Enhancing Bioactive Cordycepin Production via Precision Fermentation with an Engineered Aspergillus oryzae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strain and Spore Inoculum Preparation
2.2. Submerged Culture Conditions
2.3. Single-Factor Experiment for Screening Optimal Culture Medium
2.4. Design of Experiment
2.5. Xanthine Oxidase Inhibitory Activity
2.6. The Stability of the Cordycepin in the Culture Broth
2.7. Analytical Procedures
3. Results and Discussion
3.1. Obtaining Optimal Substrate Variables Using the One-Factor-At-a-Time Screening Approach
3.2. Optimization of Cordycepin Production by RSM Using BBD
3.3. Model Verification
3.4. In Vitro Xanthine Oxidase Inhibitory Activity of Cordycepin-Containing Cell-Free Supernatant
3.5. Stability of Cordycepin in Cell-Free Supernatant
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SmF | Submerged fermentation |
BBD | Box–Behnken design |
RSM | Response surface methodology |
DOE | Design of experiment |
AoCordy-T1 | Cordycepin-producing strain of A. oryzae |
XO | Xanthine oxidase |
CFS | Cell-free supernatant |
WT-CFS | CFS from wild-type culture |
COR-CFS | CFS from AoCordy-T1 culture |
References
- Ashraf, S.A.; Elkhalifa, A.E.O.; Siddiqui, A.J.; Patel, M.; Awadelkareem, A.M.; Snoussi, M.; Ashraf, M.S.; Adnan, M.; Hadi, S. Cordycepin for Health and Wellbeing: A Potent Bioactive Metabolite of an Entomopathogenic Medicinal Fungus Cordyceps with Its Nutraceutical and Therapeutic Potential. Molecules 2020, 25, 2735. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, G.; Chai, Z.; Gong, Q.; Guo, J. Synthesis of Cordycepin: Current Scenario and Future Perspectives. Fungal Genet. Biol. 2020, 143, 103431. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, H.; Zeng, B.; Hu, Z. Research Progress on Cordycepin Synthesis and Methods for Enhancement of Cordycepin Production in Cordyceps militaris. Bioengineering 2022, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Das, S.K.; Fujihara, S.; Hatashita, M.; Sakurai, A. Production of Cordycepin by a Repeated Batch Culture of a Cordyceps militaris Mutant Obtained by Proton Beam Irradiation. J. Biosci. Bioeng. 2011, 111, 55–60. [Google Scholar] [CrossRef]
- Masuda, M.; Das, S.K.; Hatashita, M.; Fujihara, S.; Sakurai, A. Efficient Production of Cordycepin by the Cordyceps militaris Mutant G81-3 for Practical Use. Process Biochem. 2014, 49, 181–187. [Google Scholar] [CrossRef]
- Duan, X.-Y.; Tian, Y.; Song, Z.-Q.; Song, L.-P.; Lin, W.-B.; Wang, C.; Yang, H.; Lu, X.-Y.; Ji, X.-J.; Liu, H.-H. High-Level de Novo Biosynthesis of Cordycepin by Systems Metabolic Engineering in Yarrowia lipolytica. Bioresour. Technol. 2022, 363, 127862. [Google Scholar] [CrossRef]
- Huo, C.; Li, H.; Li, Q.; Wang, J.; Li, C.; Wang, L. Construction and Optimization of Cordycepin-Producing Saccharomyces cerevisiae. Shengwu Gongcheng Xuebao/Chin. J. Biotechnol. 2021, 37, 3334–3347. [Google Scholar]
- Jeennor, S.; Anantayanon, J.; Panchanawaporn, S.; Chutrakul, C.; Vongsangnak, W.; Laoteng, K. Efficient de Novo Production of Bioactive Cordycepin by Aspergillus oryzae Using a Food-Grade Expression Platform. Microb. Cell Fact. 2023, 22, 253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, P.; Xu, L.; Xu, D.; Hu, W.; Cheng, Y.; Yang, S. Construction of Cordycepin High-Production Strain and Optimization of Culture Conditions. Curr. Microbiol. 2022, 80, 12. [Google Scholar] [CrossRef]
- Das, S.K.; Masuda, M.; Hatashita, M.; Sakurai, A.; Sakakibara, M. Optimization of Culture Medium for Cordycepin Production Using Cordyceps militaris Mutant Obtained by Ion Beam Irradiation. Process Biochem. 2010, 45, 129–132. [Google Scholar] [CrossRef]
- Mao, X.-B.; Eksriwong, T.; Chauvatcharin, S.; Zhong, J.-J. Optimization of Carbon Source and Carbon/Nitrogen Ratio for Cordycepin Production by Submerged Cultivation of Medicinal Mushroom Cordyceps militaris. Process Biochem. 2005, 40, 1667–1672. [Google Scholar] [CrossRef]
- Antimanon, S.; Chamkhuy, W.; Sutthiwattanakul, S.; Laoteng, K. Efficient Production of Arachidonic Acid of Mortierella sp. by Solid-State Fermentation Using Combinatorial Medium with Spent Mushroom Substrate. Chem. Pap. 2018, 72, 2899–2908. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
- Quy, T.N.; Xuan, T.D. Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. Medicines 2019, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Naraian, R.; Sahu, R.K.; Kumar, S.; Garg, S.K.; Singh, C.S.; Kanaujia, R.S. Influence of Different Nitrogen Rich Supplements during Cultivation of Pleurotus florida on Corn Cob Substrate. Environmentalist 2009, 29, 1–7. [Google Scholar] [CrossRef]
- Tan, H.; Wang, L.; Wang, H.; Cheng, Y.; Li, X.; Wan, H.; Liu, C.; Liu, T.; Li, Q. Engineering Komagataella phaffii to Biosynthesize Cordycepin from Methanol Which Drives Global Metabolic Alterations at the Transcription Level. Synth. Syst. Biotechnol. 2023, 8, 242–252. [Google Scholar] [CrossRef]
- Kang, C.; Wen, T.C.; Kang, J.C.; Meng, Z.B.; Li, G.R.; Hyde, K.D. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture. Sci. World J. 2014, 2014, 510627. [Google Scholar] [CrossRef]
- Song, Z.; Lin, W.; Duan, X.; Song, L.; Wang, C.; Yang, H.; Lu, X.; Ji, X.; Tian, Y.; Liu, H. Increased Cordycepin Production in Yarrowia lipolytica Using Combinatorial Metabolic Engineering Strategies. ACS Synth. Biol. 2023, 12, 780–787. [Google Scholar] [CrossRef]
- Shoji, A.; Yamanaka, H.; Kamatani, N. A Retrospective Study of the Relationship between Serum Urate Level and Recurrent Attacks of Gouty Arthritis: Evidence for Reduction of Recurrent Gouty Arthritis with Antihyperuricemic Therapy. Arthritis Care Res. 2004, 51, 321. [Google Scholar] [CrossRef] [PubMed]
- Yong, T.; Zhang, M.; Chen, D.; Shuai, O.; Chen, S.; Su, J.; Jiao, C.; Feng, D.; Xie, Y. Actions of Water Extract from Cordyceps militaris in Hyperuricemic Mice Induced by Potassium Oxonate Combined with Hypoxanthine. J. Ethnopharmacol. 2016, 194, 403–411. [Google Scholar] [CrossRef]
- Sattui, S.E.; Gaffo, A.L. Treatment of Hyperuricemia in Gout: Current Therapeutic Options, Latest Developments and Clinical Implications. Ther. Adv. Musculoskelet. Dis. 2016, 8, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Chutvirasakul, B.; Jongmeesuk, W.; Tirasomboonsiri, P.; Sansandee, N.; Tadtong, S. Stability Indicating Method to Determine Bioactive Nucleosides in Crude Drugs, Extracts, and Products from Cordyceps sinensis and Cordyceps militaris. Thai J. Pharm. Sci. 2017, 41, 52–60. [Google Scholar] [CrossRef]
- Tang, H.; Chen, C.; Zou, Y.; Lou, H.; Zheng, Q.; Guo, L.; Lin, J.; Ye, Z.; Yun, F. Purification and Structural Characterization of a Novel Natural Pigment: Cordycepene from Edible and Medicinal Mushroom Cordyceps militaris. Appl. Microbiol. Biotechnol. 2019, 103, 7943–7952. [Google Scholar] [CrossRef] [PubMed]
- Marsup, P.; Yeerong, K.; Neimkhum, W.; Sirithunyalug, J.; Anuchapreeda, S.; To-Anun, C.; Chaiyana, W. Enhancement of Chemical Stability and Dermal Delivery of Cordyceps militaris Extracts by Nanoemulsion. Nanomaterials 2020, 10, 1565. [Google Scholar] [CrossRef] [PubMed]
- Shanu, K.; Choudhary, S.; Kumari, S.; Anu, K.; Devi, S. Downstream Processing for Bio-Product Recovery and Purification. In Recent Advances in Bioprocess Engineering and Bioreactor Design; Dhagat, S., Jujjavarapu, S.E., Sampath Kumar, N.S., Mahapatra, C., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 139–169. ISBN 978-981-97-1451-3. [Google Scholar]
- Santivarangkna, C.; Kulozik, U.; Foerst, P. Alternative Drying Processes for the Industrial Preservation of Lactic Acid Starter Cultures. Biotechnol. Prog. 2007, 23, 302–315. [Google Scholar] [CrossRef]
- Patel, B.B.; Patel, J.K.; Chakraborty, S.; Shukla, D. Revealing Facts behind Spray Dried Solid Dispersion Technology Used for Solubility Enhancement. Saudi Pharm. J. 2015, 23, 352–365. [Google Scholar] [CrossRef]
- Harikai, N.; Takada, Y.; Saito, M.; Zaima, K.; Shinomiya, K. Relationship Between Amplicon Size and Heat Conditions in Polymerase Chain Reaction Detection of DNA Degraded by Autoclaving. Biopreserv. Biobank. 2024, 22, 268–274. [Google Scholar] [CrossRef]
- Suyama, T.; Kawaharasaki, M. Decomposition of Waste DNA with Extended Autoclaving under Unsaturated Steam. Biotechniques 2013, 55, 296–299. [Google Scholar] [CrossRef] [PubMed]
Symbol | Variables | Experimental Value (g/L) | ||
---|---|---|---|---|
Low (−1) | Intermediate (0) | High (+1) | ||
X1 | Glucose | 20 | 30 | 40 |
X2 | Yeast extract | 5 | 10 | 15 |
X3 | Adenine | 0.5 | 1.0 | 1.5 |
Run No. | Independent Variables (g/L) | COR Titer (mg/L) | |||
---|---|---|---|---|---|
Glucose (X1) | Yeast Extract (X2) | Adenine (X3) | Predicted Value | Experimental Value | |
1 | 30 | 15 | 1.5 | 1497.92 | 1680.03 |
2 | 30 | 15 | 1.5 | 1497.92 | 1691.05 |
3 | 30 | 10 | 1.0 | 1249.26 | 1261.77 |
4 | 20 | 10 | 1.5 | 1373.75 | 1263.53 |
5 | 30 | 5 | 0.5 | 1064.66 | 877.15 |
6 | 20 | 10 | 1.5 | 1373.75 | 1277.36 |
7 | 30 | 5 | 1.5 | 1517.98 | 1448.00 |
8 | 40 | 10 | 1.5 | 1517.93 | 1495.50 |
9 | 30 | 5 | 0.5 | 1064.66 | 876.95 |
10 | 40 | 15 | 1.0 | 502.36 | 345.24 |
11 | 20 | 10 | 0.5 | 678.41 | 706.21 |
12 | 20 | 5 | 1.0 | 842.11 | 1000.56 |
13 | 40 | 15 | 1.0 | 502.36 | 342.96 |
14 | 20 | 5 | 1.0 | 842.11 | 1000.20 |
15 | 20 | 10 | 0.5 | 678.41 | 709.32 |
16 | 30 | 5 | 1.5 | 1517.98 | 1478.07 |
17 | 30 | 15 | 0.5 | 338.71 | 394.84 |
18 | 40 | 5 | 1.0 | 982.46 | 1066.22 |
19 | 20 | 15 | 1.0 | 576.20 | 490.10 |
20 | 30 | 15 | 0.5 | 338.71 | 392.10 |
21 | 20 | 15 | 1.0 | 576.20 | 493.70 |
22 | 40 | 10 | 0.5 | 600.73 | 700.82 |
23 | 40 | 5 | 1.0 | 982.46 | 1067.32 |
24 | 30 | 10 | 1.0 | 1249.26 | 1236.76 |
25 | 40 | 10 | 0.5 | 600.73 | 707.27 |
26 | 40 | 10 | 1.5 | 1517.93 | 1481.67 |
Source | Degree of Freedom | Sum of Squares | F-Value | p-Value * |
---|---|---|---|---|
Model | 9 | 4,276,021 | 23.13 | 0.000 |
Linear | 3 | 3,161,234 | 51.30 | 0.000 |
Glucose (X1) | 1 | 4423 | 0.22 | 0.649 |
Yeast (X2) | 1 | 556,537 | 27.09 | 0.000 |
Adenine (X3) | 1 | 2,600,275 | 126.58 | 0.000 |
Square | 3 | 272,699 | 13.27 | 0.000 |
1 | 391,900 | 19.08 | 0.000 | |
1 | 243,264 | 11.84 | 0.003 | |
1 | 33,999 | 1.66 | 0.217 | |
2-Way Interaction | 3 | 98,896 | 4.81 | 0.014 |
X1X2 | 1 | 22,939 | 1.12 | 0.306 |
X1X3 | 1 | 24,612 | 1.20 | 0.290 |
X2X3 | 1 | 249,138 | 12.13 | 0.003 |
Sample * | % XO Inhibition ** | IC50 Value (mg/mL) | |
---|---|---|---|
1 mg/mL | 5 mg/mL | ||
Phosphate buffer | nd | nd | - |
WT-CFS | 3.18 ± 1.74 b | 23.93 ± 10.79 b | 31.68 ± 3.51 b |
COR-CFS | 26.93 ± 3.91 a | 81.78 ± 10.63 a | 3.48 ± 0.45 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anantayanon, J.; Chamkhuy, W.; Rattanaphan, N.; Panchanawaporn, S.; Laoteng, K.; Jeennor, S. Enhancing Bioactive Cordycepin Production via Precision Fermentation with an Engineered Aspergillus oryzae. Fermentation 2025, 11, 32. https://doi.org/10.3390/fermentation11010032
Anantayanon J, Chamkhuy W, Rattanaphan N, Panchanawaporn S, Laoteng K, Jeennor S. Enhancing Bioactive Cordycepin Production via Precision Fermentation with an Engineered Aspergillus oryzae. Fermentation. 2025; 11(1):32. https://doi.org/10.3390/fermentation11010032
Chicago/Turabian StyleAnantayanon, Jutamas, Warinthon Chamkhuy, Nakul Rattanaphan, Sarocha Panchanawaporn, Kobkul Laoteng, and Sukanya Jeennor. 2025. "Enhancing Bioactive Cordycepin Production via Precision Fermentation with an Engineered Aspergillus oryzae" Fermentation 11, no. 1: 32. https://doi.org/10.3390/fermentation11010032
APA StyleAnantayanon, J., Chamkhuy, W., Rattanaphan, N., Panchanawaporn, S., Laoteng, K., & Jeennor, S. (2025). Enhancing Bioactive Cordycepin Production via Precision Fermentation with an Engineered Aspergillus oryzae. Fermentation, 11(1), 32. https://doi.org/10.3390/fermentation11010032