Effect of Harvesting Time on Starch Degradation in Rumen of Whole-Plant Corn and Its Silage
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Test Animals and Diet Formulation
2.3. In Vitro Rumen Fermentation
2.4. Determination Index and Method
2.4.1. Nutrient Index Content, Starch Disappearance Rate, and Disappearance Rate
2.4.2. Dynamic Degradation Model of Rumen
2.4.3. Gliadin, Amylopectin, and Amylose Content
2.5. Data Statistics and Analysis
3. Results
3.1. Starch and Structural Nutrient Content of Whole-Plant Corn and Whole-Plant Corn Silage
3.2. In Vitro Dry Matter Disappearance Rate of Whole-Plant Corn and Whole-Plant Corn Silage
3.3. In Vitro Starch Disappearance Rate of Whole-Plant Corn and Whole-Plant Corn Silage
3.4. Starch Disappearance Speed of Whole-Plant Corn and Whole-Plant Corn Silage
3.5. Dynamic Degradation Parameters of Whole-Plant Corn and Whole-Plant Corn Silage Starch in Rumen
3.6. Loss Rate of Gliadin in Whole-Plant Corn and Whole-Plant Corn Silage
3.7. Loss Rate of Amylose and Amylopectin in Whole-Plant Corn and Whole-Plant Corn Silage
3.8. Loss Speed of Amylose and Amylopectin in Whole-Plant Corn and Whole-Plant Corn Silage
3.9. Degradation Parameters of Amylose and Amylopectin in Rumen of Whole-Plant Corn and Whole-Plant Corn Silage
3.10. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IVDMD | In vitro dry matter disappearance rate |
DM | Dry matter content |
CP | Crude protein content |
Sta | Starch content |
Gli | Gliadin content |
AP | Amylopectin content |
AS | Amylose content |
A | Rapid degradation parameter a |
B | Slow degradation parameter b |
C | Degradation parameter c |
References
- Lv, X.; Chen, L.; Zhou, C.; Zhang, G.; Xie, J.; Kang, J.; Tan, Z.; Tang, S.; Kong, Z.; Liu, Z.; et al. Application of Different Proportions of Sweet Sorghum Silage as a Substitute for Corn Silage in Dairy Cows. Food Sci. Nutr. 2023, 11, 3575–3587. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Chen, W.; Zhou, Z.; Meng, Q.; Wu, H. Effects of Adding Various Silage Additives to Whole Corn Crops at Ensiling on Performance, Rumen Fermentation, and Serum Physiological Characteristics of Growing-Finishing Cattle. Animals 2019, 9, 695. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Rinne, M. Highlights of Progress in Silage Conservation and Future Perspectives. Grass Forage Sci. 2018, 73, 40–52. [Google Scholar] [CrossRef]
- Rojas-Bourrillon, A.; Russell, J.R.; Trenkle, A.; McGilliard, A.D. Effects of Rolling on the Composition and Utilization by Growing Steers of Whole-Plant Corn Silage. J. Anim. Sci. 1987, 64, 303–311. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Wu, H.; Meng, Q.; Khan, M.Z.; Zhou, Z. Effect of Hybrid Type on Fermentation and Nutritional Parameters of Whole Plant Corn Silage. Animals 2021, 11, 1587. [Google Scholar] [CrossRef]
- Johnson, L.; Harrison, J.H.; Hunt, C.; Shinners, K.; Doggett, C.G.; Sapienza, D. Nutritive Value of Corn Silage as Affected by Maturity and Mechanical Processing: A Contemporary Review. J. Dairy Sci. 1999, 82, 2813–2825. [Google Scholar] [CrossRef]
- Peyrat, J.; Nozière, P.; Le Morvan, A.; Férard, A.; Protin, P.V.; Baumont, R. Effects of Ensiling Maize and Sample Conditioning on in Situ Rumen Degradation of Dry Matter, Starch and Fibre. Anim. Feed Sci. Technol. 2014, 196, 12–21. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Crump, P.M.; Shaver, R.D. Effect of Ensiling Time and Exogenous Protease Addition to Whole-Plant Corn Silage of Various Hybrids, Maturities, and Chop Lengths on Nitrogen Fractions and Ruminal in Vitro Starch Digestibility. J. Dairy Sci. 2015, 98, 8869–8881. [Google Scholar] [CrossRef]
- Hasjim, J.; Srichuwong, S.; Scott, M.P.; Jane, J. Kernel Composition, Starch Structure, and Enzyme Digestibility of Opaque-2 Maize and Quality Protein Maize. J. Agric. Food Chem. 2009, 57, 2049–2055. [Google Scholar] [CrossRef]
- Campling, R.C. The Feeding Value of Maize: A Review. Ann. Appl. Biol. 1977, 87, 284–290. [Google Scholar] [CrossRef]
- de Souza, A.M.; Neumann, M.; Rampim, L.; de Almeida, E.R.; Matchula, A.F.; Cristo, F.B.; Faria, M.V. Effect of Storage Time on the Chemical Composition of Whole and Grainless Corn Plant Silage Harvested at Different Maturity Stages. Rev. Bras. Zootec. 2022, 51, e20200180. [Google Scholar] [CrossRef]
- Kljak, K.; Grbeša, D.; Duvnjak, M. The Effect of Ensiling on the Starch Digestibility Rate of Rehydrated Grain Silages in Pigs Depends on the Hardness of the Maize Hybrid. Agriculture 2025, 15, 783. [Google Scholar] [CrossRef]
- NY/T816-2004; Chinese Feeding Standard for Mutton Sheep. China Agricultural Press: Beijing, China, 2004.
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The Estimation of the Digestibility and Metabolizable Energy Content of Ruminant Feedingstuffs from the Gas Production When They Are Incubated with Rumen Liquor in Vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Available online: https://pubs.acs.org/doi/pdf/10.1021/ac60038a038 (accessed on 16 July 2025).
- Huang, Z.; Urriola, P.E.; Shurson, G.C. Use of in Vitro Dry Matter Digestibility and Gas Production to Predict Apparent Total Tract Digestibility of Total Dietary Fiber for Growing Pigs. J. Anim. Sci. 2017, 95, 5474–5484. [Google Scholar] [CrossRef] [PubMed]
- DeFeo, M.E.; Shampoe, K.V.; Carvalho, P.H.V.; Silva, F.A.S.; Felix, T.L. In Vitro and in Situ Techniques Yield Different Estimates of Ruminal Disappearance of Barley. Transl. Anim. Sci. 2020, 4, 141–148. [Google Scholar] [CrossRef]
- Ørskov, E.R. The in Situ Technique for the Estimation of Forage Degradability in Ruminants. In Forage Evaluation in Ruminant Nutrition; CABI Books: Wallingford, UK, 2000; pp. 175–188. ISBN 978-0-85199-344-7. [Google Scholar]
- Russell, J.R. Influence of Harvest Date on the Nutritive Value and Ensiling Characteristics of Maize Stover. Anim. Feed Sci. Technol. 1986, 14, 11–27. [Google Scholar] [CrossRef]
- Xie, Z.L.; Zhang, T.F.; Chen, X.Z.; Li, G.D.; Zhang, J.G. Effects of Maturity Stages on the Nutritive Composition and Silage Quality of Whole Crop Wheat. Asian-Australas. J. Anim. Sci. 2012, 25, 1374–1380. [Google Scholar] [CrossRef]
- Johnson, L.M.; Harrison, J.H.; Davidson, D.; Mahanna, W.C.; Shinners, K.; Linder, D. Corn Silage Management: Effects of Maturity, Inoculation, and Mechanical Processing on Pack Density and Aerobic Stability. J. Dairy Sci. 2002, 85, 434–444. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Shaver, R.D.; Luck, B.D. Silage Review: Recent Advances and Future Technologies for Whole-Plant and Fractionated Corn Silage Harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef]
- Bal, M.A.; Shaver, R.D.; Shinners, K.J.; Coors, J.G.; Lauer, J.G.; Straub, R.J.; Koegel, R.G. Stage of Maturity, Processing, and Hybrid Effects on Ruminal in Situ Disappearance of Whole-Plant Corn Silage. Anim. Feed Sci. Technol. 2000, 86, 83–94. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, H.; Gao, Z.; Xu, J.; Liu, B.; Guo, M.; Yang, X.; Niu, J.; Zhu, X.; Ma, S.; et al. Whole-Plant Corn Silage Improves Rumen Fermentation and Growth Performance of Beef Cattle by Altering Rumen Microbiota. Appl. Microbiol. Biotechnol. 2022, 106, 4187–4198. [Google Scholar] [CrossRef] [PubMed]
- Philippeau, C.; Landry, J.; Michalet-Doreau, B. Influence of the Protein Distribution of Maize Endosperm on Ruminal Starch Degradability. J. Sci. Food Agric. 2000, 80, 404–408. [Google Scholar] [CrossRef]
- Seifried, N.; Steingaß, H.; Schipprack, W.; Rodehutscord, M. Variation in Ruminal in Situ Degradation of Crude Protein and Starch from Maize Grains Compared to in Vitro Gas Production Kinetics and Physical and Chemical Characteristics. Arch. Anim. Nutr. 2016, 70, 333–349. [Google Scholar] [CrossRef]
- Zadeike, D.; Gaizauskaite, Z.; Svazas, M.; Gruzauskas, R.; Gruzauskas, V.; Damasius, J.; Juodeikiene, G. Application of Solid-State Fermentation for the Improving of Extruded Corn Dry-Milling By-Products and Their Protein Functional Properties. Life 2022, 12, 1909. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, J.; Liu, X.; Yu, J.; Copeland, L.; Wang, S. Methods for Characterizing the Structure of Starch in Relation to Its Applications: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 4799–4816. [Google Scholar] [CrossRef] [PubMed]
- Dehghan-banadaky, M.; Corbett, R.; Oba, M. Effects of Barley Grain Processing on Productivity of Cattle. Anim. Feed Sci. Technol. 2007, 137, 1–24. [Google Scholar] [CrossRef]
- Huang, M.; Li, L.; Cheng, X.; Qiu, R.; Wang, Y.; Zhou, X.; Zong, X. Study on the Influence Mechanism of Endogenous Protein Components on the Characteristics of Distiller’s Grains Starch. Food Chem. 2025, 486, 144689. [Google Scholar] [CrossRef]
- Piao, M.; Hu, F.; Kong, F.; Liu, Y.; Wang, S.; Cui, K.; Sun, T.; Diao, Q.; Tu, Y. Effects of Dietary Amylose to Amylopectin Ratio on Growth Performance, Carcass Quality Characteristics and Meat Fatty Acids in Chinese Qinchuan Cattle. J. Integr. Agric. 2021, 20, 3256–3269. [Google Scholar] [CrossRef]
- Srichuwong, S.; Sunarti, T.C.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from Different Botanical Sources I: Contribution of Amylopectin Fine Structure to Thermal Properties and Enzyme Digestibility. Carbohydr. Polym. 2005, 60, 529–538. [Google Scholar] [CrossRef]
- Zhao, F.; Ren, W.; Zhang, A.; Jiang, N.; Liu, W.; Wang, F. Effects of Different Amylose to Amylopectin Ratios on Rumen Fermentation and Development in Fattening Lambs. Asian-Australas. J. Anim. Sci. 2018, 31, 1611–1618. [Google Scholar] [CrossRef]
- Yan, X.; Wu, Z.-Z.; Li, M.-Y.; Yin, F.; Ren, K.-X.; Tao, H. The Combined Effects of Extrusion and Heat-Moisture Treatment on the Physicochemical Properties and Digestibility of Corn Starch. Int. J. Biol. Macromol. 2019, 134, 1108–1112. [Google Scholar] [CrossRef]
- Stevnebø, A.; Sahlström, S.; Svihus, B. Starch Structure and Degree of Starch Hydrolysis of Small and Large Starch Granules from Barley Varieties with Varying Amylose Content. Anim. Feed Sci. Technol. 2006, 130, 23–38. [Google Scholar] [CrossRef]
- French, D. Chemical and Physical Properties of Starch. J. Anim. Sci. 1973, 37, 1048–1061. [Google Scholar] [CrossRef]
- Zhu, F. Relationships between Amylopectin Internal Molecular Structure and Physicochemical Properties of Starch. Trends Food Sci. Technol. 2018, 78, 234–242. [Google Scholar] [CrossRef]
Ingredients | Nutritional Compositions % | Ingredients | Nutritional Compositions % |
---|---|---|---|
Corn | 35.00 | Crude protein | 14.27 |
Soybean meal | 13.00 | Neutral detergent fiber | 28.17 |
Corn germ meal | 6.00 | Acid detergent fiber | 18.35 |
Corn bran | 10.00 | Starch | 25.87 |
Peanut hull | 23.00 | Ether extract | 3.94 |
Bentonite | 4.00 | ||
Sucrose | 4.00 | ||
a Premix | 5.00 | ||
Amount | 100.00 |
Whole-Plant Corn | Whole-Plant Corn Silage | p-Value | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | Time | 9.1 | 9.8 | 9.15 | 9.20 | 9.25 | 9.1 | 9.8 | 9.15 | 9.20 | 9.25 | SEM | Fermentation | Time | F × T |
DM (%) | 33.59 a | 34.41 ab | 35.13 bc | 36.10 c | 35.04 bc | 30.79 c | 33.89 b | 35.09 ab | 35.69 a | 35.11 ab | 0.28 | <0.01 | <0.01 | <0.01 | |
CP (%) | 7.05 c | 7.75 d | 8.16 e | 6.24 b | 6.19 a | 7.64 | 7.89 | 8.30 | 7.79 | 7.55 | 0.14 | <0.01 | <0.01 | <0.01 | |
Sta (%) | 30.36 d | 30.83 b | 31.98 a | 30.50 c | 30.11 e | 30.13 e | 34.94 b | 36.15 a | 34.48 c | 33.81 d | 0.41 | <0.01 | <0.01 | <0.01 | |
Gli (ng/mL) | 467.53 a | 440.76 c | 431.34 bc | 446.76 b | 475.52 a | 466.26 a | 438.23 b | 400.03 d | 417.45 c | 427.48 b | 4.29 | <0.01 | <0.01 | <0.01 | |
AP (mg/g) | 21.35 d | 22.29 b | 23.85 a | 22.51 b | 21.81 c | 21.84 d | 25.46 b | 27.43 a | 25.81 b | 24.81 c | 0.37 | <0.01 | <0.01 | <0.01 | |
AS (mg/g) | 9.00 a | 8.54 c | 8.11 e | 7.98 d | 8.29 b | 8.27 d | 9.46 a | 8.71 c | 8.66c | 8.99 b | 0.08 | <0.01 | <0.01 | <0.01 |
Whole-Plant Corn | Whole-Plant Corn Silage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | Time | 9.1 | 9.8 | 9.15 | 9.20 | 9.25 | µ ± σ | 9.1 | 9.8 | 9.15 | 9.20 | 9.25 | µ ± σ |
A (%) | 2.93 | 10.67 | 12.68 | 9.58 | 55.84 | 7.80 ± 4.01 | 10.49 | 23.53 | 18.09 | 24.01 | 24.84 | 20.19 ± 5.4 | |
B (%) | 56.77 | 53.49 | 53.46 | 53.51 | 55.84 | 54.61 ± 1.41 | 52.68 | 43.68 | 52.79 | 46.03 | 43.83 | 47.8 ± 4.11 | |
C (%/h) | 0.19 | 0.18 | 0.20 | 0.18 | 0.18 | 0.19 ± 0.01 | 0.16 | 0.14 | 0.19 | 0.15 | 0.14 | 0.16 ± 0.02 |
Whole-Plant Corn | Whole-Plant Corn Silage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Items | Time | 9.1 | 9.8 | 9.15 | 9.20 | 9.25 | µ ± σ | 9.1 | 9.8 | 9.15 | 9.20 | 9.25 | µ ± σ |
Amylose | a (%) | 8.90 | 4.96 | 6.09 | 5.95 | 0.00 | 5.18 ± 2.90 | 1.19 | 13.89 | 8.80 | 19.57 | 16.93 | 12.08 ± 6.52 |
b (%) | 42.40 | 49.70 | 50.32 | 46.96 | 55.00 | 48.88 ± 4.14 | 54.66 | 45.57 | 51.98 | 40.41 | 43.30 | 47.19 ± 5.34 | |
c (%/h) | 0.16 | 0.23 | 0.27 | 0.23 | 0.26 | 0.23 ± 0.04 | 0.25 | 0.22 | 0.25 | 0.21 | 0.20 | 0.22 ± 0.02 | |
Amylopectin | a (%) | 0.29 | 13.00 | 15.36 | 10.94 | 5.32 | 8.98 ± 5.47 | 14.14 | 26.27 | 20.99 | 25.05 | 26.97 | 22.68 ± 4.75 |
b (%) | 63.02 | 54.93 | 54.39 | 55.85 | 57.39 | 57.12 ± 3.12 | 52.26 | 44.11 | 53.29 | 48.44 | 44.80 | 48.58 ± 3.74 | |
c (%/h) | 0.20 | 0.17 | 0.18 | 0.17 | 0.16 | 0.18 ± 0.01 | 0.14 | 0.12 | 0.17 | 0.14 | 0.13 | 0.14 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, S.; Wang, X.; Wang, H.; Li, S.; Zhen, Y.; Zhang, X. Effect of Harvesting Time on Starch Degradation in Rumen of Whole-Plant Corn and Its Silage. Fermentation 2025, 11, 522. https://doi.org/10.3390/fermentation11090522
Zhang L, Liu S, Wang X, Wang H, Li S, Zhen Y, Zhang X. Effect of Harvesting Time on Starch Degradation in Rumen of Whole-Plant Corn and Its Silage. Fermentation. 2025; 11(9):522. https://doi.org/10.3390/fermentation11090522
Chicago/Turabian StyleZhang, Long, Shiqin Liu, Xuepeng Wang, He Wang, Songze Li, Yuguo Zhen, and Xuefeng Zhang. 2025. "Effect of Harvesting Time on Starch Degradation in Rumen of Whole-Plant Corn and Its Silage" Fermentation 11, no. 9: 522. https://doi.org/10.3390/fermentation11090522
APA StyleZhang, L., Liu, S., Wang, X., Wang, H., Li, S., Zhen, Y., & Zhang, X. (2025). Effect of Harvesting Time on Starch Degradation in Rumen of Whole-Plant Corn and Its Silage. Fermentation, 11(9), 522. https://doi.org/10.3390/fermentation11090522