 29 November 2020).
- YouTube. Available online: https://www.youtube.com/watch?v=KjmuBo8xoCU (accessed on 29 November 2020).
- Meullenet, J.F.; Xiong, R.; Findlay, C.J. Multivariate and Probabilistic Analyses of Sensory Science Problems; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 25. [Google Scholar]
- Pagès, J.; Berthelo, S.; Brossier, M.; Gourret, D. Statistical penalty analysis. Food Qual. Prefer. 2014, 32, 16–23. [Google Scholar] [CrossRef]
- Velasco, C.; Salgado-Montejo, A.; Marmolejo-Ramos, F.; Spence, C. Predictive packaging design: Tasting shapes, typefaces, names, and sounds. Food Qual. Prefer. 2014, 34, 88–95. [Google Scholar] [CrossRef]
- Kashima, H.; Hayashi, N. Basic taste stimuli elicit unique responses in facial skin blood flow. PLoS ONE 2011, 6, e28236. [Google Scholar] [CrossRef] [PubMed]
- Robin, O.; Rousmans, S.; Dittmar, A.; Vernet-Maury, E. Gender influence on emotional responses to primary tastes. Physiol. Behav. 2003, 78, 385–393. [Google Scholar] [CrossRef]
- Pomirleanu, N.; Gustafson, B.M.; Bi, S. Ooh, that’s sour: An investigation of the role of sour taste and color saturation in consumer temptation avoidance. Psychol. Mark. 2020, 37, 1068–1081. [Google Scholar] [CrossRef]
- Strohminger, N. Disgust talked about. Philos. Compass 2014, 9, 478–493. [Google Scholar] [CrossRef]
- Bangcuyo, R.G.; Smith, K.J.; Zumach, J.L.; Pierce, A.M.; Guttman, G.A.; Simons, C.T. The use of immersive technologies to improve consumer testing: The role of ecological validity, context and engagement in evaluating coffee. Food Qual. Prefer. 2015, 41, 84–95. [Google Scholar] [CrossRef]
- Campbell, M.C.; Manning, K.C.; Leonard, B.; Manning, H.M. Kids, cartoons, and cookies: Stereotype priming effects on children’s food consumption. J. Consum. Psychol. 2016, 26, 257–264. [Google Scholar] [CrossRef]
- Gupta, M.; Torrico, D.D.; Hepworth, G.; Gras, S.L.; Ong, L.; Cottrell, J.J.; Dunshea, F.R. Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study. Foods 2021, 10, 1237. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Swaney-Stueve, M.; Severns, B.; Talavera, M. Using correspondence analysis to evaluate consumer terminology and understand the effects of smoking method and type of wood on the sensory perception of smoked meat. J. Sens. Stud. 2019, 34, e12535. [Google Scholar] [CrossRef]
- Torrico, D.D.; Fuentes, S.; Viejo, C.G.; Ashman, H.; Dunshea, F.R. Cross-cultural effects of food product familiarity on sensory acceptability and non-invasive physiological responses of consumers. Food Res. Int. 2019, 115, 439–450. [Google Scholar] [CrossRef]
Effects | Acceptability Attributes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Appearance | Color | Aroma | Taste/Flavor | Sweetness | ||||||
Q-Value | p-Value | Q-Value | p-Value | Q-Value | p-Value | Q-Value | p-Value | Q-Value | p-Value | |
Yogurt | 8.20 | 0.02 | 12.27 | <0.01 | 7.73 | 0.02 | 18.05 | <0.01 | 15.00 | <0.01 |
Environment | 4.70 | 0.10 | 0.57 | 0.75 | 1.31 | 0.52 | 0.05 | 0.98 | 2.51 | 0.29 |
Yogurt × Env. | 16.75 | 0.03 | 14.95 | 0.06 | 12.29 | 0.14 | 27.00 | <0.01 | 22.02 | <0.01 |
Effects | Acceptability Attributes | |||||||||
Sourness | Mouthfeel | Viscosity | Aftertaste | Overall Liking | ||||||
Q-Value | p-Value | Q-Value | p-Value | Q-Value | p-Value | Q-Value | p-Value | Q-Value | p-Value | |
Yogurt | 7.19 | 0.03 | 11.80 | <0.01 | 12.07 | <0.01 | 18.06 | <0.01 | 21.53 | <0.01 |
Environment | 2.73 | 0.26 | 1.54 | 0.46 | 2.14 | 0.34 | 4.31 | 0.12 | 4.70 | 0.10 |
Yogurt × Env. | 10.84 | 0.21 | 19.88 | 0.01 | 14.93 | 0.06 | 22.35 | <0.01 | 25.09 | <0.01 |
Attribute | Yogurt | Environment | ||
---|---|---|---|---|
SB | ARC | ARD | ||
Appearance | C | 4.08 b | 4.89 ab | 4.88 ab |
D | 5.03 ab | 5.22 ab | 5.06 ab | |
M | 4.90 ab | 5.15 ab | 5.79 a | |
Taste/Flavor | C | 4.06 b | 4.60 ab | 4.22 ab |
D | 5.71 a | 4.98 ab | 5.29 ab | |
M | 5.65 a | 5.37 ab | 5.10 ab | |
Sweetness | C | 4.06 b | 4.90 ab | 4.28 ab |
D | 5.15 ab | 5.08 ab | 5.44 ab | |
M | 5.37 ab | 5.64 a | 5.10 ab | |
Overall liking | C | 4.08 b | 4.87 ab | 4.13 ab |
D | 5.12 ab | 5.24 ab | 5.62 a | |
M | 5.25 ab | 5.58 ab | 5.11 ab |
Variable | Yogurt 1 | Environment 1 | ||
---|---|---|---|---|
SB | ARC | ARD | ||
Purchase Intent (%) 2 | C | 41.3 c | 42.9 bc | 55.6 abc |
D | 68.3 ab | 68.3 ab | 61.9 abc | |
M | 63.5 abc | 66.7 abc | 69.8 a |
Frequencies of Yogurt Consumption | Percentage (%) |
---|---|
Everyday | 14.3 |
Two or three times a week | 30.2 |
Sometimes in a week | 30.2 |
Two or three times a month | 12.7 |
Sometimes in a month | 11.1 |
Occasionally | 1.6 |
Reasons for Yogurt Consumption | Percentage (%) |
Health | 71.4 |
Taste | 71.4 |
Nutrition | 60.3 |
Probiotics | 49.2 |
As a habit | 28.6 |
Emotional pleasantness | 15.9 |
Factor Considered most When Purchasing Yogurt | Percentage (%) |
Price | 58.7 |
Brand | 28.6 |
Type (dairy yogurt or non-dairy yogurt) | 20.6 |
Packaging | 15.9 |
Locally produced | 9.5 |
Organic | 6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Sharma, C.; Mehta, A.; Torrico, D.D. Application of Augmented Reality in the Sensory Evaluation of Yogurts. Fermentation 2021, 7, 147. https://doi.org/10.3390/fermentation7030147
Dong Y, Sharma C, Mehta A, Torrico DD. Application of Augmented Reality in the Sensory Evaluation of Yogurts. Fermentation. 2021; 7(3):147. https://doi.org/10.3390/fermentation7030147
Chicago/Turabian StyleDong, Yanyu, Chetan Sharma, Annu Mehta, and Damir D. Torrico. 2021. "Application of Augmented Reality in the Sensory Evaluation of Yogurts" Fermentation 7, no. 3: 147. https://doi.org/10.3390/fermentation7030147
APA StyleDong, Y., Sharma, C., Mehta, A., & Torrico, D. D. (2021). Application of Augmented Reality in the Sensory Evaluation of Yogurts. Fermentation, 7(3), 147. https://doi.org/10.3390/fermentation7030147