Characterization of Old Wine Yeasts Kept for Decades under a Zero-Emission Maintenance Regime
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Molecular Analysis of Yeast Strains
2.3. Fermentation Conditions
2.4. Analytical Methods
3. Results
3.1. Regrowing of Dormant Strains Kept under Vaspar for Decades
3.2. Fermentation Performance
3.3. Production of Aroma Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansen, E.C. Recherches sur la physiologie et la morphologie des ferments alcooliques V. Methodes pour obtenir des cultures pures de Saccharomyces et de mikroorganismes analogues. C R Trav. Lab. Carlsberg 1888, 2, 143–167. [Google Scholar]
- Wortmann, J. Anwendung und Wirkung Reiner Hefen; Verlagsbuchhandlung Paul Parey: Berlin, Germany, 1895. [Google Scholar]
- Gélinas, P. Active dry yeast: Lessons from patents and science. Compr. Rev. Food Sci. Saf. 2019, 18, 1227–1255. [Google Scholar] [CrossRef] [Green Version]
- Wellman, A.M.; Stewart, G.G. Storage of brewing yeasts by liquid nitrogen refrigeration. Appl. Microbiol. 1973, 26, 577–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellani, A. Viability of some pathogenic fungi in distilled water. J. Trop. Med. Hyg. 1939, 42, 225–226. [Google Scholar]
- Hartsell, S.E. The longevity of bacterial cultures under paraffin oil. J. Bacteriol. 1947, 53, 801. [Google Scholar] [PubMed]
- Hartung de Capriles, C.; Mata, S.; Middelveen, M. Preservation of fungi in water (castellani): 20 years. Mycopathologia 1989, 106, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.G.; Lírio, V.S.; Lacaz, C.d.S. Preservation of fungi and actinomycetes of medical importance in distilled water. Rev. Inst. Med. Trop. Sao Paulo 1992, 34, 159–165. [Google Scholar] [CrossRef]
- Richter, D.L. Revival of saprotrophic and mycorrhizal basidiomycete cultures after 20 years in cold storage in sterile water. Can. J. Microbiol. 2008, 54, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Karabicak, N.; Karatuna, O.; Akyar, I. Evaluation of the viabilities and stabilities of pathogenic mold and yeast species using three different preservation methods over a 12-year period along with a review of published reports. Mycopathologia 2016, 181, 415–424. [Google Scholar] [CrossRef]
- Henry, B.S. Viability of yeast cultures preserved under mineral oil. J. Bacteriol. 1947, 54, 264. [Google Scholar] [CrossRef] [Green Version]
- Hamelin, R.C.; Berube, P.; Gignac, M.; Bourassa, M. Identification of root rot fungi in nursery seedlings by nested multiplex pcr. Appl. Environ. Microbiol. 1996, 62, 4026–4031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, A.; Gerbi, V.; Redoglia, M. A Rapid HPLC method for separation and determination of major organic acids in grape musts and wines. Am. J. Enol. Vitic 1987, 38, 151–155. [Google Scholar]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camara, J.S.; Alves, M.A.; Marques, J.C. Development of headspace solid-phase microextraction-gas chromatography–mass spectrometry methodology for analysis of terpenoids in Madeira wines. Anal. Chim. Acta 2006, 555, 191–200. [Google Scholar] [CrossRef]
- Meusdoerffer, F.G. A Comprehensive History of Beer Brewing. In Handbook of Brewing: Processes, Technology, Markets; Eßlinger, H.M., Ed.; WILEY-VCH: Weinheim, Germany, 2009. [Google Scholar]
- Querol, A.; Barrio, E.; Huerta, T.; Ramon, D. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 1992, 58, 2948–2953. [Google Scholar] [CrossRef] [Green Version]
- Beltran, G.; Torija, M.J.; Novo, M.; Ferrer, N.; Poblet, M.; Guillamon, J.M.; Rozes, N.; Mas, A. Analysis of yeast populations during alcoholic fermentation: A six year follow-up study. Syst. Appl. Microbiol. 2002, 25, 287–293. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.A.; van der Lelie, D.; Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. USA 2014, 111, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Capozzi, V.; Garofalo, C.; Chiriatti, M.A.; Grieco, F.; Spano, G. Microbial terroir and food innovation: The case of yeast biodiversity in wine. Microbiol. Res. 2015, 181, 75–83. [Google Scholar] [CrossRef]
- Peter, J.; De Chiara, M.; Friedrich, A.; Yue, J.X.; Pflieger, D.; Bergstrom, A.; Sigwalt, A.; Barre, B.; Freel, K.; Llored, A.; et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 2018, 556, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Langdon, Q.K.; Peris, D.; Baker, E.P.; Opulente, D.A.; Nguyen, H.V.; Bond, U.; Goncalves, P.; Sampaio, J.P.; Libkind, D.; Hittinger, C.T. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nat. Ecol. Evol. 2019, 3, 1576–1586. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.; Delvaux, F.R.; Verstrepen, K.J.; Thevelein, J.M. Production and biological function of volatile esters in saccharomyces cerevisiae. Microb. Biotechnol. 2010, 3, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Saerens, S.M.; Verstrepen, K.J.; Van Laere, S.D.; Voet, A.R.; Van Dijck, P.; Delvaux, F.R.; Thevelein, J.M. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J. Biol. Chem. 2006, 281, 4446–4456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bougreau, M.; Ascencio, K.; Bugarel, M.; Nightingale, K.; Loneragan, G. Yeast species isolated from Texas High Plains vineyards and dynamics during spontaneous fermentations of Tempranillo grapes. PLoS ONE 2019, 14, e0216246. [Google Scholar] [CrossRef] [PubMed]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri, B.; Bauer, F.F.; Setati, M.E. The impact of Saccharomyces cerevisiae on a wine yeast consortium in natural and inoculated fermentations. Front. Microbiol. 2017, 8, 1988. [Google Scholar] [CrossRef] [PubMed]
Original Label | Sequence-Based Assignment |
---|---|
Zell 1895 | Saccharomyces cerevisiae |
Valdepenas Criptana 1909 | Saccharomyces cerevisiae |
Brettanomyces claussenii IHG Berlin 1959 | Meyerozyma guilliermondii |
Ungstein 1892 | Saccharomyces cerevisiae |
Riesling Krim 1896 | Saccharomyces cerevisiae |
Olewig II 1896 | Meyerozyma guilliermondii |
Dürkheim 1892 | Meyerozyma guilliermondii |
Rüdesheimer Hinterhaus 1893 | Saccharomyces cerevisiae |
Alpiarca II 1896 | Saccharomyces cerevisiae |
Candida tropicalis | Candida sanyaensis |
Heimersheimer Ruth 1895 | Saccharomyces cerevisiae |
Steinberg 1893 | Saccharomyces cerevisiae |
Rüdesheimer Berg | Saccharomyces cerevisiae |
Würzburg (Stein) | Saccharomyces kudriavzevii |
Winningen 1892 | Saccharomyces kudriavzevii |
Scy 1892 | Saccharomyces cerevisiae |
Bordeaux 1892 | Saccharomyces cerevisiae |
Geisenheimer (Mäuerchen) 1893 | Saccharomyces cerevisiae |
Strains | Glucose | Fructose | Total Sugar | Malate | Shikimic Acid | Lactate | Acetate | Citric acid | Ethanol | Ethanol |
---|---|---|---|---|---|---|---|---|---|---|
[g/L] | [g/L] | [g/L] | [g/L] | [mg/L] | [g/L] | [g/L] | [g/L] | [g/L] | [%] | |
EC1118 wine yeast | <1 | <1 | 4.6 | 38 | 0.2 | 0.1 | 0.2 | 60.7 | 7.7 | |
GHM wine yeast | <1 | <1 | 4.4 | 40 | 0.3 | 0.2 | 0.2 | 56.3 | 7.1 | |
Saccharomyces cerevisiae | ||||||||||
Zell 1895 | <1 | <1 | 3.7 | 41 | 0.4 | 0.1 | 0.2 | 60.2 | 7.6 | |
Valdepenas Criptana 1909 | <1 | <1 | 3.5 | 39 | 0.2 | 0.1 | 0.2 | 54.9 | 7.0 | |
Ungstein 1892 | <1 | <1 | 2.9 | 28 | 0.2 | 0.2 | 0.2 | 56.6 | 7.2 | |
Riesling Krim 1896 | <1 | <1 | 2.2 | 20 | 0.1 | 0.2 | 0.2 | 57.1 | 7.3 | |
Rüdesheimer Hinterhaus 1893 | <1 | 4.1 | 4.1 | 3.9 | 297 | 0.9 | 0.2 | 0.4 | 53.8 | 6.9 |
Alpiarca II 1896 | <1 | <1 | 4.1 | 38 | 0.2 | 0.1 | 0.2 | 56.8 | 7.2 | |
Heimersheimer Ruth 1895 | <1 | 6.9 | 6.9 | 3.4 | 34 | 0.3 | 0.2 | 0.2 | 56.4 | 7.2 |
Steinberg 1893 | <1 | <1 | 3.8 | 32 | 0.1 | 0.1 | 0.2 | 56.4 | 7.1 | |
Rüdesheimer Berg | <1 | <1 | 4.0 | 39 | 0.5 | 0.2 | 0.2 | 55.9 | 7.1 | |
Scy 1892 | <1 | <1 | 3.6 | 31 | 0.1 | 0.2 | 0.2 | 58.7 | 7.4 | |
Bordeaux 1892 | <1 | <1 | 2.9 | 29 | 0.2 | 0.1 | 0.2 | 56.9 | 7.2 | |
Geisenheimer (Mäuerchen) | <1 | <1 | 3.8 | 27 | 0.1 | 0.4 | 0.2 | 57.1 | 7.2 | |
S. kudriavzevii | ||||||||||
Würzburg (Stein) | <1 | <1 | 3.7 | 26 | <0.1 | 0.2 | 0.2 | 54.2 | 6.9 | |
Winningen 1892 | 2.1 | 19.2 | 20.8 | 4.1 | 37 | 0.5 | 0.2 | 0.2 | 49.7 | 6.3 |
i-Butanol [mg/L] | 2-Phenyl-Ethanol [mg/L] | Isoamyl Alcohol [mg/L] | i-Butyric Acid Ethyl-Ester [µg/L] | Butyric Acid Ethylester [µg/L] | Hexanoic Acid Ethyl-Ester [µg/L] | 2-Phenylethyl Acetate [µg/L] | Propionic Acid Ethyl-Ester [µg/L] | |
---|---|---|---|---|---|---|---|---|
EC1118 | 21 | 30 | 138 | nq | 20 | 195 | 46 | 64 |
GHM | 40 | 51 | 192 | nq | 34 | 218 | 62 | 60 |
Saccharomyces cerevisiae | ||||||||
Zell 1895 | 112 | 24 | 238 | 34 | 69 | 457+ | 34 | 167 |
Valdepenas Criptana 1909 | 81 | 60 | 233 | 33 | nq | 138 | 94 | 95 |
Ungstein 1892 | 90 | 52 | 163 | 41 | nq | nq | 106 | 23 |
Riesling Krim 1896 | 246 | 46 | 303 | 48 | 28 | 96 | 98 | 25 |
Rüdesheimer Hinterhaus 1893 | 314 | 108 | 380 | 47 | 106 | nq | 507 | 57 |
Alpiarca 1896 | 85 | 41 | 220 | 35 | 120 | 536 | 123 | 82 |
Heimersheimer Ruth 1895 | 187 | 44 | 202 | 122 | nq | nq | 74 | 46 |
Steinberg 1893 | 40 | 25 | 83 | 59 | nq | nq | 116 | 46 |
Rüdesheimer Berg | 126 | 72 | 271 | 104 | 35 | 252 | 67 | 54 |
Scy 1892 | 164 | 34 | 255 | 162 | 46 | 174 | 98 | 82 |
Bordeaux 1892 | 83 | 31 | 155 | 77 | nq | nq | 110 | 46 |
Geisenheimer Mäuerchen 1893 | 74 | 95 | 120 | 92 | 18 | 121 | 297 | 41 |
S. kudriavzevii | ||||||||
Würzburg (Stein) | 42 | 29 | 106 | 54 | nq | nq | 68 | 40 |
Winningen | 65 | 46 | 151 | 68 | 23 | nq | 85 | 68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matti, K.; Bernardi, B.; Brezina, S.; Semmler, H.; von Wallbrunn, C.; Rauhut, D.; Wendland, J. Characterization of Old Wine Yeasts Kept for Decades under a Zero-Emission Maintenance Regime. Fermentation 2020, 6, 9. https://doi.org/10.3390/fermentation6010009
Matti K, Bernardi B, Brezina S, Semmler H, von Wallbrunn C, Rauhut D, Wendland J. Characterization of Old Wine Yeasts Kept for Decades under a Zero-Emission Maintenance Regime. Fermentation. 2020; 6(1):9. https://doi.org/10.3390/fermentation6010009
Chicago/Turabian StyleMatti, Katrin, Beatrice Bernardi, Silvia Brezina, Heike Semmler, Christian von Wallbrunn, Doris Rauhut, and Jürgen Wendland. 2020. "Characterization of Old Wine Yeasts Kept for Decades under a Zero-Emission Maintenance Regime" Fermentation 6, no. 1: 9. https://doi.org/10.3390/fermentation6010009
APA StyleMatti, K., Bernardi, B., Brezina, S., Semmler, H., von Wallbrunn, C., Rauhut, D., & Wendland, J. (2020). Characterization of Old Wine Yeasts Kept for Decades under a Zero-Emission Maintenance Regime. Fermentation, 6(1), 9. https://doi.org/10.3390/fermentation6010009