Direct Application of Fermented Solid Containing Lipases from Pycnoporus sanguineus in Esterification Reactions and Kinetic Resolution of Sec-alcohols
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Media
2.2. Microorganism
2.3. Test Trial for the Production of Lipases in Potato Dextrose Agar with Waste Frying Oil
2.4. Solid State Fermentation (SSF) and Obtaining Solid Fermented by P. sanguineus (SFPS)
2.5. Determination of Lipolytic and Synthetic Activities
2.5.1. Determination of Hydrolysis Activity in the Crude Enzyme Extract Against Synthetic Substrate P-nitrophenyl Palmitate (p-NPP)
2.5.2. Determination of the Lipolytic Activities of the Fermented Solid in Aqueous Media Against Natural Substrates
2.5.3. Determination of the Lipolytic Activities of the Fermented Solid in Organic Media
2.5.4. Determination of the Esterification Activities of the Fermented Solid in Organic Media
2.6. Kinetic Resolution of (RS)-1-phenyl-1-ethanol Catalyzed by the Lipases Present in the Dry Fermented Solid Produced by P. sanguineus (SFPS)
2.7. Gas Chromatography
3. Results and Discussion
3.1. Chemical Composition of Wheat Bran
3.2. Preliminary Test of Lipase Production by P. sanguineus in Potato Dextrose Agar with Residual Frying Oil
3.3. Production of Lipases by P. sanguineus by SSF
3.4. Application of the Fermented Solids That Contained Lipases from P. sanguineus
Hydrolysis Activity and Esterification Reactions Using the P. sanguineus Lipases Present in the Dry Fermented Solids
3.5. Kinetic Resolution of (RS)-1-phenyl-1-ethanol Catalyzed by the Lipases Contained in PSFS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarado-Ramírez, L.; Rodríguez-De Luna, S.E.; Rodríguez-Rodríguez, J.; Rostro-Alanis, M.d.J.; Parra-Saldívar, R. Synthesis and characterization of electrospun nanofibers for the immobilization of a cocktail of native laccases from Pycnoporus sanguineus CS:43 and their evaluation in the biotransformation of 2,4,6-trinitrotoluene. Int. Biodeterior. Biodegrad. 2024, 190, 105771. [Google Scholar] [CrossRef]
- Braga, D.M.; Brugnari, T.; Haminiuk, C.W.I.; Maciel, G.M. Production and immobilization of laccases from monoculture and co-culture of Trametes villosa and Pycnoporus sanguineus for sustainable biodegradation of ciprofloxacin. Process Biochem. 2024, 141, 132–143. [Google Scholar] [CrossRef]
- Lin, W.; Jia, G.; Sun, H.; Sun, T.; Hou, D. Genome sequence of the fungus Pycnoporus sanguineus, which produces cinnabarinic acid and pH- and thermo- stable laccases. Gene 2020, 742, 144586. [Google Scholar] [CrossRef]
- dos Santos, D.M.R.C.; Albuquerque, F.; Silva, T.P.; Ferreira, A.N.; Machado, S.S.; da Luze, J.M.R.; Pereira, H.J.V. Production, Purification, Characterization, and Application of Halotolerant and Thermostable Endoglucanase Isolated from Pycnoporus sanguineus. Waste Biomass Valorization 2023, 14, 3211–3222. [Google Scholar] [CrossRef]
- Ferreira, A.N.; Da Silva, A.T.; Nascimento, J.S.d.; Souza, C.B.d.; Silva, M.d.C.; Grillo, L.A.M.; Luz, J.M.R.d.; Pereira, H.J.V. Production, characterization, and application of a new chymotrypsin-like protease from Pycnoporus sanguineus. Biocatal. Biotransform. 2024, 42, 324–333. [Google Scholar] [CrossRef]
- Rohr, C.O.; Levin, L.N.; Mentaberry, A.N.; Wirth, S.A. A First Insight into Pycnoporus sanguineus BAFC 2126 Transcriptome. PLoS ONE 2013, 8, e81033. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.K.; Yadav, M.; Singh, N.P.; Yadav, K.D.S. Purification and characterisation of lignin peroxidase from Pycnoporus sanguineus MTCC-137. Appl. Biochem. Microbiol. 2011, 47, 532–537. [Google Scholar] [CrossRef]
- Jaeger, K.E.; Eggert, T. Lipases for biotechnology. Curr. Opin. Biotechnol. 2002, 13, 390–397. [Google Scholar] [CrossRef]
- Bullo, G.T.; Marasca, N.; Almeida, F.L.C.; Forte, M.B.S. Lipases: Market study and potential applications of immobilized derivatives. Biofuels Bioprod. Biorefining 2024, 18, 1676–1689. [Google Scholar] [CrossRef]
- Fahim, Y.A.; El-Khawaga, A.M.; Sallam, R.M.; Elsayed, M.A.; Assar, M.F.A. A Review on Lipases: Sources, Assays, Immobilization Techniques on Nanomaterials and Applications. BioNanoScience 2024, 14, 1780–1797. [Google Scholar] [CrossRef]
- Salgado, C.A.; dos Santos, C.I.A.; Vanetti, M.C.D. Microbial lipases: Propitious biocatalysts for the food industry. Food Biosci. 2022, 45, 101509. [Google Scholar] [CrossRef]
- Bharathi, D.; Rajalakshmi, G. Microbial lipases: An overview of screening, production and purification. Biocatal. Agric. Biotechnol. 2019, 22, 101368. [Google Scholar] [CrossRef]
- Dwivedee, B.P.; Soni, S.; Sharma, M.; Bhaumik, J.; Laha, J.K.; Banerjee, U.C. Promiscuity of Lipase-Catalyzed Reactions for Organic Synthesis: A Recent Update. ChemistrySelect 2018, 3, 2441–2466. [Google Scholar] [CrossRef]
- Gotor-Fernández, V.; Brieva, R.; Gokor, V. Lipases: Useful biocatalysts for the preparation of pharmaceuticals. J. Mol. Catal. B Enzym. 2006, 40, 111–120. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; de Barros, D.S.N.; Fernandez-Lafuente, R.; Freire, D.M.G. Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renew. Energy 2019, 130, 574–581. [Google Scholar] [CrossRef]
- Soares, G.A.; Alnoch, R.C.; Silva Dias, G.; Santos Reis, N.; Dos Tavares, I.M.d.C.; Ruiz, H.A.; Bilal, M.; de Oliveira, J.R.; Krieger, N.; Franco, M. Production of a fermented solid containing lipases from Penicillium roqueforti ATCC 10110 and its direct employment in organic medium in ethyl oleate synthesis. Biotechnol. Appl. Biochem. 2022, 69, 1284–1299. [Google Scholar] [CrossRef]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process. Bioresour. Technol. 2018, 263, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.; Dias, G.S.; Alnoch, R.C.; Mitchell, D.A. Fermented Solids and Their Application in the Production of Organic Compounds of Biotechnological Interest. In Solid State Fermentation; Springer: Berlin/Heidelberg, Germany, 2019; Volume 169, pp. 125–146, Advances in Biochemical Engineering/Biotechnology. [Google Scholar] [CrossRef]
- Moure, V.R.; Fabrício, C.; Frensch, G.; Marques, F.A.; Mitchell, D.A.; Krieger, N. Enhancing the enantioselectivity of the lipase from Burkholderia cepacia LTEB11 towards the resolution of secondary allylic alcohols. Biocatal. Agric. Biotechnol. 2014, 3, 146–153. [Google Scholar] [CrossRef]
- Nagy, V.; Tőke, E.R.; Keong, L.C.; Szatzker, G.; Ibrahim, D.; Omar, I.C.; Szakács, G.; Poppe, L. Kinetic resolutions with novel, highly enantioselective fungal lipases produced by solid state fermentation. J. Mol. Catal. B Enzym. 2006, 39, 141–148. [Google Scholar] [CrossRef]
- Todo Bom, M.A.; Botton, V.; Altheia, F.M.; Thomas, J.C.; Piovan, L.; Córdova, J.; Mitchell, D.A.; Krieger, N. Fermented solids that contain lipases produced by Rhizopus microsporus have an S-enantiopreference in the resolution of secondary alcohols. Biochem. Eng. J. 2021, 165, 107817. [Google Scholar] [CrossRef]
- Rossino, G.; Robescu, M.S.; Licastro, E.; Tedesco, C.; Martello, I.; Maffei, L.; Vincenti, G.; Collina, S. Biocatalysis: A smart and green tool for the preparation of chiral drugs. Chirality 2022, 34, 1403–1418. [Google Scholar] [CrossRef]
- Truppo, M.D.; Hughes, G. Development of an Improved Immobilized CAL-B for the Enzymatic Resolution of a Key Intermediate to Odanacatib. Org. Process Res. Dev. 2011, 15, 1033–1035. [Google Scholar] [CrossRef]
- Stoytcheva, M.; Montero, G.; Toscano, L.; Gochev, V.; Valdez, B. The Immobilized Lipases in Biodiesel Production. In Biodiesel-Feedstocks and Processing Technologies; Stoytcheva, M., Montero, G., Eds.; IntechOpen: London, UK, 2011; Chapter 19; pp. 397–410. [Google Scholar] [CrossRef]
- AOAC–Association of Official Analytical Chemists. Official Methods of Analysis, 16th ed.; AOAC International: Arlington, MA, USA, 1995. [Google Scholar]
- Kouker, G.; Jaeger, K.E. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 1987, 53, 211–213. [Google Scholar] [CrossRef]
- Shelley, A.W.; Deeth, H.C.; MacRae, I.C. Review of methods of enumeration, detection and isolation of lipolytic microorganisms with special reference to dairy applications. J. Microbiol. Methods 1987, 6, 123–137. [Google Scholar] [CrossRef]
- Ferreira, A.N.; Silva, T.P.; Félix, C.R.; Lopes, J.L.; Dos Santos, C.W.V.; Dos Santos, D.M.R.C.; Landell, M.F.; Gomes, F.S.; Pereira, H.J.V. Use of waste frying oil and coconut pulp for the production, isolation, and characterization of a new lipase from Moesziomyces aphidis. Protein Expr. Purif. 2025, 225, 106584. [Google Scholar] [CrossRef] [PubMed]
- Lowry, R.R.; Tinsley, I.J. Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem. Soc. 1976, 53, 470–472. [Google Scholar] [CrossRef]
- Fernandes, M.L.M.; Saad, E.B.; Meira, J.A.; Ramos, L.P.; Mitchell, D.A.; Krieger, N. Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J. Mol. Catal. B Enzym. 2007, 44, 8–13. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Kazlauskas, R.J. Hydrolases in organic synthesis: Regio-and stereoselective biotransformations. ChemBioChem 2006, 7, 1280. [Google Scholar] [CrossRef]
- Chen, C.S.; Fujimoto, Y.; Girdaukas, G.; Sih, C.J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 1982, 104, 7294–7299. [Google Scholar] [CrossRef]
- Ghodrat, A.; Yaghobfar, A.; Ebrahimnezhad, Y.; Aghdam Shahryar, H.; Ghorbani, A. In vitro binding capacity of organic (wheat bran and rice bran) and inorganic (perlite) sources for Mn, Zn, Cu, and Fe. J. Appl. Anim. Res. 2017, 45, 80–84. [Google Scholar] [CrossRef]
- Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W. Wheat bran-based biorefinery 2: Valorization of products. LWT–Food Sci. Technol. 2014, 56, 222–231. [Google Scholar] [CrossRef]
- Abdeshahian, P.; Kadier, A.; Rai, P.K.; da Silva, S.S. Lignocellulose as a Renewable Carbon Source for Microbial Synthesis of Different Enzymes. In Lignocellulosic Biorefining Technologies; Ingle, A.P., Chandel, A.K., da Silva, S.S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2020; Chapter 9; pp. 185–202. [Google Scholar] [CrossRef]
- Gopinath, S.C.B.; Anbu, P.; Lakshmipriya, T.; Hilda, A. Strategies to characterize fungal lipases for applications in medicine and dairy industry. BioMed Res. Int. 2013, 2013, 154549. [Google Scholar] [CrossRef]
- Rodrigues, C.; Cassini, S.T.; Antunes, P.W.; Keller, R.P.; Gonçalves, R.F. Isolamento e seleção de fungos produtores de lipases com base na atividade lipásica e no potencial hidrolítico sobre óleo comestível de soja e escuma de caixa de gordura. Eng. Sanit. E Ambient. 2016, 21, 507–518. [Google Scholar] [CrossRef]
- Singh, A.K.; Mukhopadhyay, M. Overview of Fungal Lipase: A Review. Appl. Biochem. Biotechnol. 2012, 166, 486–520. [Google Scholar] [CrossRef]
- Fleuri, L.F.; de Oliveira, M.C.; de Lara Campos Arcuri, M.; Capoville, B.L.; Pereira, M.S.; Delgado, C.H.O.; Novelli, P.K. Production of fungal lipases using wheat bran and soybean bran and incorporation of sugarcane bagasse as a co-substrate in solid-state fermentation. Food Sci. Biotechnol. 2014, 23, 1199–1205. [Google Scholar] [CrossRef]
- Hermansyah, H.; Andikoputro, M.I.; Alatas, A. Production of lipase enzyme from Rhizopus oryzae by solid state fermentation and submerged fermentation using wheat bran as substrate. AIP Conf. Proc. 2019, 2085, 20013. [Google Scholar] [CrossRef]
- Sujatha, K.; Dhandayuthapani, K. Optimization of lipase production media parameters by a newly isolated Bacillus licheniforms KDP from oil mill soil. Inter. J. Pharma. BioSci 2013, 4, 645–652. [Google Scholar]
- Tan, T.; Zhang, M.; Xu, J.; Zhang, J. Optimization of culture conditions and properties of lipase from Penicillium camembertii Thom PG-3. Process Biochem. 2004, 39, 1495–1502. [Google Scholar] [CrossRef]
- Kumar, S.; Kikon, K.; Upadhyay, A.; Kanwar, S.S.; Gupta, R. Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr. Purif. 2005, 41, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Rapp, D.; Olivecrona, T. Kinetics of Milk Lipoprotein Lipase. Eur. J. Biochem. 1978 91, 379–385. [CrossRef]
- Sharma, R.; Chisti, Y.; Banerjee, U.C. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 2001, 19, 627–662. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Xu, Y.; Wang, D. Novel minor lipase from Rhizopus chinensis during solid-state fermentation: Biochemical characterization and its esterification potential for ester synthesis. Bioresour. Technol. 2009, 100, 2607–2612. [Google Scholar] [CrossRef]
- Fiume, M.M.; Heldreth, B.A.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Alkyl Esters as Used in Cosmetics. Int. J. Toxicol. 2015, 34, 5S–69S. [Google Scholar] [CrossRef]
- Moreira, R.C.; Leonardi, G.R.; Bicas, J.L. Lipase-mediated alcoholysis for in situ production of ester bioaromas in licuri oil for cosmetic applications. J. Biotechnol. 2024, 392, 25–33. [Google Scholar] [CrossRef]
- Zago, M.; Branduardi, P.; Serra, I. Towards biotechnological production of bio-based low molecular weight esters: A patent review. RSC Adv. 2024, 14, 29472–29489. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, H.; Lu, H.; Wu, M.; Lin, M.; Zhang, C.; Zhao, Z.; Li, W.; Zhang, C.; Li, X.; et al. Characterization of an Aspergillus niger for Efficient Fatty Acid Ethyl Ester Synthesis in Aqueous Phase and the Molecular Mechanism. Front. Microbiol. 2021, 12, 820380. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, K.S.; Rathod, V.K. Microwave-assisted synthesis of ethyl laurate using immobilized lipase: Optimization, mechanism and thermodynamic studies. J. Indian Chem. Soc. 2021, 98, 100020. [Google Scholar] [CrossRef]
- Gawas, S.D.; Rathod, V.K. Enhancement in synthesis of ethyl laurate catalyzed by fermase by combined effect of ultrasound and stage wise addition of ethanol. Chem. Eng. Process. Process Intensif. 2018, 125, 207–213. [Google Scholar] [CrossRef]
- Gawas, S.D.; Jadhav, S.V.; Rathod, V.K. Solvent Free Lipase Catalysed Synthesis of Ethyl Laurate: Optimization and Kinetic Studies. Appl. Biochem. Biotechnol. 2016, 180, 1428–1445. [Google Scholar] [CrossRef]
- Solarte, C.; Yara-Varón, E.; Eras, J.; Torres, M.; Balcells, M.; Canela-Garayoa, R. Lipase activity and enantioselectivity of whole cells from a wild-type Aspergillius flavus strain. J. Mol. Catal. B Enzym. 2014, 100, 78–83. [Google Scholar] [CrossRef]
- Carvalho de Melo, J.J.; Passos da Silva, G.L.; Mota, D.A.; de Souza Brandão, L.M.; de Souza, R.L.; Pereira, M.M.; Lima, Á.S.; Soares, C.M. Use of Bioprinted Lipases in Microwave-Assisted Esterification Reactions. Catalysts 2023, 13, 299. [Google Scholar] [CrossRef]
- Kanwar, S.S.; Kaushal, R.K.; Verma, M.L.; Kumar, Y.; Chauhan, G.S.; Gupta, R.; Chimni, S.S. Synthesis of ethyl laurate by hydrogel immobilized lipase of Bacillus coagulans MTCC-6375. Indian J. Microbiol. 2005, 45, 187–193. [Google Scholar]
- Fernandes, M.L.M.; Krieger, N.; Baron, A.M.; Zamora, P.P.; Ramos, L.P.; Mitchell, D.A. Hydrolysis and synthesis reactions catalysed by Thermomyces lanuginosa lipase in the AOT/Isooctane reversed micellar system. J. Mol. Catal. B Enzym. 2004, 30, 43–49. [Google Scholar] [CrossRef]
- Kazlauskas, R.J.; Weissfloch, A.N.E.; Rappaport, A.T.; Cuccia, L.A. A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 1991, 56, 2656–2665. [Google Scholar] [CrossRef]
- Pàmies, O.; Bäckvall, J.E. Combination of Enzymes and Metal Catalysts. A Powerful Approach in Asymmetric Catalysis. Chem. Rev. 2003, 103, 3247–3262. [Google Scholar] [CrossRef] [PubMed]
- Wińska, K.; Grudniewska, A.; Chojnacka, A.; Białońska, A.; Wawrzeńczyk, C. Enzymatic resolution of racemic secondary cyclic allylic alcohols. Tetrahedron Asymmetry 2010, 21, 670–678. [Google Scholar] [CrossRef]
- Marques, F.A.; Oliveira, M.; Frensch, G.; Helena LN Sales Maia, B.; Barison, A.; Lenz, C.A.; Guerrero, P.G. Highly efficient kinetic resolution of allylic alcohols with terminal double bond. Lett. Org. Chem. 2011, 8, 696–700. [Google Scholar] [CrossRef]
- Keith, J.M.; Larrow, J.F.; Jacobsen, E.N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal. 2001, 343, 5–26. [Google Scholar] [CrossRef]
- Aguieiras, E.C.; Cavalcanti-Oliveira, E.D.; de Castro, A.M.; Langone, M.A.; Freire, D.M. Simultaneous enzymatic transesterification and esterification of an acid oil using fermented solid as biocatalyst. J. Am. Oil Chem. Soc. 2017, 94, 551–558. [Google Scholar] [CrossRef]
Agricultural by-Products | Initial Moisture (%) |
---|---|
Wheat bran | 60 |
Wheat bran and sugarcane bagasse (1:1) | 70 |
Wheat bran, sugarcane bagasse (1:1) and RFO (3%); | 70 |
Wheat bran, sugarcane bagasse (1:1) and urea (3%); | 70 |
Wheat bran, sugarcane bagasse (1:1), RFO (3%) and urea (3%). | 70 |
Components (%) | % (g 100 g−1) |
---|---|
Crude protein | 20.1 ± 0.9 |
Ether extract | 88.9 ± 0.2 |
Mineral material | 6 ± 0.5 |
NDF | 53.6 ± 2.8 |
ADF | 13.7 ± 1.1 |
Ash | 3.9 ± 1.9 |
Lignin | 3.5 ± 0.5 |
Cellulose | 10.3 ± 1.3 |
Hemicellulose | 39.9 ± 1.9 |
Acyl Donor | Conversion (%) | ||
---|---|---|---|
1.5 h | 24 h | 28 h | |
Decanoic acid (C10:0) | 17 ± 0 | 86 ± 2 | 95 ± 2 |
Lauric acid (C12:0) | 15 ± 3 | 78 ± 3 | 89 ± 3 |
Myristic acid (C14:0) | 8 ± 0 | 72 ± 4 | 74 ± 1 |
Ester | Source of lipase | Conditions | Conversion (%) | Reference |
---|---|---|---|---|
Ethyl caprate | A. niger | Ethanol (5 g L−1), capric acid 10 mM, 8 h, 28 °C | 85 | [50] |
Ethyl laurate | C. antarctica B | Ethanol (5.8 mol L−1), lauric acid (2.9 mol L−1), microwave (850 W), 10 min, 45 °C | 98.5 | [51] |
Ethyl laurate | C. antarctica B | Ethanol (17.12 mol L−1), lauric acid (5.02 mol L −1), ultrasonic bath (100 W), 40 min, 50 °C | 96.87 | [52] |
Ethyl laurate | C. antarctica B | Ethanol (50 mmol), lauric acid (50 mmol), 10 min, 60 °C | 92.5 | [53] |
Ethyl laurate | A. flavus | Ethanol (0.0625 mmol), lauric acid (0.125 mmol), 24 h, 40 °C | 95 | [54] |
Ethyl myristate | B. cepacia | Ethanol, lauric acid molar ratio (8:1), microwave (50 W), 25 min, 45 °C | Productivity of 0.12 mol h−1 mg−1 | [55] |
Entry | Acyl Donor | c (%) | ee (%) | E | |
---|---|---|---|---|---|
Alcohol-(S) | Ester-(R) | ||||
1 | Ethyl acetate | 3 | 3 | >99 | >200 |
2 | Isopropenyl acetate | 12 | 14 | >99 | >200 |
3 | Vinyl acetate | 9 | 10 | >99 | >200 |
4 | Vinyl propionate | 16 | 18 | >99 | >200 |
5 | Vinyl butyrate | 13 | 12 | >99 | >200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.N.; Alves dos Santos, L.; Soares, G.A.; Gonçalves, M.S.; Gualberto, S.A.; Franco, M.; dos Santos, L.M.D.; Gomes, F.S.; Landell, M.F.; Pereira, H.J.V. Direct Application of Fermented Solid Containing Lipases from Pycnoporus sanguineus in Esterification Reactions and Kinetic Resolution of Sec-alcohols. Fermentation 2025, 11, 523. https://doi.org/10.3390/fermentation11090523
Ferreira AN, Alves dos Santos L, Soares GA, Gonçalves MS, Gualberto SA, Franco M, dos Santos LMD, Gomes FS, Landell MF, Pereira HJV. Direct Application of Fermented Solid Containing Lipases from Pycnoporus sanguineus in Esterification Reactions and Kinetic Resolution of Sec-alcohols. Fermentation. 2025; 11(9):523. https://doi.org/10.3390/fermentation11090523
Chicago/Turabian StyleFerreira, Alexsandra Nascimento, Leandro Alves dos Santos, Glêydison Amarante Soares, Márcia Soares Gonçalves, Simone Andrade Gualberto, Marcelo Franco, Lílian Márcia Dias dos Santos, Francis Soares Gomes, Melissa Fontes Landell, and Hugo Juarez Vieira Pereira. 2025. "Direct Application of Fermented Solid Containing Lipases from Pycnoporus sanguineus in Esterification Reactions and Kinetic Resolution of Sec-alcohols" Fermentation 11, no. 9: 523. https://doi.org/10.3390/fermentation11090523
APA StyleFerreira, A. N., Alves dos Santos, L., Soares, G. A., Gonçalves, M. S., Gualberto, S. A., Franco, M., dos Santos, L. M. D., Gomes, F. S., Landell, M. F., & Pereira, H. J. V. (2025). Direct Application of Fermented Solid Containing Lipases from Pycnoporus sanguineus in Esterification Reactions and Kinetic Resolution of Sec-alcohols. Fermentation, 11(9), 523. https://doi.org/10.3390/fermentation11090523