Bacterial Flow Cytometry and Imaging as Potential Process Monitoring Tools for Industrial Biotechnology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Process Details
2.2. Biomass Monitoring
2.3. Flow Cytometry
2.3.1. Flow Cytometer Settings
2.3.2. Sample Preparation, Cell Staining, and Data Analysis
2.4. Imaging Techniques for Morphology Analysis
2.4.1. Microscopic Analysis
2.4.2. Automated Cell Imaging Analysis
3. Results
3.1. pH Effect on Biomass Formation and Growth
3.2. Cell Size Dynamics
3.3. Viability Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Bigret, M.; Mäyrä-Mäkinen, A. Industrial Use and Production of Lactic Acid Bacteria. Lact. Acid Bact. 2004. [Google Scholar] [CrossRef]
- Research, G. View Probiotics Market Worth $77.09 Billion By 2025. Available online: https://www.grandviewresearch.com/press-release/global-probiotics-market (accessed on 14 September 2019).
- Narayana, S.; Christensen, L.; Skov, T.; van den Berg, F. Mid-Infrared Spectroscopy and Multivariate Analysis to Characterize Lactobacillus acidophilus Fermentation Processes. Appl. Spectrosc. 2019, 73, 1087–1098. [Google Scholar] [CrossRef]
- Spann, R.; Glibstrup, J.; Pellicer-Alborch, K.; Junne, S.; Neubauer, P.; Roca, C.; Kold, D.; Lantz, A.E.; Sin, G.; Gernaey, K.V.; et al. CFD predicted pH gradients in lactic acid bacteria cultivations. Biotechnol. Bioeng. 2018, 116. [Google Scholar] [CrossRef] [Green Version]
- Carlquist, M.; Fernandes, R.; Helmark, S.; Heins, A.-L.; Lundin, L.; Sørensen, S.J.; Gernaey, K.V.; Lantz, A. Physiological heterogeneities in microbial populations and implications for physical stress tolerance. Microb. Cell Fact. 2012, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Enfors, S.O.; Jahic, M.; Rozkov, A.; Xu, B.; Hecker, M.; Jürgen, B.; Krüger, E.; Schweder, T.; Hamer, G.; O’Beirne, D.; et al. Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 2001, 85, 175–185. [Google Scholar] [CrossRef]
- van Teeseling, M.C.F.; de Pedro, M.A.; Cava, F. Determinants of bacterial morphology: From fundamentals to possibilities for antimicrobial targeting. Front. Microbiol. 2017, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.C.; Blair, K.M.; Salama, N.R. Staying in Shape: The Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol. Mol. Biol. Rev. 2000, 80, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Adan, A.; Alizada, G.; Kiraz, Y.; Baran, Y.; Nalbant, A. Flow cytometry: Basic principles and applications. Crit. Rev. Biotechnol. 2017, 37, 163–176. [Google Scholar] [CrossRef]
- Joeris, K.; Frerichs, J.G.; Konstantinov, K.; Scheper, T. In-situ microscopy: Online process monitoring of mammalian cell cultures. Cytotechnology 2002, 38, 129–134. [Google Scholar] [CrossRef]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A Medium For The Cultivation Of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Protocols LIVE/DEAD® Bac LightTM Bacterial Viability and Counting Kit (L34856) (Flow Cytometry Kit); ThermoFisher: Waltham, MA, USA, 2004.
- BioSense Solutions. oCelloScope Technology; BioSense Solutions: Farum, Denmark, 2017. [Google Scholar]
- Hussain, M.A.; Hosseini Nezhad, M.; Sheng, Y.; Amoafo, O. Proteomics and the stressful life of lactobacilli. FEMS Microbiol. Lett. 2013, 349, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šušković, J.; Kos, B.; Beganović, J.; Pavunc, A.L.; Habjanič, K.; Matoć, S. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Food Technol. Biotechnol. 2010, 48, 296–307. [Google Scholar]
- Davis, K.M.; Isberg, R.R. Defining heterogeneity within bacterial populations via single cell approaches. BioEssays 2016, 38, 782–790. [Google Scholar] [CrossRef] [PubMed]
- De Jong, I.G.; Haccou, P.; Kuipers, O.P. Bet hedging or not? A guide to proper classification of microbial survival strategies. BioEssays 2011, 33, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Van Boxtel, C.; Van Heerden, J.H.; Nordholt, N.; Schmidt, P.; Bruggeman, F.J. Taking chances and making mistakes: Non-genetic phenotypic heterogeneity and its consequences for surviving in dynamic environments. J. R. Soc. Interface 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Cesar, S.; Huang, K.C. Thinking big: The tunability of bacterial cell size. FEMS Microbiol. Rev. 2017, 41, 672–678. [Google Scholar] [CrossRef]
- Macfarlane, G.; Cummings, J. Probiotics and prebiotics: Can regulating the activities of intestinal bacteria benefit health? BMJ 1999, 318, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- Rhee, S.K.; Pack, M.Y. Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. J. Bacteriol. 1980, 144, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Mullaney, P.F.; Van Dilla, M.A.; Coulter, J.R.; Dean, P.N. Cell sizing: A light scattering photometer for rapid volume determination. Rev. Sci. Instrum. 1969, 40, 1029–1032. [Google Scholar] [CrossRef]
- Kerker, M.; Chew, H.; McNulty, P.J.; Kratohvil, J.P.; Cooke, D.D.; Sculley, M.; Lee, M.P. Light scattering and fluorescence by small particles having internal structure. J. Histochem. Cytochem. 1979, 27, 250–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Amoros, R.; Comas, J.; Carulla, C.; Vives-Rego, J. Variations in flow cytometric forward scatter signals and cell size in batch cultures of Escherichia coli. FEMS Microbiol. Lett. 1994, 117, 225–229. [Google Scholar] [CrossRef]
- Müller, S.; Nebe-Von-Caron, G. Functional single-cell analyses: Flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 2010, 34, 554–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinder, A.C.; Purdy, P.W.; Poulter, S.A.G.; Clark, D.C. Validation of flow cytometry for rapid enumeration of bacterial concentrations in pure cultures. J. Appl. Bacteriol. 1990, 69, 92–100. [Google Scholar] [CrossRef]
- Kachel, V.; Fellner-Feldegg, H.; Menke, E. Hydrodynamic properties of flow cytometry instruments. In Flow Cytometry and Sorting; Melamed, M.R., Lindmo, T., Mendelsohn, M.L., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 1990; pp. 27–44. [Google Scholar]
- Watson, D.; Hagen, N.; Diver, J.; Marchand, P.; Chachisvilis, M. Elastic light scattering from single cells: Orientational dynamics in optical trap. Biophys. J. 2004, 87, 1298–1306. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.Y.; Chin, L.K.; Ser, W.; Chen, H.F.; Hsieh, C.M.; Lee, C.H.; Sung, K.B.; Ayi, T.C.; Yap, P.H.; Liedberg, B.; et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 2016, 16, 634–644. [Google Scholar] [CrossRef]
Microscope | Automated Imaging | |||
---|---|---|---|---|
pH-A | pH-B | pH-A | pH-B | |
Object counts | 129 | 160 | 390 | 845 |
Mean | 518 | 328 | 41 | 16 |
Median | 440 | 326 | 35 | 12 |
Std Dev a | 439 | 187 | 31 | 14 |
IQR b | 758 | 458 | 53 | 21 |
FSC | Trigger-Pulse Width | |||
---|---|---|---|---|
pH-A | pH-B | pH-A | pH-B | |
Mean | 9237 | 13809 | 4925 | 3608 |
Median | 8180 | 13620 | 4934 | 3620 |
Std Dev a | 5068 | 2384 | 1641 | 1442 |
IQR b | 12418 | 14677 | 5860 | 4611 |
Time (h) | pH-A | pH-B | pH-C | ||
---|---|---|---|---|---|
(1) | (2) | (3) | (1) | (1) | |
0 | 99/00/01 | 86/14/00 | 100/00/00 | 96/04/00 | - a |
1 | 76/17/06 | 27/35/38 | 76/20/05 | 62/20/08 | 80/12/08 |
2 | 28/57/14 | 20/62/18 | 43/45/11 | 47/41/12 | - |
3 | 35/55/09 | 26/64/09 | 60/36/04 | 26/48/26 | - |
4 | 91/06/04 | 71/23/06 | 82/12/06 | 36/56/08 | 88/09/03 |
5 | 69/23/08 | 75/20/05 | 64/07/29 | 64/34/02 | 77/14/09 |
6 | 71/18/10 | 72/24/03 | 61/23/16 | 74/22/04 | 77/20/03 |
7 | 88/07/05 | 61/31/08 | 73/18/09 | 69/26/05 | 29/44/27 |
8 | 90/07/03 | 73/19/08 | 64/22/13 | 78/14/07 | 35/45/20 |
9 | 98/01/01 | 95/05/01 | 88/09/03 | 94/04/01 | 55/30/14 |
10 | 94/05/01 | 92/07/01 | 80/14/06 | 93/05/02 | 78/13/09 |
Time (h) | pH-A | pH-B |
---|---|---|
h 00 | 2.23 × 108 | 1.04 × 109 |
h 10 | 2.41 × 1012 | 4.00 × 1010 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayana, S.K.; Mallick, S.; Siegumfeldt, H.; van den Berg, F. Bacterial Flow Cytometry and Imaging as Potential Process Monitoring Tools for Industrial Biotechnology. Fermentation 2020, 6, 10. https://doi.org/10.3390/fermentation6010010
Narayana SK, Mallick S, Siegumfeldt H, van den Berg F. Bacterial Flow Cytometry and Imaging as Potential Process Monitoring Tools for Industrial Biotechnology. Fermentation. 2020; 6(1):10. https://doi.org/10.3390/fermentation6010010
Chicago/Turabian StyleNarayana, Sumana Kadamalakunte, Sanjaya Mallick, Henrik Siegumfeldt, and Frans van den Berg. 2020. "Bacterial Flow Cytometry and Imaging as Potential Process Monitoring Tools for Industrial Biotechnology" Fermentation 6, no. 1: 10. https://doi.org/10.3390/fermentation6010010
APA StyleNarayana, S. K., Mallick, S., Siegumfeldt, H., & van den Berg, F. (2020). Bacterial Flow Cytometry and Imaging as Potential Process Monitoring Tools for Industrial Biotechnology. Fermentation, 6(1), 10. https://doi.org/10.3390/fermentation6010010