Open AccessArticle
A Wide Adsorption Range Hybrid Material Based on Chitosan, Activated Carbon and Montmorillonite for Water Treatment
by
Farida Bouyahmed 1, Min Cai 1, Laurence Reinert 2, Laurent Duclaux 2, Ratan Kumar Dey 3, Hicham Ben Youcef 4, Mohammed Lahcini 5, Fabrice Muller 6 and Sandrine Delpeux-Ouldriane 1,*
1
CNRS-ICMN, Université d’Orléans, 45071 Orléans, France
2
LCME, Université Savoie Mont Blanc, 73000 Chambéry, France
3
Centre for Applied Chemistry/Centre for Nanotechnology, Central University of Jharkhand, Brambe, Jharkhand, 835205 Ranchi, India
4
Materials Science and Nano-engineering Department, Mohammed VI Polytechnic University, 43150 Ben Guerir, Morocco
5
Laboratory of Organometallic and Macromolecular Chemistry—Composites Materials, Faculty of Sciences and Technologies of Marrakech, CADAI AYYAD University, 40000 Marrakech, Morocco
6
ISTO, CNRS-Université d’Orléans-BRGM, 45071 Orléans, France
Cited by 18 | Viewed by 7307
Abstract
Numerous adsorbent materials are developed and are able to face specific types of pollution, but none of them can manage the whole pollution. The purpose of this work is to develop a novel hybrid adsorbent, based on chitosan (CS) biopolymer, clay minerals and
[...] Read more.
Numerous adsorbent materials are developed and are able to face specific types of pollution, but none of them can manage the whole pollution. The purpose of this work is to develop a novel hybrid adsorbent, based on chitosan (CS) biopolymer, clay minerals and activated carbon (AC), having complementary adsorption properties and achieving a wide-spectrum water decontamination in a single treatment. Hybrid CS beads, containing dispersed clay and AC, were prepared from dispersions of solid adsorbents in a CS solution and its further coagulation in a basic medium. The porosity and the homogeneity of the hybrid beads were characterized by N
2 adsorption at 77 K and Cryo-Scanning Electron Microscopy respectively. The interaction between CS and clay was characterized using X-ray diffraction. Water content and the amount of each adsorbent in the hydrogel beads were determined by thermogravimetric analysis. Such a composite material was still porous and presented a wide adsorption spectrum. As shown by their adsorption kinetics, hydrophobic anionic clofibric acid (CBA) and cationic metoprolol (MTP) were well adsorbed on AC containing beads (21 and 26 mg/g), respectively. Clays containing beads showed interesting adsorption properties towards cationic Zn
2+ and MTP. The obtained composite beads were able to adsorb all the pollutant types: Zinc cations, and hydrophobic-charged organic molecules, such as pharmaceutical derivatives (clofibric acid and MTP).
Full article
►▼
Show Figures