Mixed Inoculation with Lacticaseibacillus casei and Staphylococcus carnosus Improves Safety, Gel Properties and Flavor of Giant Squid Surimi Without Added Seasonings
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Fermented Squid Surimi Sausage
2.3. Measurement of pH
2.4. Determination of Biogenic Amines
2.5. Texture Profile Analyses (TPA) and Color Test
2.6. Rheology Measurements
2.7. Observation of Microstructure
2.8. Water-Holding Capacity (WHC) Analysis
2.9. Low-Filed Nuclear Magnetic Resonance (LF-NMR)
2.10. Bacteria Community Structure Analysis
2.11. Determination of Organic Acids
2.12. Analysis of Free Amino Acids
2.13. Analysis of Volatile Flavor Compounds Through Gas Chromatography–Mass Spectrometry (GC-MS)
2.14. Electronic Nose Analysis
2.15. Statistical Analysis
3. Results and Discussion
3.1. Inoculation on Safety of Squid Surimi Sausage
3.2. Mixed Inoculation on the Rheology of Squid Surimi Sausage
3.3. Mixed Inoculation on Texture and Color of Squid Surimi Sausage
3.4. Mixed Inoculation on the Microstructure of Squid Surimi Sausage
3.5. Mixed Inoculation on Water-Holding Capacity and Water State of Squid Surimi Sausage
3.6. Bacterial Community Structure Changes During Fermentation of Mixed Inoculation
3.7. Mixed Inoculation on Flavor of Squid Surimi Sausage
3.7.1. Organic Acids
3.7.2. Free Amino Acids
3.7.3. Electronic Nose Test
3.7.4. Volatile Flavor Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, R.; Garg, P.; Kumar, P.; Bhatia, S.K.; Kulshrestha, S. Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation 2020, 6, 106. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Tomasevic, I.; Domínguez, R.; da Silva Barretto, A.C.; Santos, E.M.; Lorenzo, J.M. Functional Fermented Meat Products with Probiotics—A Review. J. Appl. Microbiol. 2022, 133, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xia, W.; Yang, F.; Kim, J.M.; Nie, X. Effect of Fermentation Temperature on the Microbial and Physicochemical Properties of Silver Carp Sausages Inoculated with Pediococcus Pentosaceus. Food Chem. 2010, 118, 512–518. [Google Scholar] [CrossRef]
- Essid, I.; Hassouna, M. Effect of Inoculation of Selected Staphylococcus xylosus and Lactobacillus plantarum Strains on Biochemical, Microbiological and Textural Characteristics of a Tunisian Dry Fermented Sausage. Food Control 2013, 32, 707–714. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Chen, C.; Xie, T.; Li, P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on Flavour Development and Bacterial Communities in Chinese Dry Fermented Sausages. Food Res. Int. 2020, 135, 109247. [Google Scholar] [CrossRef]
- Sang, X.; Ma, X.; Hao, H.; Bi, J.; Zhang, G. Evaluation of Biogenic Amines and Microbial Composition in the Chinese Traditional Fermented Food Grasshopper Sub Shrimp Paste. LWT 2020, 134, 109979. [Google Scholar] [CrossRef]
- Rabie, M.; Simon-Sarkadi, L.; Siliha, H.; El-seedy, S.; El Badawy, A.A. Changes in Free Amino Acids and Biogenic Amines of Egyptian Salted-Fermented Fish (Feseekh) during Ripening and Storage. Food Chem. 2009, 115, 635–638. [Google Scholar] [CrossRef]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of Starter Cultures on the Safety of Fermented Meat Products. Front. Microbiol. 2019, 10, 853. [Google Scholar] [CrossRef]
- Hu, Y.; Xia, W.; Ge, C. Characterization of Fermented Silver Carp Sausages Inoculated with Mixed Starter Culture. LWT 2008, 41, 730–738. [Google Scholar] [CrossRef]
- Du, S.; Cheng, H.; Ma, J.K.; Li, Z.J.; Wang, C.H.; Wang, Y.L. Effect of Starter Culture on Microbiological, Physiochemical and Nutrition Quality of Xiangxi Sausage. J. Food Sci. Technol. 2019, 56, 811–823. [Google Scholar] [CrossRef]
- Ren, H.; Deng, Y.; Wang, X. Effect of a Compound Starter Cultures Inoculation on Bacterial Profile and Biogenic Amine Accumulation in Chinese Sichuan Sausages. Food Sci. Hum. Wellness 2022, 11, 341–348. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Wang, D.; Gao, F.; Zhang, K.; Tian, J.; Jin, Y. Research Update on the Impact of Lactic Acid Bacteria on the Substance Metabolism, Flavor, and Quality Characteristics of Fermented Meat Products. Foods 2022, 11, 2090. [Google Scholar] [CrossRef]
- dos Santos Cruxen, C.E.; Funck, G.D.; Haubert, L.; da Silva Dannenberg, G.; de Lima Marques, J.; Chaves, F.C.; da Silva, W.P.; Fiorentini, Â.M. Selection of Native Bacterial Starter Culture in the Production of Fermented Meat Sausages: Application Potential, Safety Aspects, and Emerging Technologies. Food Res. Int. 2019, 122, 371–382. [Google Scholar] [CrossRef]
- Tolano-Villaverde, I.J.; Santos-Sauceda, I.; Santacruz-Ortega, H.; Ramírez-Wong, B.; Brown-Bojórquez, F.; Suárez-Jiménez, G.M.; Márquez-Ríos, E. Evaluation of the Gelling Ability of Actomyosin-Paramyosin from Giant Squid Mantle (Dosidicus gigas). Int. Food Res. J. 2020, 27, 712–719. [Google Scholar]
- Yang, R.; Xu, A.; Chen, Y.; Sun, N.; Zhang, J.; Jia, R.; Huang, T.; Yang, W. Effect of Laver Powder on Textual, Rheological Properties and Water Distribution of Squid (Dosidicus gigas) Surimi Gel. J. Texture Stud. 2020, 51, 968–978. [Google Scholar] [CrossRef]
- Chu, Y.; Deng, S.; Lv, G.; Li, M.; Bao, H.; Gao, Y.; Jia, R. Improvement of Gel Quality of Squid (Dosidicus gigas) Meat by Using Sodium Gluconate, Sodium Citrate, and Sodium Tartrate. Foods 2022, 11, 173. [Google Scholar] [CrossRef]
- Niu, F.; Li, X.; Lin, C.; Hu, X.; Zhang, B.; Pan, W. The Mechanism of Egg White Protein to Enhance the Thermal Gel Properties of Giant Squid (Dosidicus gigas) Surimi. Food Chem. 2025, 469, 142601. [Google Scholar] [CrossRef]
- Mu, H.; Weng, P.; Wu, Z. Effect of Inoculation with Lacticaseibacillus casei and Staphylococcus carnosus on the Quality of Squid (Dosidicus gigas) Surimi Sausage. Fermentation 2023, 9, 794. [Google Scholar] [CrossRef]
- Kim, S.Y.; Dang, Y.M.; Ha, J.H. Effect of Various Seasoning Ingredients on the Accumulation of Biogenic Amines in Kimchi during Fermentation. Food Chem. 2022, 380, 132214. [Google Scholar] [CrossRef]
- Yang, W.; Chen, S.; Yu, S.; Zhang, Y. Effects of Different Soaking Processes and Additives on the Acid Removal Efficiency of Squid. Jiangxi Fish. Sci. Technol. 2019, 5, 45–47. [Google Scholar]
- GB 5009.208—2016; National Food Safety Standard—Determination of Biogenic Amines in Food, 1st ed. Standards Press of China: Beijing, China, 2017; ISBN 155066·1-53568.
- Xu, X.; Cui, H.; Yuan, Z.; Xu, J.; Li, J.; Liu, J.; Liu, H.; Zhu, D. Effects of Different Combinations of Probiotics on Rheology, Microstructure, and Moisture Distribution of Soy Materials-Based Yogurt. J. Food Sci. 2022, 87, 2820–2830. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Zhao, X.; Huang, P.; Hong, J.; Jia, R.; Deng, S.; Yu, X.; Wei, H.; Yang, W. Effect of Hydroxypropyl Distarch Phosphate on the Physicochemical Characteristics and Structure of Shrimp Myofibrillar Protein. Food Hydrocoll. 2022, 125, 107417. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Xie, Y.; Wei, S.; Ding, H.; Yu, C.; Dong, X. Gelation Properties and Protein Conformation of Grass Carp Fish Ball as Influenced by Egg White Protein. J. Texture Stud. 2022, 53, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet.journal 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Chen, D.W.; Zhang, M. Non-Volatile Taste Active Compounds in the Meat of Chinese Mitten Crab (Eriocheir sinensis). Food Chem. 2007, 104, 1200–1205. [Google Scholar] [CrossRef]
- Cawthray, G.R. An Improved Reversed-Phase Liquid Chromatographic Method for the Analysis of Low-Molecular Mass Organic Acids in Plant Root Exudates. J. Chromatogr. A 2003, 1011, 233–240. [Google Scholar] [CrossRef]
- Gao, H.; Wang, S.; Liao, S.; Hu, X. Study on Determination and Correlation of Soluble Sugars and Organic Acids in Peer Juice from Different Cultivars. Acta Agric. Boreali-Sin. 2004, 19, 104–107. [Google Scholar]
- Nie, X.; Zhang, Q.; Lin, S. Biogenic Amine Accumulation in Silver Carp Sausage Inoculated with Lactobacillus plantarum plus Saccharomyces Cerevisiae. Food Chem. 2014, 153, 432–436. [Google Scholar] [CrossRef]
- Hua, Q.; Gao, P.; Xu, Y.; Xia, W.; Sun, Y.; Jiang, Q. Effect of Commercial Starter Cultures on the Quality Characteristics of Fermented Fish-Chili Paste. LWT 2020, 122, 109016. [Google Scholar] [CrossRef]
- Mandha, J.; Shumoy, H.; Devaere, J.; Schouteten, J.J.; Gellynck, X.; De Winne, A.; Matemu, A.O.; Raes, K. Effect of Lactic Acid Fermentation on Volatile Compounds and Sensory Characteristics of Mango (Mangifera indica) Juices. Foods 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, P.; Yin, P.; Cai, J.; Jin, B.; Zhang, H.; Lu, S. Bacterial Community Succession and Volatile Compound Changes in Xinjiang Smoked Horsemeat Sausage during Fermentation. Food Res. Int. 2023, 174, 113656. [Google Scholar] [CrossRef]
- Gu, X.; Sun, Y.; Tu, K.; Pan, L. Evaluation of Lipid Oxidation of Chinese-Style Sausage during Processing and Storage Based on Electronic Nose. Meat Sci. 2017, 133, 1–9. [Google Scholar] [CrossRef]
- Fermentation Standards for Making Fermented Sausages. Available online: https://www.meatsandsausages.com/sausage-types/fermented-sausage/standards (accessed on 3 August 2024).
- Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M.T.; Mariné-Font, A.; Vidal-Carou, M.C. Effect of Starter Cultures on Biogenic Amine Formation during Fermented Sausage Production. J. Food Prot. 1997, 60, 825–830. [Google Scholar] [CrossRef]
- del Rio, B.; Redruello, B.; Linares, D.M.; Ladero, V.; Ruas-Madiedo, P.; Fernandez, M.; Martin, M.C.; Alvarez, M.A. Spermine and Spermidine Are Cytotoxic towards Intestinal Cell Cultures, but Are They a Health Hazard at Concentrations Found in Foods? Food Chem. 2018, 269, 321–326. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Liu, S.; Qin, L.; Chen, Q.; Kong, B. Analysis of Biogenic Amine in Dry Sausages Collected from Northeast China: From the Perspective of Free Amino Acid Profile and Bacterial Community Composition. Food Res. Int. 2022, 162, 112084. [Google Scholar] [CrossRef]
- Fan, H.; Luo, Y.; Yin, X.; Bao, Y.; Feng, L. Biogenic Amine and Quality Changes in Lightly Salt- and Sugar-Salted Black Carp (Mylopharyngodon piceus) Fillets Stored at 4 °C. Food Chem. 2014, 159, 20–28. [Google Scholar] [CrossRef]
- Zarei, M.; Najafzadeh, H.; Eskandari, M.H.; Pashmforoush, M.; Enayati, A.; Gharibi, D.; Fazlara, A. Chemical and Microbial Properties of Mahyaveh, a Traditional Iranian Fish Sauce. Food Control 2012, 23, 511–514. [Google Scholar] [CrossRef]
- Lu, S.; Xu, X.; Zhou, G.; Zhu, Z.; Meng, Y.; Sun, Y. Effect of Starter Cultures on Microbial Ecosystem and Biogenic Amines in Fermented Sausage. Food Control 2010, 21, 444–449. [Google Scholar] [CrossRef]
- Dias, I.; Laranjo, M.; Potes, M.E.; Agulheiro-Santos, A.C.; Ricardo-Rodrigues, S.; Fialho, A.R.; Véstia, J.; Fraqueza, M.J.; Oliveira, M.; Elias, M. Co-Inoculation with Staphylococcus equorum and Lactobacillus sakei Reduces Vasoactive Biogenic Amines in Traditional Dry-Cured Sausages. Int. J. Environ. Res. Public Health 2021, 18, 7100. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Sabikhi, L.; Singh, A.K. Effect of Probiotic Fermentation on Physico-Chemical and Nutritional Parameters of Milk-Cereal Based Composite Substrate. J. Food Sci. Technol. 2022, 59, 3073–3085. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Sharifian, P.; Soltanizadeh, N. Application of Ultrasound Treatment for Improving the Physicochemical, Functional and Rheological Properties of Myofibrillar Proteins. Int. J. Biol. Macromol. 2018, 111, 139–147. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Yang, H.; Xue, J.; Li, Y.; Wang, S.; Ge, L.; Shen, Q.; Zhang, M. Comparative Study on the Rheological Properties of Myofibrillar Proteins from Different Kinds of Meat. LWT 2022, 153, 112458. [Google Scholar] [CrossRef]
- Lv, J.; Li, C.; Li, S.; Liang, H.; Ji, C.; Zhu, B.; Lin, X. Effects of Temperature on Microbial Succession and Quality of Sour Meat during Fermentation. LWT 2019, 114, 108391. [Google Scholar] [CrossRef]
- Hu, Y.; Xia, W.; Ge, C. Effect of Mixed Starter Cultures Fermentation on the Characteristics of Silver Carp Sausages. World J. Microbiol. Biotechnol. 2007, 23, 1021–1031. [Google Scholar] [CrossRef]
- Zeng, X.; Xia, W.; Jiang, Q.; Yang, F. Effect of Autochthonous Starter Cultures on Microbiological and Physico-Chemical Characteristics of Suan Yu, a Traditional Chinese Low Salt Fermented Fish. Food Control 2013, 33, 344–351. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, F.; Wang, Y.; Han, J.; Gao, F.; Tian, J.; Zhang, K.; Jin, Y. The Changes Occurring in Proteins during Processing and Storage of Fermented Meat Products and Their Regulation by Lactic Acid Bacteria. Foods 2022, 11, 2427. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, W.; Yang, F.; Nie, X. Protein Molecular Interactions Involved in the Gel Network Formation of Fermented Silver Carp Mince Inoculated with Pediococcus pentosaceus. Food Chem. 2010, 120, 717–723. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Pan, Y.; Wei, S.; Xia, Q.; Liu, S.; Ji, H.; Deng, C.; Hao, J. Investigation on the Correlation between Changes in Water and Texture Properties during the Processing of Surimi from Golden Pompano (Trachinotus ovatus). J. Food Sci. 2021, 86, 376–384. [Google Scholar] [CrossRef]
- Li, D.Y.; Tan, Z.F.; Liu, Z.Q.; Wu, C.; Liu, H.L.; Guo, C.; Zhou, D.Y. Effect of Hydroxyl Radical Induced Oxidation on the Physicochemical and Gelling Properties of Shrimp Myofibrillar Protein and Its Mechanism. Food Chem. 2021, 351, 129344. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Jia, H.; Shang, M.; Xu, C.; Lian, H.; Li, H.; Dong, X. Physiochemical Properties and Tastes of Gels from Japanese Spanish Mackerel (Scomberomorus niphonius) Surimi by Different Washing Processes. J. Texture Stud. 2018, 49, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wu, Y.; Wang, Y.; Li, L.; Li, C.; Zhao, Y.; Yang, S. Contribution of Autochthonous Microbiota Succession to Flavor Formation during Chinese Fermented Mandarin Fish (Siniperca chuatsi). Food Chem. 2021, 348, 129107. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhao, N.; Yin, S.; Zhang, S.; Ji, C.; Chen, Y.; Dai, Y.; Zhu, B.; Lin, X. Flavour Enhancement of Dry Fermented Sausages by Nitrite-Degrading Levilactobacillus brevis CHOL1: Combining Flavouromics and Lipidomics to Elucidate the Mechanism of Aroma Formation. Food Chem. 2025, 473, 143119. [Google Scholar] [CrossRef]
- Chen, L.; Wei, C.; Liu, R.; Wu, M.; Ge, Q.; Yu, H. Enhancement of the Flavor Compound 3-Methylbutanal and Sensory Quality in Sausages Fermented by Lactococcus lactis CGMCC 31087: Leucine and α-Ketoglutaric Acid as Supplements. Food Chem. 2025, 473, 143091. [Google Scholar] [CrossRef]
- Milićević, B.; Danilović, B.; Džinić, N.; Savić, D. Changes in the Organic Acids Content during the Production of the Petrovac Sausage. Adv. Technol. 2018, 7, 41–45. [Google Scholar] [CrossRef]
- Yoo, S.A.; Park, S.E.; Seo, S.H.; Son, H.S. Quality Characteristics of Fermented Sausage Prepared with Soy Sauce. Food Sci. Biotechnol. 2016, 25, 533–539. [Google Scholar] [CrossRef]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of Curing Salts and Probiotic Cultures on the Evolution of Flavor Compounds in Dry-Fermented Sausages during Ripening. Food Chem. 2016, 201, 334–338. [Google Scholar] [CrossRef]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of Specific Taste-Active Components on Meat Flavor as Affected by Intrinsic and Extrinsic Factors: An Overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Wang, W.; Xia, W.; Gao, P.; Xu, Y.; Jiang, Q. Proteolysis during Fermentation of Suanyu as a Traditional Fermented Fish Product of China. Int. J. Food Prop. 2017, 20, S166–S176. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Z.; Yohannes, K.W.; Yu, Q.; Yang, Z.; Li, H.; Liu, J.; Wang, J. Functional Characteristics of Lactobacillus and Yeast Single Starter Cultures in the Ripening Process of Dry Fermented Sausage. Front. Microbiol. 2021, 11, 611260. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xia, W.; Gao, P.; Xu, Y. Sarcoplasmic Protein Hydrolysis Activity of Lactobacillus plantarum 120 Isolated from Suanyu: A Traditional Chinese Low Salt Fermented Fish. J. Food Process. Preserv. 2017, 41, e12821. [Google Scholar] [CrossRef]
- Heo, S.; Lee, J.H.; Jeong, D.W. Food-Derived Coagulase-Negative Staphylococcus as Starter Cultures for Fermented Foods. Food Sci. Biotechnol. 2020, 29, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xia, W.; Zhang, X.; Xu, Y.; Jiang, Q. A Comparison of Endogenous and Microbial Proteolytic Activities during Fast Fermentation of Silver Carp Inoculated with Lactobacillus plantarum. Food Chem. 2016, 207, 86–92. [Google Scholar] [CrossRef]
- Xiao, Z.; Lu, J.R. Strategies for Enhancing Fermentative Production of Acetoin: A Review. Biotechnol. Adv. 2014, 32, 492–503. [Google Scholar] [CrossRef]
- Gao, R.; Chen, L.; Li, Y.; Wang, Y.; Yang, T.; Li, X.; Geng, J.; Guo, Z. Polyoxometalate Cluster-Guided Dynamic Nucleation and Hierarchical Growth of Branched WO3 Nanofibers with Ultrafine Pt Nanoparticles for Advanced Gas Sensing. Inorg. Chem. 2024, 63, 18285–18295. [Google Scholar] [CrossRef]
- Yan, Q.; Simmons, T.R.; Cordell, W.T.; Hernández Lozada, N.J.; Breckner, C.J.; Chen, X.; Jindra, M.A.; Pfleger, B.F. Metabolic Engineering of β-Oxidation to Leverage Thioesterases for Production of 2-Heptanone, 2-Nonanone and 2-Undecanone. Metab. Eng. 2020, 61, 335–343. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L.; Wen, R.; Chen, Q.; Kong, B. Role of Lactic Acid Bacteria in Flavor Development in Traditional Chinese Fermented Foods: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2741–2755. [Google Scholar] [CrossRef]
- Chen, L.; Liu, R.; He, C.; Wu, M.; Ge, Q.; Yu, H. Biosynthesis Pathway of Flavor Compound 3-Methylbutanal Derived from Leucine by Lactococcus lactis 517: From a Transcriptomics Perspective. Food Biosci. 2024, 61, 104740. [Google Scholar] [CrossRef]
- Chen, T. Research on Thermal Processing Characteristics and Flavor of Dosidicus gigas Carcass Meat. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2023. [Google Scholar]
UF | LS | |
---|---|---|
TPA | ||
Hardness (g) | 1545.88 ± 269.41 a | 5011.78 ± 263.37 b |
Springiness | 0.95 ± 0.02 a | 0.94 ± 0.04 a |
Cohesiveness | 0.86 ± 0.01 a | 0.77 ± 0.02 b |
Chewiness (g) | 1262.38 ± 232.37 a | 3620.55 ± 162.65 b |
Color | ||
L* | 84.68 ± 0.74 a | 90.68 ± 0.46 b |
a* | −0.92 ± 0.40 a | 0.02 ± 0.32 b |
b* | 2.95 ± 0.40 a | 4.76 ± 0.48 b |
0 h | 16 h | 32 h | 48 h | |
---|---|---|---|---|
asp | 6.82 ± 0.06 a | 9.60 ± 0.13 b | 11.55 ± 0.92 b | 17.58 ± 0.12 c |
glu | 9.14 ± 0.14 a | 23.39 ± 0.29 b | 33.78 ± 4.27 bc | 49.69 ± 0.69 cd |
ser | 1.85 ± 0.02 a | 1.64 ± 0.09 b | 1.33 ± 0.02 c | 1.64 ± 0.12 b |
his | 15.43 ± 0.32 a | 18.64 ± 0.12 b | 21.58 ± 2.28 abc | 23.96 ± 0.21 c |
gly | 5.74 ± 0.10 a | 6.39 ± 0.32 ab | 4.99 ± 0.92 ab | 7.25 ± 0.09 bc |
thr | 6.19 ± 0.12 a | 6.99 ± 0.24 a | 7.12 ± 1.14 ac | 10.55 ± 0.03 bc |
arg | 52.95 ± 0.96 a | 1.52 ± 0.05 b | 1.86 ± 0.27 b | 5.50 ± 0.14 c |
ala | 14.76 ± 0.25 a | 16.76 ± 0.36 b | 18.48 ± 2.18 abc | 21.91 ± 0.31 c |
tyr | 4.23 ± 0.60 a | 6.17 ± 0.15 a | 6.36 ± 1.15 ab | 7.38 ± 0.33 c |
cys-s | 0.59 ± 0.08 a | 1.02 ± 0.11 b | 1.16 ± 0.25 bc | 1.32 ± 0.06 c |
val | 4.86 ± 0.12 a | 8.14 ± 0.36 b | 8.71 ± 1.12 abc | 12.76 ± 0.23 c |
met | 6.05 ± 0.33 a | 8.42 ± 0.21 b | 10.44 ± 1.26 abc | 13.03 ± 0.20 c |
trp | 2.28 ± 0.10 a | 2.8 ± 0.10 a | 3.73 ± 0.76 b | 4.37 ± 0.26 b |
phe | 4.17 ± 0.60 a | 6.07 ± 0.50 a | 7.42 ± 1.10 ac | 9.90 ± 0.08 bc |
ile | 2.83 ± 0.23 a | 3.63 ± 0.40 a | 3.30 ± 0.55 ac | 5.25 ± 0.02 bc |
leu | 5.49 ± 0.14 a | 7.92 ± 0.38 bc | 8.79 ± 1.26 acd | 13.94 ± 0.11 d |
lys | 6.34 ± 0.12 a | 9.62 ± 0.38 bc | 10.57 ± 1.36 ac | 16.02 ± 0.45 d |
pro | 11.63 ± 0.29 a | 15.23 ± 0.18 bc | 17.98 ± 1.46 cd | 18.59 ± 0.18 d |
Total FAA | 161.32 ± 4.36 a | 153.96 ± 3.37 a | 179.14 ± 22.01 ab | 240.65 ± 1.22 b |
No. | Molecular Formula | Metabolite | Average Peak Area | Number of Samples Identifying the Compound/Number of Samples |
---|---|---|---|---|
unfermented sample | ||||
1 | C7H14 | 4,4-dimethyl-1-pentene | 17,140.5 | 2/4 |
2 | C7H14O | 2-Heptanone | 55,164.5 | 2/4 |
3 | C8H16O2 | 5-Hydroxy-4-octanone | 45,685.5 | 2/4 |
4 | C5H10O | 3-methyl-butanal | 48,651.67 | 3/4 |
5 | C4H6O2 | Butyrolactone | 79,039 | 3/4 |
6 | C6H14O3 | 2-(2-ethoxyethoxy)-ethanol | 81,058 | 2/4 |
7 | C4H8O | Tetrahydrofuran | 394,964.5 | 4/4 |
fermented samples | ||||
1 | C4H10O2 | 1,4-Butanediol | 154,926.7 | 3/5 |
2 | C10H8 | 1-methylene-1H-indene | 42,636.5 | 2/5 |
3 | C7H14 | 4,4-dimethyl-1-pentene | 18,771 | 1/5 |
4 | C4H6O2 | 2,3-Butanedione | 223,684.2 | 5/5 |
5 | C7H14O | 2-Heptanone | 232,499.4 | 5/5 |
6 | C9H18O | 2-Nonanone | 258,866.6 | 5/5 |
7 | C2H4O2 | Acetic acid | 627,612.2 | 5/5 |
8 | C4H8O2 | Acetoin | 46,444 | 4/5 |
9 | C4H6O2 | Butyrolactone | 283,026.2 | 5/5 |
10 | C10H10O4 | Dimethyl phthalate | 201,618.6 | 5/5 |
11 | C6H14O3 | 2-(2-ethoxyethoxy)-ethanol | 260,846.3 | 3/5 |
12 | CH3NO | Formamide | 32,999.5 | 2/5 |
13 | C4H8O | Tetrahydrofuran | 243,857.7 | 3/5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, H.; Weng, P.; Wu, Z. Mixed Inoculation with Lacticaseibacillus casei and Staphylococcus carnosus Improves Safety, Gel Properties and Flavor of Giant Squid Surimi Without Added Seasonings. Fermentation 2025, 11, 404. https://doi.org/10.3390/fermentation11070404
Mu H, Weng P, Wu Z. Mixed Inoculation with Lacticaseibacillus casei and Staphylococcus carnosus Improves Safety, Gel Properties and Flavor of Giant Squid Surimi Without Added Seasonings. Fermentation. 2025; 11(7):404. https://doi.org/10.3390/fermentation11070404
Chicago/Turabian StyleMu, Hongliang, Peifang Weng, and Zufang Wu. 2025. "Mixed Inoculation with Lacticaseibacillus casei and Staphylococcus carnosus Improves Safety, Gel Properties and Flavor of Giant Squid Surimi Without Added Seasonings" Fermentation 11, no. 7: 404. https://doi.org/10.3390/fermentation11070404
APA StyleMu, H., Weng, P., & Wu, Z. (2025). Mixed Inoculation with Lacticaseibacillus casei and Staphylococcus carnosus Improves Safety, Gel Properties and Flavor of Giant Squid Surimi Without Added Seasonings. Fermentation, 11(7), 404. https://doi.org/10.3390/fermentation11070404