Optimizing Xylanase Production: Bridging Statistical Design and Machine Learning for Improved Protein Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Regression Analysis for Xylanase Production Prediction
2.3. Performance Evaluation
3. Results
3.1. Regression for the Experiments Performed by Full Factorial Experimental Design
3.2. Regression for the Experiments Performed by RSM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ANN | Artificial neural network |
BBD | Box–Behnken design |
CCD | Central composite design |
CNN | Convolutional neural network |
DoE | Design of experiments |
GPR | Gaussian process regression |
IU/mL | International units per milliliter |
MAPE | Mean absolute percentage error |
ML | Machine learning |
MLR | Multiple linear regression |
R2 | Coefficient of determination |
RMSE | Root mean squared error |
RSM | Response surface methodology |
SHAP | Shapley additive explanations |
SVR | Support vector regression |
VFAs | Volatile fatty acids |
XGBoost | Extreme gradient boosting |
Appendix A
Glucose (g/L) | (NH4)HPO4 (g/L) | K2HPO4 (g/L) | KH2PO4 (g/L) | MgSO4 (g/L) | Experimental Xylanase Activity | Predicted Xylanase Activity |
---|---|---|---|---|---|---|
20 | 10 | 18 | 6 | 3 | 1.699 | 1.870 |
10 | 2 | 18 | 6 | 3 | 1.586 | 1.398 |
10 | 10 | 18 | 1 | 3 | 1.782 | 1.859 |
10 | 10 | 18 | 6 | 0.5 | 1.843 | 1.843 |
10 | 10 | 5 | 1 | 0.5 | 1.738 | 1.673 |
20 | 10 | 5 | 1 | 3 | 1.647 | 1.645 |
20 | 2 | 5 | 1 | 0.5 | 1.266 | 1.314 |
15 | 6 | 11.5 | 3.5 | 1.75 | 1.829 | 0.874 |
20 | 2 | 18 | 6 | 0.5 | 1.578 | 1.540 |
10 | 2 | 18 | 1 | 0.5 | 1.683 | 1.782 |
15 | 6 | 11.5 | 3.5 | 1.75 | 1.920 | 1.874 |
10 | 2 | 5 | 1 | 3 | 1.153 | 1.172 |
20 | 2 | 18 | 1 | 3 | 1.525 | 1.501 |
20 | 10 | 18 | 1 | 0.5 | 2.406 | 2.254 |
20 | 10 | 5 | 6 | 0.5 | 2.185 | 2.167 |
20 | 2 | 5 | 6 | 3 | 1.399 | 1.414 |
10 | 10 | 5 | 6 | 3 | 1.840 | 1.772 |
10 | 2 | 5 | 6 | 0.5 | 1.625 | 1.695 |
(NH4)2HPO4 (g/L) | Urea (g/L) | Malt Sprout (g/L) | Corn Cobs (g/L) | Wheat Bran (g/L) | Experimental Xylanase Activity | Predicted Xylanase Activity |
---|---|---|---|---|---|---|
2.6 | 0.9 | 6 | 12 | 16 | 428.12 | 384.32 |
5.4 | 0.9 | 6 | 12 | 6 | 568.79 | 479.86 |
2.6 | 2.1 | 6 | 12 | 6 | 649.09 | 479.86 |
5.4 | 2.1 | 6 | 12 | 16 | 544.56 | 384.32 |
2.6 | 0.9 | 18 | 12 | 6 | 589.81 | 479.86 |
5.4 | 0.9 | 18 | 12 | 16 | 483.24 | 384.32 |
2.6 | 2.1 | 18 | 12 | 16 | 484.91 | 384.32 |
5.4 | 2.1 | 18 | 12 | 6 | 536.66 | 479.86 |
2.6 | 0.9 | 6 | 24 | 6 | 569.31 | 495.54 |
5.4 | 0.9 | 6 | 24 | 16 | 750.47 | 718.72 |
2.6 | 2.1 | 6 | 24 | 16 | 869.88 | 718.72 |
5.4 | 2.1 | 6 | 24 | 6 | 513.49 | 495.54 |
2.6 | 0.9 | 18 | 24 | 16 | 825.29 | 718.72 |
5.4 | 0.9 | 18 | 24 | 6 | 695.87 | 495.54 |
2.6 | 2.1 | 18 | 24 | 6 | 611.15 | 495.54 |
5.4 | 2.1 | 18 | 24 | 16 | 815.58 | 718.72 |
5.4 | 1.5 | 12 | 18 | 11 | 723.41 | 654.25 |
2.6 | 1.5 | 12 | 18 | 11 | 678.61 | 654.25 |
4 | 2.1 | 12 | 18 | 11 | 674.75 | 654.25 |
4 | 0.9 | 12 | 18 | 11 | 614.37 | 654.25 |
4 | 1.5 | 18 | 18 | 11 | 710.87 | 654.25 |
4 | 1.5 | 6 | 18 | 11 | 705.62 | 654.25 |
4 | 1.5 | 12 | 24 | 11 | 694.44 | 677.02 |
4 | 1.5 | 12 | 12 | 11 | 484.97 | 501.98 |
4 | 1.5 | 12 | 18 | 16 | 637.56 | 616.27 |
4 | 1.5 | 12 | 18 | 6 | 531.08 | 552.45 |
Xylan (g/L) | pH | Cultivation Time (h) | Experimental Xylanase Activity | Predicted Xylanase Activity |
---|---|---|---|---|
5 | 8 | 24 | 11.11 | 8.62 |
5 | 8 | 48 | 16.20 | 18.45 |
5 | 8 | 72 | 15.81 | 16.54 |
5 | 8.5 | 24 | 8.17 | 7.62 |
5 | 8.5 | 48 | 17.04 | 17.96 |
5 | 8.5 | 72 | 16.12 | 16.56 |
5 | 9 | 24 | 6.75 | 8.26 |
5 | 9 | 48 | 21.54 | 19.11 |
5 | 9 | 72 | 18.65 | 18.22 |
7.5 | 8 | 24 | 6.75 | 8.31 |
7.5 | 8 | 48 | 18.63 | 19.39 |
7.5 | 8 | 72 | 22.45 | 18.73 |
7.5 | 8.5 | 24 | 8.10 | 6.63 |
7.5 | 8.5 | 48 | 18.73 | 18.22 |
7.5 | 8.5 | 72 | 17.04 | 18.07 |
7.5 | 9 | 24 | 4.70 | 6.58 |
7.5 | 9 | 48 | 18.36 | 18.69 |
7.5 | 9 | 72 | 18.97 | 19.05 |
10 | 8 | 24 | 5.59 | 6.39 |
10 | 8 | 48 | 18.75 | 18.69 |
10 | 8 | 72 | 19.12 | 19.28 |
10 | 8.5 | 24 | 4.44 | 3.99 |
10 | 8.5 | 48 | 17.64 | 16.84 |
10 | 8.5 | 72 | 16.60 | 17.94 |
10 | 9 | 24 | 4.05 | 3.27 |
10 | 9 | 48 | 17.14 | 16.63 |
10 | 9 | 72 | 17.93 | 18.24 |
X1 (Xylan) (g/L) | X2 (Casein) (g/L) | X3 (NH4Cl) (g/L) | Observed XA (nkat/mL) | Predicted XA (nkat/mL) |
---|---|---|---|---|
2.5 | 1 | 0.3 | 1428.00 | 1397.80 |
7.5 | 1 | 0.3 | 5.30 | 36.10 |
2.5 | 2 | 0.3 | 1905.50 | 1936.34 |
7.5 | 2 | 0.3 | 253.70 | 222.86 |
2.5 | 1 | 1.3 | 1565.10 | 1595.94 |
7.5 | 1 | 1.3 | 22.10 | −8.73 |
2.5 | 2 | 1.3 | 2184.90 | 2154.10 |
7.5 | 2 | 1.3 | 166.10 | 196.60 |
5.0 | 1.5 | 0.8 | 925.40 | 941.30 |
5.0 | 1.5 | 0.8 | 942.60 | 941.30 |
5.0 | 1.5 | 0.8 | 938.40 | 941.30 |
(NH4)2HPO4 (g/L) | K2HPO4 (g/L) | MgSO4 (g/L) | Experimental Xylanase Activity | Predicted Xylanase Activity |
---|---|---|---|---|
10 | 7 | 3 | 1.871 | 1.880 |
10 | 7 | 3 | 1.898 | 1.880 |
10 | 18 | 1.5 | 2.423 | 2.489 |
10 | 18 | 3 | 2.292 | 2.322 |
1 | 12.5 | 2.25 | 1.443 | 1.523 |
7 | 12.5 | 0.75 | 2.456 | 2.431 |
7 | 12.5 | 2.25 | 2.219 | 2.230 |
7 | 12.5 | 2.25 | 2.219 | 2.230 |
10 | 18 | 3 | 2.290 | 2.322 |
10 | 7 | 1.5 | 2.296 | 2.263 |
7 | 12.5 | 3.75 | 1.992 | 2.029 |
4 | 7 | 3 | 1.705 | 1.636 |
7 | 12.5 | 2.25 | 2.257 | 2.230 |
4 | 7 | 3 | 1.645 | 1.636 |
13 | 12.5 | 2.25 | 2.141 | 2.157 |
10 | 7 | 1.5 | 2.169 | 2.263 |
7 | 1.5 | 2.25 | 1.625 | 1.686 |
7 | 1.5 | 2.25 | 1.683 | 1.686 |
7 | 23.5 | 2.25 | 2.345 | 2.354 |
7 | 12.5 | 3.75 | 2.042 | 2.029 |
4 | 18 | 3 | 2.130 | 2.079 |
4 | 7 | 1.5 | 1.937 | 1.873 |
7 | 23.5 | 2.25 | 2.395 | 2.354 |
4 | 18 | 3 | 2.081 | 2.079 |
4 | 18 | 1.5 | 2.031 | 2.099 |
1 | 12.5 | 2.25 | 1.496 | 1.523 |
7 | 12.5 | 0.75 | 2.390 | 2.431 |
10 | 18 | 1.5 | 2.555 | 2.489 |
4 | 7 | 1.5 | 1.948 | 1.873 |
4 | 18 | 1.5 | 2.150 | 2.099 |
7 | 12.5 | 2.25 | 2.207 | 2.230 |
7 | 12.5 | 2.25 | 2.232 | 2.230 |
13 | 12.5 | 2.25 | 2.249 | 2.157 |
7 | 12.5 | 2.25 | 2.224 | 2.230 |
(NH4)2HPO4 (g/L) | Urea (g/L) | Malt Sprout (g/L) | Experimental Xylanase Activity | Predicted Xylanase Activity |
---|---|---|---|---|
0.4 | 0.3 | 0.4 | 413.45 | 367.28 |
2.6 | 0.3 | 0.4 | 395.83 | 417.70 |
0.4 | 0.9 | 0.4 | 764.69 | 724.98 |
2.6 | 0.9 | 0.4 | 770.09 | 775.39 |
0.4 | 0.3 | 10 | 666.32 | 721.08 |
2.6 | 0.3 | 10 | 791.83 | 771.49 |
0.4 | 0.9 | 10 | 815.09 | 819.69 |
2.6 | 0.9 | 10 | 850.41 | 870.11 |
0.4 | 0.6 | 5.2 | 720.35 | 746.87 |
2.6 | 0.6 | 5.2 | 823.81 | 797.29 |
1.5 | 0.3 | 5.2 | 656.61 | 646.49 |
1.5 | 0.9 | 5.2 | 864.53 | 874.65 |
1.5 | 0.3 | 0.4 | 378.05 | 436.73 |
1.5 | 0.3 | 10 | 719.73 | 661.02 |
A: Wheat Bran (g/L) | B: Yeast Extract + Peptone (g/L) | C: Temperature (°C) | Observed Xylanase Activity (IU/mL) | Predicted Xylanase Activity (IU/mL) |
---|---|---|---|---|
10 | 10 | 25 | 64.44 | 63.38 |
2 | 10 | 20 | 10.83 | 11.11 |
2 | 10 | 30 | 27.04 | 25.41 |
18 | 2 | 25 | 41.61 | 41.81 |
2 | 18 | 25 | 21.05 | 22.85 |
18 | 18 | 25 | 29.64 | 30.09 |
10 | 2 | 30 | 30.14 | 32.24 |
10 | 18 | 20 | 14.60 | 12.54 |
10 | 18 | 30 | 41.93 | 41.76 |
10 | 10 | 25 | 64.08 | 63.38 |
10 | 2 | 20 | 33.01 | 33.17 |
18 | 10 | 20 | 23.04 | 24.67 |
2 | 2 | 25 | 22.68 | 22.23 |
10 | 10 | 25 | 64.03 | 63.38 |
10 | 10 | 25 | 61.60 | 63.38 |
18 | 10 | 30 | 38.95 | 38.67 |
10 | 10 | 25 | 62.73 | 63.38 |
References
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, G.T.; Pishtiyski, I.G.; Stanchev, V.S.; Mircheva, R. Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour. Technol. 2007, 98, 2671–2678. [Google Scholar] [CrossRef] [PubMed]
- Farliahati, M.R.; Ramanan, R.N.; Mohamad, R.; Puspaningsih, N.N.T.; Ariff, A.B. Enhanced production of xylanase by recombinant Escherichia coli DH5α through optimization of medium composition using response surface methodology. Ann. Microbiol. 2010, 60, 279–285. [Google Scholar] [CrossRef]
- Bocchini, D.A.; Alves-Prado, H.F.; Baida, L.C.; Roberto, I.C.; Gomes, E.; Da Silva, R. Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Process. Biochem. 2002, 38, 727–731. [Google Scholar] [CrossRef]
- Limkar, M.B.; Pawar, S.V.; Rathod, V.K. Statistical optimization of xylanase and alkaline protease co-production by Bacillus spp using Box-Behnken Design under submerged fermentation using wheat bran as a substrate. Biocatal. Agric. Biotechnol. 2019, 17, 455–464. [Google Scholar] [CrossRef]
- Patel, K.; Dudhagara, P. Optimization of xylanase production by Bacillus tequilensis strain UD-3 using economical agricultural substrate and its application in rice straw pulp bleaching. Biocatal. Agric. Biotechnol. 2020, 30, 101846. [Google Scholar] [CrossRef]
- Prade, R.A. Xylanases: From biology to biotechnology. Biotechnol. Genet. Eng. Rev. 1996, 13, 101–132. [Google Scholar] [CrossRef]
- Sharma, D.; Sahu, S.; Singh, G.; Arya, S.K. An eco-friendly process for xylose production from waste of pulp and paper industry with xylanase catalyst. Sustain. Chem. Environ. 2023, 3, 100024. [Google Scholar] [CrossRef]
- Garai, D.; Kumar, V. Response surface optimization for xylanase with high volumetric productivity by indigenous alkali tolerant Aspergillus candidus under submerged cultivation. 3 Biotech 2013, 3, 127–136. [Google Scholar] [CrossRef]
- Yıldırım, A.; İlhan Ayışığı, E.; Düzel, A.; Mayfield, S.P.; Sargın, S. Optimization of culture conditions for the production and activity of recombinant xylanase from microalgal platform. Biochem. Eng. J. 2023, 197, 108967. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Verma, P. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef]
- Huang, K.; Chu, Y.; Qin, X.; Zhang, J.; Bai, Y.; Wang, Y.; Luo, H.; Huang, H.; Su, X. Recombinant production of two xylanase-somatostatin fusion proteins retaining somatostatin immunogenicity and xylanase activity in Pichia pastoris. Appl. Microbiol. Biotechnol. 2021, 105, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Kallel, F.; Driss, D.; Chaari, F.; Zouari-Ellouzi, S.; Chaabouni, M.; Ghorbel, R.; Chaabouni, S.E. Statistical optimization of low-cost production of an acidic xylanase by Bacillus mojavensis UEB-FK: Its potential applications. Biocatal. Agric. Biotechnol. 2016, 5, 1–10. [Google Scholar] [CrossRef]
- Abdella, A.; Segato, F.; Wilkins, M.R. Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain. Biotechnol. Rep. 2020, 26, e00457. [Google Scholar] [CrossRef]
- Ajijolakewu, A.K.; Leh, C.P.; Abdullah, W.N.W.; Lee, C.K. Optimization of production conditions for xylanase production by newly isolated strain Aspergillus niger through solid state fermentation of oil palm empty fruit bunches. Biocatal. Agric. Biotechnol. 2017, 11, 239–247. [Google Scholar] [CrossRef]
- Siwach, R.; Sharma, S.; Khan, A.A.; Kumar, A.; Agrawal, S. Optimization of xylanase production by Bacillus sp. MCC2212 under solid-state fermentation using response surface methodology. Biocatal. Agric. Biotechnol. 2024, 57, 103085. [Google Scholar] [CrossRef]
- Liao, H.; Ying, W.; Li, X.; Zhu, J.; Xu, Y.; Zhang, J. Optimized production of xylooligosaccharides from poplar: A biorefinery strategy with sequential acetic acid/sodium acetate hydrolysis followed by xylanase hydrolysis. Bioresour. Technol. 2022, 347, 126683. [Google Scholar] [CrossRef]
- Liu, C.; Sun, Z.T.; Du, J.H.; Wang, J. Response surface optimization of fermentation conditions for producing xylanase by Aspergillus niger SL-05. J. Ind. Microbiol. Biotechnol. 2008, 35, 703–711. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Optimization of the fermentation parameters to maximize the production of cellulases and xylanases using DDGS as the main feedstock in stirred tank bioreactors. Biocatal. Agric. Biotechnol. 2022, 45, 102514. [Google Scholar] [CrossRef]
- Ezeilo, U.R.; Wahab, R.A.; Mahat, N.A. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew. Energy 2020, 156, 1301–1312. [Google Scholar] [CrossRef]
- Uhoraningoga, A.; Kinsella, G.K.; Henehan, G.T.; Ryan, B.J. The goldilocks approach: A review of employing design of experiments in prokaryotic recombinant protein production. Bioengineering 2018, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Adhyaru, D.N.; Bhatt, N.S.; Modi, H.A.; Divecha, J. Insight on xylanase from Aspergillus tubingensis FDHN1: Production, high yielding recovery optimization through statistical approach and application. Biocatal. Agric. Biotechnol. 2016, 6, 51–57. [Google Scholar] [CrossRef]
- Pham, P.L.; Taillandier, P.; Delmas, M.; Strehaiano, P. Optimization of a culture medium for xylanase production by Bacillus sp. using statistical experimental designs. World J. Microbiol. Biotechnol. 1997, 14, 185–190. [Google Scholar] [CrossRef]
- Pensupa, N.; Treebuppachartsakul, T.; Pechprasarn, S. Machine learning models using data mining for biomass production from Yarrowia lipolytica fermentation. Fermentation 2023, 9, 239. [Google Scholar] [CrossRef]
- Wu, D.; Xu, Y.; Xu, F.; Shao, M.; Huang, M. Machine learning algorithms for in-line monitoring during yeast fermentations based on Raman spectroscopy. Vib. Spectrosc. 2024, 132, 103672. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, S. Application of machine learning for quantitative analysis of industrial fermentation using image processing. Food Sci. Biotechnol. 2025, 34, 373–381. [Google Scholar] [CrossRef]
- Bowler, A.; Escrig, J.; Pound, M.; Watson, N. Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning. Fermentation 2021, 7, 34. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Nielsen, D. Tree Boosting with Xgboost-Why Does Xgboost Win “Every” Machine Learning Competition? Master’s Thesis, NTNU, Taipei City, Taiwan, 2016. [Google Scholar]
- Zhang, D.; Chen, H.D.; Zulfiqar, H.; Yuan, S.S.; Huang, Q.L.; Zhang, Z.Y.; Deng, K.J. iBLP: An XGBoost-Based Predictor for Identifying Bioluminescent Proteins. Comput. Math. Methods Med. 2021, 2021, 6664362. [Google Scholar] [CrossRef]
- Dimitrakopoulos, G.N.; Vrahatis, A.G.; Plagianakos, V.; Sgarbas, K. Pathway analysis using XGBoost classification in Biomedical Data. In Proceedings of the 10th Hellenic Conference on Artificial Intelligence, Patras, Greece, 9–12 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, A.; Sun, S.; Mi, H.; Wang, W.; Liu, J.; Kong, Z.Y. Interpretable feedforward neural network and XGBoost-based algorithms to predict CO2 solubility in ionic liquids. Ind. Eng. Chem. Res. 2024, 63, 8293–8305. [Google Scholar] [CrossRef]
- Al-Jamimi, H.A.; BinMakhashen, G.M.; Saleh, T.A. From data to clean water: XGBoost and Bayesian optimization for advanced wastewater treatment with ultrafiltration. Neural Comput. Appl. 2024, 36, 18863–18877. [Google Scholar] [CrossRef]
- Xie, H.; Deng, Y.m.; Li, J.y.; Xie, K.h.; Tao, T.; Zhang, J.f. Predicting the risk of primary Sjögren’s syndrome with key N7-methylguanosine-related genes: A novel XGBoost model. Heliyon 2024, 10, e31307. [Google Scholar] [CrossRef] [PubMed]
- Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, Z.; Wang, T.; Liu, G.; Zhao, J.; Gao, D. Degradation state recognition of piston pump based on ICEEMDAN and XGBoost. Appl. Sci. 2020, 10, 6593. [Google Scholar] [CrossRef]
- Grinsztajn, L.; Oyallon, E.; Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? Adv. Neural Inf. Process. Syst. 2022, 35, 507–520. [Google Scholar] [CrossRef]
- Stevanović, S.; Dashti, H.; Milošević, M.; Al-Yakoob, S.; Stevanović, D. Comparison of ANN and XGBoost surrogate models trained on small numbers of building energy simulations. PLoS ONE 2024, 19, e0312573. [Google Scholar] [CrossRef]
- Zhai, S.; Chen, K.; Yang, L.; Li, Z.; Yu, T.; Chen, L.; Zhu, H. Applying machine learning to anaerobic fermentation of waste sludge using two targeted modeling strategies. Sci. Total Environ. 2024, 916, 170232. [Google Scholar] [CrossRef]
Data | Process | Microorganism | Method | Factors | Reference |
---|---|---|---|---|---|
Set No: | |||||
1 | Batch | Escherichia coli DH5a | fractional factorial design | Glucose (10–20 g/L) (NH4)2HPO4 (2–10 g/L) K2HPO4 (5–18 g/L) KH2PO4 (1–6 g/L) MgSO4 (0.5–3 g/L) | [3] |
2 | Batch | Aspergillus niger B03 | fractional factorial design | (NH4)2HPO4 (2.6–5.4 g/L) Urea (0.9–2.1 g/L) Malt sprout (6–18 g/L) Corn cobs (12–24 g/L) Wheat bran (6–16 g/L) | [2] |
3 | Solid state | Bacillus circulans | 33 factorial design | Xylan (5–10 g/L) pH (8–9) Cultivation time (24–72 h) | [4] |
4 | Batch | Bacillus sp. | 23 full factorial design | Xylan (2.5–7.5 g/L) Casein (1–2 g/L) NH4Cl (0.3–1.3 g/L) | [23] |
5 | Batch | Escherichia coli DH5a | RSM | (NH4)2HPO4 (4–10 g/L) K2HPO4 (7–18 g/L) MgSO4 (1.5–3 g/L) | [3] |
6 | Batch | Aspergillus niger B03 | RSM | (NH4)2HPO4 (2.0–4.2 g/L) Urea (0.3–0.9 g/L) Malt sprout (0.4–10 g/L) | [2] |
7 | Batch | Bacillus sp. | RSM | Xylan (2.5–3.5 g/L) Casein (1.8–2.0 g/L) | [23] |
Data Set No | Train RMSE | Test RMSE | Train MAPE | Test MAPE | Train | Test |
---|---|---|---|---|---|---|
1 | 0.017 | 0.081 | 0.004 | 0.038 | 0.997 | 0.904 |
2 | 0.001 | 87.054 | 0.000 | 0.118 | 1.000 | 0.514 |
3 | 0.002 | 2.955 | 0.001 | 0.139 | 1.000 | 0.464 |
4 | 1.050 | 80.222 | 0.001 | 0.291 | 1.000 | 0.981 |
5 | 0.023 | 0.080 | 0.008 | 0.031 | 0.993 | 0.919 |
6 | 0.001 | 32.854 | 0.000 | 0.037 | 1.000 | 0.976 |
7 | 0.607 | 8.048 | 0.004 | 0.104 | 0.999 | 0.772 |
Sheet Name | Train RMSE | Test RMSE | Train MAPE | Test MAPE | Train | Test |
---|---|---|---|---|---|---|
1 | 0.271 | 0.042 | 0.070 | 0.021 | 0.134 | 0.975 |
2 | 96.690 | 71.850 | 0.127 | 0.101 | 0.216 | 0.669 |
3 | 1.405 | 1.179 | 0.105 | 0.077 | 0.947 | 0.915 |
4 | 26.672 | 26.554 | 0.771 | 0.478 | 0.999 | 0.998 |
5 | 0.047 | 0.043 | 0.018 | 0.018 | 0.972 | 0.976 |
6 | 32.215 | 41.323 | 0.043 | 0.073 | 0.953 | 0.961 |
7 | 1.239 | 0.940 | 0.038 | 0.024 | 0.995 | 0.997 |
Dataset | Feature | Importance |
---|---|---|
Dataset 1 | (NH4)2HPO4 | 0.775 |
MgSO4 | 0.084 | |
K2HPO4 | 0.060 | |
Glucose | 0.055 | |
K2HPO4 | 0.025 | |
Dataset 2 | Corn cobs | 0.718 |
Wheat bran | 0.210 | |
Urea | 0.030 | |
(NH4)2HPO4 | 0.025 | |
Malt sprout | 0.018 | |
Dataset 3 | Cultivation time (h) | 0.964 |
pH | 0.026 | |
Xylan (g/L) | 0.009 | |
Dataset 4 | X1 (Xylan) g/L | 0.992 |
X2 (casein) g/L | 0.008 | |
X3 (NH4Cl) g/L | 0.001 | |
Dataset 5 | K2HPO4 | 0.498 |
(NH4)2HPO4 | 0.407 | |
MgSO4 | 0.095 | |
Dataset 6 | Urea | 0.499 |
Malt sprout | 0.460 | |
(NH4)2HPO4 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ergün, M.A.; Köktürk-Güzel, B.E.; Keskin-Gündoğdu, T. Optimizing Xylanase Production: Bridging Statistical Design and Machine Learning for Improved Protein Production. Fermentation 2025, 11, 319. https://doi.org/10.3390/fermentation11060319
Ergün MA, Köktürk-Güzel BE, Keskin-Gündoğdu T. Optimizing Xylanase Production: Bridging Statistical Design and Machine Learning for Improved Protein Production. Fermentation. 2025; 11(6):319. https://doi.org/10.3390/fermentation11060319
Chicago/Turabian StyleErgün, Merve Aslı, Başak Esin Köktürk-Güzel, and Tuğba Keskin-Gündoğdu. 2025. "Optimizing Xylanase Production: Bridging Statistical Design and Machine Learning for Improved Protein Production" Fermentation 11, no. 6: 319. https://doi.org/10.3390/fermentation11060319
APA StyleErgün, M. A., Köktürk-Güzel, B. E., & Keskin-Gündoğdu, T. (2025). Optimizing Xylanase Production: Bridging Statistical Design and Machine Learning for Improved Protein Production. Fermentation, 11(6), 319. https://doi.org/10.3390/fermentation11060319