Functional Properties of Microorganisms Isolated from Formulated Sourdough, Coconut Water Kefir, and Kefir
Abstract
:1. Introduction
2. Materials and Methods
2.1. LAB, AAB, and Yeast Species
2.2. Cultures and Culture Media
2.3. Determination of Phytase Production by LAB, AAB, and Yeast Isolates
2.3.1. Phytase Assay: Agar Assay for LAB and AAB
2.3.2. Phytase Assay: Enzyme Activity Assay for LAB and Acetic Acid Bacteria
2.4. Determination of Phytase Activity for Yeast Isolates
2.4.1. Extraction of Phytase Enzyme
2.4.2. Enzyme Assay
2.4.3. Calculation of Enzyme Activity for Yeast Cells
2.5. Determination of Glutamic Acid Concentration Produced by the Individual Strains of LAB, Yeast, and Acetic Acid Bacteria
2.6. Determination of Exopolysaccharide Production in LAB and Acetic Acid Bacteria Strains
2.6.1. Screening for Exopolysaccharide (EPS)-Producing Microorganisms
2.6.2. Quantification of EPS Production
2.7. Statistical Analysis
3. Results and Discussion
3.1. Determination of Glutamic Acid Concentration for LAB, AAB, and Yeast Isolates Using the LCMS Analysis Method
3.2. Phytate Zone of Hydrolysis
3.3. Phytase Enzyme Activity Assay
3.4. Screening for EPS Production
3.5. EPS Quantification
4. Conclusions
5. Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Poutanen, K.; Flander, L.; Katina, K. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol. 2009, 26, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Anson, N.M.; Hemery, Y.M.; Bast, A.; Haenen, G.R. Optimizing the bioactive potential of wheat bran by processing. Food Funct. 2012, 3, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, Y.; Cai, B.; Cao, P.; Yang, M.; Chen, Y. Coexpression and secretion of endoglucanase and phytase genes in Lactobacillus reuteri. Int. J. Mol. Sci. 2014, 15, 12842–12860. [Google Scholar] [CrossRef] [PubMed]
- Moslehi-Jenabian, S.; Lindegaard, L.; Jespersen, L. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2010, 2, 449–473. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, J. Phytase: Sources, preparation and exploitation. Folia Microbiol. 1998, 43, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Wodzinski, R.J.; Ullah, A. Phytase. Adv. Appl. Microbiol. 1995, 42, 263–302. [Google Scholar]
- Paramithiotis, S.; Bosnea, L.; Mataragas, M. Health Promoting Features of Sourdough Lactic Acid Bacteria; Springer: Berlin/Heidelberg, Germany, 2024; pp. 379–394. [Google Scholar] [CrossRef]
- Vinderola, G.; Ouwehand, A.; Salminen, S.; von Wright, A. Lactic Acid Bacteria: Microbiological and Functional Aspects; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Zareian, M.; Ebrahimpour, A.; Mohamed, A.K.S.; Saari, N. Modeling of glutamic acid production by Lactiplantibacillus plantarum MNZ. Electron. J. Biotechnol. 2013, 16, 12. [Google Scholar] [CrossRef]
- Li, H.; Cao, Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39, 1107–1116. [Google Scholar] [CrossRef]
- Komatsuzaki, N.; Shima, J.; Kawamoto, S.; Momose, H.; Kimura, T. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol. 2005, 22, 497–504. [Google Scholar] [CrossRef]
- Zareian, M.; Ebrahimpour, A.; Bakar, F.A.; Mohamed, A.K.S.; Forghani, B.; Ab-Kadir, M.S.B.; Saari, N. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int. J. Mol. Sci. 2012, 13, 5482–5497. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Corsetti, A.; Rossi, J. The sourdough microflora. Interactions between lactic acid bacteria and yeasts: Metabolism of amino acids. World J. Microbiol. Biotechnol. 1994, 10, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, A.; Settanni, L. Lactobacilli in sourdough fermentation. Food Res. Int. 2007, 40, 539–558. [Google Scholar] [CrossRef]
- Galle, S.; Arendt, E.K. Exopolysaccharides from sourdough lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 2014, 54, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Ruas-Madiedo, P.; de los Reyes-Gavilán, C.G. Invited Review: Methods for the Screening, Isolation, and Characterization of Exopolysaccharides Produced by Lactic Acid Bacteria. J. Dairy Sci. 2005, 88, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Neu, T.R.; Wozniak, D.J. The EPS Matrix: The “House of Biofilm Cells”. J. Bacteriol. 2007, 189, 7945. [Google Scholar] [CrossRef] [PubMed]
- Tieking, M.; Gänzle, M.G. Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci. Technol. 2005, 16, 79–84. [Google Scholar] [CrossRef]
- Tieking, M.; Ehrmann, M.A.; Vogel, R.F.; Gänzle, M.G. Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl. Microbiol. Biotechnol. 2005, 66, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Schwab, C.; Mastrangelo, M.; Corsetti, A.; Gänzle, M. Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem. 2008, 85, 679–684. [Google Scholar] [CrossRef]
- Tieking, M.; Kaditzky, S.; Gänzle, M.; Vogel, R. Biodiversity and Potential for Baking Applications of Glycosyltransferases in Lactobacilli for Use in Sourdough Fermentation. Sourdough, from Fundamentals to Applications; Vrije Universiteit Brussel: Brussels, Belgium, 2003; pp. 58–59. [Google Scholar]
- Tieking, M.; Korakli, M.; Ehrmann, M.A.; Ganzle, M.G.; Vogel, R.F. In situ production of exopolysaccharides during Sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl. Environ. Microbiol. 2003, 69, 945–952. [Google Scholar] [CrossRef]
- Kralj, S.; van Geel-Schutten, G.; Rahaoui, H.; Leer, R.; Faber, E.; Van Der Maarel, M.; Dijkhuizen, L. Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with α-(1 → 4) and α-(1 → 6) glucosidic bonds. Appl. Environ. Microbiol. 2002, 68, 4283–4291. [Google Scholar] [CrossRef] [PubMed]
- Van Hijum, S.; van Geel-Schutten, G.; Rahaoui, H.; Van Der Maarel, M.; Dijkhuizen, L. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl. Environ. Microbiol. 2002, 68, 4390–4398. [Google Scholar] [CrossRef] [PubMed]
- Galle, S.; Schwab, C.; Arendt, E.K.; Gänzle, M.G. Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol. 2011, 28, 547–553. [Google Scholar] [CrossRef]
- Limbad, M.; Gutierrez Maddox, N.; Hamid, N.; Kantono, K.; Higgins, C. Identification of the Microbiota in Coconut Water, Kefir, Coconut Water Kefir and Coconut Water Kefir-Fermented Sourdough Using Culture-Dependent Techniques and Illumina–MiSeq Sequencing. Microorganisms 2024, 12, 919. [Google Scholar] [CrossRef] [PubMed]
- Bae, H.D.; Yanke, L.J.; Cheng, K.J.; Selinger, L.B. A novel staining method for detecting phytase activity. J. Microbiol. Methods 1999, 39, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Fredrikson, M.; Andlid, T.; Haikara, A.; Sandberg, A.S. Phytate degradation by micro-organisms in synthetic media and pea flour. J. Appl. Microbiol. 2002, 93, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Schnürer, J.; Olstorpe, M.; Passoth, V. Screening of yeast strains for phytase activity. FEMS Yeast Res. 2009, 9, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Palacios, M.C.; Haros, M.; Rosell, C.M.; Sanz, Y. Selection of phytate-degrading human bifidobacteria and application in whole wheat dough fermentation. Food Microbiol. 2008, 25, 169–176. [Google Scholar] [CrossRef]
- Palacios, M.; Haros, M.; Rosell, C.; Sanz, Y. Characterization of an acid phosphatase from Lactobacillus pentosus: Regulation and biochemical properties. J. Appl. Microbiol. 2005, 98, 229–237. [Google Scholar] [CrossRef]
- Cheryan, M.; Rackis, J.J. Phytic acid interactions in food systems. Crit. Rev. Food Sci. Nutr. 1980, 13, 297–335. [Google Scholar] [CrossRef]
- Ciriacy, M.; Breitenbach, I. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J. Bacteriol. 1979, 139, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, J.; Lahti, R. A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 1981, 113, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Fukuhara, H.; Nakamura, Y. Phytase of the yeast Arxula adeninivorans. Biotechnol. Lett. 1999, 21, 33–38. [Google Scholar] [CrossRef]
- Vohra, A.; Satyanarayana, T. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 2003, 23, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Bergmeyer, H.U. (Ed.) Methods of Enzymatic Analysis; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Salazar, C.; Armenta, J.M.; Shulaev, V. An UPLC-ESI-MS/MS assay using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatization for targeted amino acid analysis: Application to screening of Arabidopsis thaliana mutants. Metabolites 2012, 2, 398–428. [Google Scholar] [CrossRef] [PubMed]
- Pepe, O.; Villani, F.; Coppola, S. Differential viable count of mixed starter cultures of lactic acid bacteria in doughs by using modified Chalmers medium. Microbiol. Res. 2001, 155, 351–354. [Google Scholar] [CrossRef]
- Ruas-Madiedo, P.; Abraham, A.; Mozzi, F.; De Los Reyes-Gavilán, C. Functionality of exopolysaccharides produced by lactic acid bacteria. Mol. Asp. Lact. Acid Bact. Tradit. New Appl. 2008, 107, 137–166. [Google Scholar] [CrossRef] [PubMed]
- Vescovo, M.; Scolari, G.; Bottazzi, V. Plasmid-encoded ropiness production in Lactobacillus casei SSP. casei. Biotechnol. Lett. 1989, 11, 709–712. [Google Scholar] [CrossRef]
- Minervini, F.; De Angelis, M.; Surico, R.; Di Cagno, R.; Gänzle, M.; Gobbetti, M. Highly efficient synthesis of exopolysaccharides by Lactobacillus curvatus DPPMA10 during growth in hydrolyzed wheat flour agar. Int. J. Food Microbiol. 2010, 141, 130–135. [Google Scholar] [CrossRef]
- Vuyst, D.; de Ven, V. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. J. Appl. Microbiol. 1998, 84, 1059–1068. [Google Scholar] [CrossRef]
- Gobbetti, M.; Corsetti, A.; Rossi, J. The sourdough microflora. Interactions between lactic acid bacteria and yeasts: Metabolism of carbohydrates. Appl. Microbiol. Biotechnol. 1994, 41, 456–460. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.A.; G-Alegría, E.; Polo, M.C.; Tenorio, C.; Martín-Alvarez, P.J.; Calvo de la Banda, M.T.; Ruiz-Larrea, F.; Moreno-Arribas, M.V. Wine volatile and amino acid composition after malolactic fermentation: Effect of Oenococcus oeni and Lactobacillus plantarum starter cultures. J. Agric. Food Chem. 2005, 53, 8729–8735. [Google Scholar] [CrossRef] [PubMed]
- Coda, R.; Rizzello, C.G.; Gobbetti, M. Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid (GABA). Int. J. Food Microbiol. 2010, 137, 236–245. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Corsetti, A.; Rossi, J.; Rosa, F.L.; Vincenzi, S.D. Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of central Italy [for breadmaking, Umbria]. Ital. J. Food Sci. 1994, 85–94. Available online: https://hdl.handle.net/11391/921234 (accessed on 1 June 2024).
- Vohra, P.; Gray, G.; Kratzer, F. Phytic acid-metal complexes. Proc. Soc. Exp. Biol. Med. 1965, 120, 447–449. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, M.; Gallo, G.; Corbo, M.R.; McSweeney, P.L.; Faccia, M.; Giovine, M.; Gobbetti, M. Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int. J. Food Microbiol. 2003, 87, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Howson, S.J.; Davis, R.P. Production of phytate-hydrolysing enzyme by some fungi. Enzym. Microb. Technol. 1983, 5, 377–382. [Google Scholar] [CrossRef]
- Han, Y.; Wilson, D.B.; Lei, X.G. Expression of an Aspergillus niger Phytase Gene (phyA) in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1999, 65, 1915–1918. [Google Scholar] [CrossRef] [PubMed]
- Tsang, P.W.-K. Differential Phytate Utilization in Candida species. Mycopathologia 2011, 172, 473–479. [Google Scholar] [CrossRef]
- Caputo, L.; Visconti, A.; De Angelis, M. Selection and use of a Saccharomyces cerevisae strain to reduce phytate content of wholemeal flour during bread-making or under simulated gastrointestinal conditions. LWT-Food Sci. Technol. 2015, 63, 400–407. [Google Scholar] [CrossRef]
- Yu, P.; Wang, X.-T.; Liu, J.-W. Purification and characterization of a novel cold-adapted phytase from Rhodotorula mucilaginosa strain JMUY14 isolated from Antarctic. J. Basic Microbiol. 2015, 55, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M. Purification and characterization of phytase from Bacillus suhtilis (natto) N–77. Biosci. Biotechnol. Biochem. 1992, 56, 1266–1269. [Google Scholar] [CrossRef]
- Sreeramulu, G.; Srinivasa, D.; Nand, K.; Joseph, R. Lactobacillus amylovorus as a phytase producer in submerged culture. Lett. Appl. Microbiol. 1996, 23, 385–388. [Google Scholar] [CrossRef]
- Zamudio, M.; Gonzalez, A.; Medina, J. Lactiplantibacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett. Appl. Microbiol. 2001, 32, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Anastasio, M.; Pepe, O.; Cirillo, T.; Palomba, S.; Blaiotta, G.; Villani, F. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation. J. Food Sci. 2010, 75, M28–M35. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Arici, M. Effect of the fermentation temperature on the degradation of phytic acid in whole-wheat sourdough bread. LWT 2019, 112, 108224. [Google Scholar] [CrossRef]
- Sumengen, M.; Dincer, S.; Kaya, A. Production and characterization of phytase from Lactiplantibacillus plantarum. Food Biotechnol. 2013, 27, 105–118. [Google Scholar] [CrossRef]
- Türk, M.; Sandberg, A.-S.; Carlsson, N.-G.; Andlid, T. Inositol hexaphosphate hydrolysis by Baker’s yeast. Capacity, kinetics, and degradation products. J. Agric. Food Chem. 2000, 48, 100–104. [Google Scholar] [CrossRef]
- Kralj, S.; van Geel-Schutten, G.; Dondorff, M.; Kirsanovs, S.; Van Der Maarel, M.; Dijkhuizen, L. Glucan synthesis in the genus Lactobacillus: Isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 2004, 150, 3681–3690. [Google Scholar] [CrossRef]
- Van der Meulen, R.; Grosu-Tudor, S.; Mozzi, F.; Vaningelgem, F.; Zamfir, M.; de Valdez, G.F.; De Vuyst, L. Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int. J. Food Microbiol. 2007, 118, 250–258. [Google Scholar] [CrossRef]
- Wszolek, M.; Kupiec-Teahan, B.; Guldager, H.S.; Tamime, A. Production of kefir, koumiss and other related products. In Fermented Milks; Wiley: Hoboken, NJ, USA, 2006; pp. 174–216. [Google Scholar]
- Gänzle, M.; Schwab, C. Ecology of exopolysaccharide formation by lactic acid bacteria: Sucrose utilization, stress tolerance, and biofilm formation. In Bacterial Polysaccharides: Current Innovations and Future Trends; Caister Academic Press Limited: Poole, UK, 2009; pp. 263–278. [Google Scholar]
- Moonmangmee, S.; Kawabata, K.; Tanaka, S.; Toyama, H.; Adachi, O.; Matsushita, K. A novel polysaccharide involved in the pellicle formation of Acetobacter aceti. J. Biosci. Bioeng. 2002, 93, 192–200. [Google Scholar] [CrossRef]
- Embuscado, M.E.; Marks, J.S.; Bemiller, J.N. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocoll. 1994, 8, 407–418. [Google Scholar] [CrossRef]
- Kojima, Y.; Seto, A.; Tonouchi, N.; Tsuchida, T.; Yoshinaga, F. High rate production in static culture of bacterial cellulose from sucrose by a newly isolated Acetobacter strain. Biosci. Biotechnol. Biochem. 1997, 61, 1585–1586. [Google Scholar] [CrossRef]
- Masaoka, S.; Ohe, T.; Sakota, N. Production of cellulose from glucose by Acetobacter xylinum. J. Ferment. Bioeng. 1993, 75, 18–22. [Google Scholar] [CrossRef]
- Tonouchi, N.; Tsuchida, T.; Yoshinaga, F.; Beppu, T.; Horinouchi, S. Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci. Biotechnol. Biochem. 1996, 60, 1377–1379. [Google Scholar] [CrossRef]
- Yang, Y.K.; Park, S.H.; Hwang, J.W.; Pyun, Y.R.; Kim, Y.S. Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J. Ferment. Bioeng. 1998, 85, 312–317. [Google Scholar] [CrossRef]
- Degeest, B.; De Vuyst, L. Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Appl. Environ. Microbiol. 2000, 66, 3519–3527. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Annu. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef]
- Gientka, I.; Bzducha-Wróbel, A.; Stasiak-Różańska, L.; Bednarska, A.A.; Błażejak, S. The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources. Electron. J. Biotechnol. 2016, 22, 31–37. [Google Scholar] [CrossRef]
- Gonzalez Garza, M.T.; Barboza Perez, D.; Vazquez Rodriguez, A.; Garcia-Gutierrez, D.I.; Zarate, X.; Cantú Cardenas, M.E.; Urraca-Botello, L.I.; Lopez-Chuken, U.J.; Trevino-Torres, A.L.; Cerino-Córdoba, F.D.J.; et al. Metal-induced production of a novel bioadsorbent exopolysaccharide in a native Rhodotorula mucilaginosa from the mexican northeastern region. PLoS ONE 2016, 11, e0148430. [Google Scholar]
- Nogueira, P.F.; Melao MD, G.; Lombardi, A.T.; Vieira, A.A. The effects of Anabaena spiroides (Cyanophyceae) exopolysaccharide on copper toxicity to Simocephalus serrulatus (Cladocera, Daphnidae). Freshw. Biol. 2005, 50, 1560–1567. [Google Scholar] [CrossRef]
- Pérez JA, M.; García-Ribera, R.; Quesada, T.; Aguilera, M.; Ramos-Cormenzana, A.; Monteoliva-Sánchez, M. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J. Microbiol. Biotechnol. 2008, 24, 2699. [Google Scholar]
- Zhou, W.; Shen, B.; Meng, F.; Liu, S.; Zhang, Y. Coagulation enhancement of exopolysaccharide secreted by an Antarctic sea-ice bacterium on dye wastewater. Sep. Purif. Technol. 2010, 76, 215–221. [Google Scholar] [CrossRef]
- Vazquez-Rodriguez, A.; Vasto-Anzaldo, X.G.; Barboza Perez, D.; Vázquez-Garza, E.; Chapoy-Villanueva, H.; García-Rivas, G.; Garza-Cervantes, J.A.; Gómez-Lugo, J.J.; Gomez-Loredo, A.E.; Garza Gonzalez, M.T.; et al. Microbial Competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of Non-Toxic Exopolysaccharide with Applications as a Wide-Spectrum Antimicrobial. Sci. Rep. 2018, 8, 798. [Google Scholar] [CrossRef] [PubMed]
- Blanc, P.J. Characterization of the tea fungus metabolites. Biotechnol. Lett. 1996, 18, 139–142. [Google Scholar] [CrossRef]
- Chung, Y.; Shyu, Y. The effects of pH, salt, heating and freezing on the physical properties of bacterial cellulose—Nata. Int. J. Food Sci. Technol. 1999, 34, 23–26. [Google Scholar] [CrossRef]
- Kent, R.; Stephens, R.; Westland, J. Bacterial cellulose fiber provides an alternative for thickening and coating. In Food Technology (USA); Institute of Food Technologists: Chicago, IL, USA, 1991. [Google Scholar]
- Matsushita, K.; Ebisuya, H.; Ameyama, M.; Adachi, O. Change of the terminal oxidase from cytochrome a1 in shaking cultures to cytochrome o in static cultures of Acetobacter aceti. J. Bacteriol. 1992, 174, 122–129. [Google Scholar] [CrossRef]
Type | Origin | Isolates |
---|---|---|
LAB | Kefir, CWK, CWK-fermented sourdough | Limosilactobacillus fermentum |
Lactiplantibacillus plantarum | ||
Lactobacillus fusant | ||
Lactobacillus reuteri | ||
Lactobacillus kunkeei | ||
AAB | Acetobacter aceti | |
Acetobacter lovaniensis | ||
Acetobacter pasteurianus | ||
Yeast | Candida kefyr | |
Rhodotorula mucilaginosa | ||
Saccharomyces cerevisiae | ||
Candida guilliermondii | ||
Candida colliculosa |
Isolates | Glutamic Acid Concentration (µMoles/L) |
---|---|
Limosilactobacillus fermentum | 260.38 ± 12.1 a,b |
Lactiplantibacillus plantarum | 264.89 ± 8.5 a,b |
Lactobacillus fusant | 228.96 ± 12.7d |
Lactobacillus reuteri | 251.16 ± 10.6 b,c |
Lactobacillus kunkeei | 239.08 ± 10.8 c,d |
Acetobacter aceti | 155.28 ± 4.8 e |
Acetobacter lovaniensis | 164.37 ± 4.1 e |
Acetobacter pasteurianus | 159.52 ± 0.7 e |
Candida kefyr | 120.83 ± 0.9 f,g |
Rhodotorula mucilaginosa | 133.35 ± 0.8 f,g |
Saccharomyces cerevisiae | 129.37 ± 3.8 f,g |
Candida guilliermondii | 114.29 ± 1.9 g |
Candida colliculosa | 128.18 ± 7.1 f,g |
LAB, AAB, and Yeast Isolates | Zone of Hydrolysis (Diameter of the Zone of Hydrolysis in mm) | |
---|---|---|
Average MRS-MOPS | Average MRS-MOPS + Amino Acids | |
Limosilactobacillus fermentum | 14.2 ± 0.1 a | 12.7 ± 0.1 a |
Lactiplantibacillus plantarum | 13.8 ± 0.1 a | 12.4 ± 0.1 b |
Lactobacillus fusant | 12.1 ± 0.5 a | 11.9 ± 0.1 d |
Lactobacillus reuteri | 13.6 ± 0.1 a | 12.1 ± 0.1 c,d |
Lactobacillus kunkeei | 13.7 ± 0.1 a | 12.2 ± 0.1 b,c |
Acetobacter aceti | 8.5 ± 0.2 c | 8.4 ± 0.1 f |
Acetobacter lovaniensis | 9.3 ± 0.1 b | 8.9 ± 0.2 e |
Acetobacter pasteurianus | 8.8 ± 0.2 b,c | 8.3 ± 0.1 f |
Candida kefyr | 3.0 ± 0.1 d | 2.5 ± 0.2 g |
Rhodotorula mucilaginosa | 2.7 ± 0.1 d | 2.4 ± 0.3 g |
Saccharomyces cerevisiae | 2.73± 0.2 d | 2.5 ± 0.1 g |
Candida guilliermondii | 2.4 ± 0.2 d | 2.5 ± 0.1 g |
Candida colliculosa | 2.3 ± 0.1 d | 2.4 ± 0.2 g |
Isolates | Average Phytase Activity (U/mL) in Chalmers Broth | Average Phytase Activity (U/mL) in Chalmers Broth + 1% Sodium Phytate | Average Phytase Activity (U/mL) in Chalmers Broth + 2% CaCl2 | Overall Average Phytase Activity (U/mL) |
---|---|---|---|---|
Limosilactobacillus fermentum | 4052.2 a | 4223.8 a | 3881.5 a | 4052.5 ± 171.1 a |
Lactiplantibacillus plantarum | 2717.9 b | 3443.3 b | 3294.1 b | 3151.8 ± 383.0 b |
Lactobacillus fusant | 2497.3 d | 2948.0 c | 2495.2 e | 2646.8 ± 260.8 c |
Lactobacillus reuteri | 2628.5 c | 2875.3 d | 2510.7 d | 2671.5 ± 186.0 c |
Lactobacillus kunkeei | 2456.5 e | 2437.1 e | 2678.4 c | 2524.0 ± 134.0 c,d |
Acetobacter aceti | 2373.9 f | 2389.4 g | 2403.6 f | 2389.0 ± 14.8 d |
Acetobacter lovaniensis | 2375.2 f | 2380.4 h | 2395.9 g | 2383.8 ± 10.7 d |
Acetobacter pasteurianus | 2376.5 f | 2394.6 f | 2392.0 g | 2387.7 ± 9.7 d |
Candida kefyr | 2356.8 g | 2361.0 i,j | 2366.2 j | 2361.3 ± 4.7 d |
Rhodotorula mucilaginosa | 2355.9 g | 2357.2 k | 2367.5 i,j | 2360.2 ± 6.3 d |
Saccharomyces cerevisiae | 2354.6 g | 2358.4 j,k | 2371.3 h,i | 2361.5 ± 8.7 d |
Candida guilliermondii | 2356.8 g | 2359.7 j,k | 2372.6 h | 2363.9 ± 8.4 d |
Candida colliculosa | 2358.4 g | 2363.6 i | 2370.1 h,i,j | 2364.8 ± 5.8 d |
Isolates | Qualitative EPS | |||
---|---|---|---|---|
Chalmers Agar (CA) + CaCO3 | Chalmers Agar (CA) + 5% Sucrose without CaCO3 | Chalmers Agar + 5% Sucrose and No Yeast Extract | Chalmers Agar + 5% Sucrose + 0.5% wt/vol Yeast Extract | |
Limosilactobacillus fermentum | - | ++ | ++ | ++ |
Lactiplantibacillus plantarum | - | ++ | ++ | ++ |
Lactobacillus fusant | - | - | - | - |
Lactobacillus reuteri | - | ++ | ++ | ++ |
Lactobacillus kunkeei | - | + | + | + |
Acetobacter aceti | - | + | + | + |
Acetobacter lovaniensis | - | - | - | - |
Acetobacter pasteurianus | - | + | + | + |
Candida kefyr | - | - | - | - |
Rhodotorula mucilaginosa | - | + | + | + |
Saccharomyces cerevisiae | - | - | - | - |
Candida guilliermondii | - | + | + | + |
Candida colliculosa | - | - | - | - |
Isolate | Chalmers Agar + 5% Sucrose and No Yeast Extract (Polymer Dry Mass in mg/kg) | Chalmers Agar + 5% Sucrose + 0.5% wt/vol Yeast Extract (Polymer Dry Mass in mg/kg) |
---|---|---|
Limosilactobacillus fermentum | 87.89 ± 1.1 a | 94.01 ± 1.6 a |
Lactiplantibacillus plantarum | 70.36 ± 0.9 b | 85.21 ± 2.3 b |
Lactobacillus reuteri | 69.31 ± 1.8 b | 87.92 ± 2.0 b |
Lactobacillus kunkeei | 29.33 ± 0.8 c | 35.16 ± 1.8 c |
Acetobacter aceti | 25.7 ± 0.6 d | 32.27 ± 0.9 c,d |
Acetobacter pasteurianus | 20.5 ± 0.6 e | 24.55 ± 1.9 e |
Candida guilliermondii | 19.97 ± 0.6 e | 29.66 ± 1.4 d |
Rhodotorula mucilaginosa | 30.92 ± 0.6 c | 34.73 ± 1.5 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limbad, M.J.; Maddox, N.G.; Hamid, N.; Kantono, K. Functional Properties of Microorganisms Isolated from Formulated Sourdough, Coconut Water Kefir, and Kefir. Fermentation 2024, 10, 327. https://doi.org/10.3390/fermentation10070327
Limbad MJ, Maddox NG, Hamid N, Kantono K. Functional Properties of Microorganisms Isolated from Formulated Sourdough, Coconut Water Kefir, and Kefir. Fermentation. 2024; 10(7):327. https://doi.org/10.3390/fermentation10070327
Chicago/Turabian StyleLimbad, Mansi Jayantikumar, Noemi Gutierrez Maddox, Nazimah Hamid, and Kevin Kantono. 2024. "Functional Properties of Microorganisms Isolated from Formulated Sourdough, Coconut Water Kefir, and Kefir" Fermentation 10, no. 7: 327. https://doi.org/10.3390/fermentation10070327
APA StyleLimbad, M. J., Maddox, N. G., Hamid, N., & Kantono, K. (2024). Functional Properties of Microorganisms Isolated from Formulated Sourdough, Coconut Water Kefir, and Kefir. Fermentation, 10(7), 327. https://doi.org/10.3390/fermentation10070327