Development of Electrode Materials of Lithium-Ion Battery Utilizing Nanospaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon Nanofibers Synthesized via Electrospinning
2.2. Characterization of Carbon Nanofibers
2.3. Electrochemical Characterization
2.3.1. Electrode Made of Nickel Mesh
2.3.2. Electrode Made of Cupper Foil
3. Results
3.1. SEM/EDX Images
3.2. TEM Images with Image Processing
3.3. XRD Patterns
3.4. Raman Spectra
3.5. Electrochemical Characterization
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, W.-J. A Review of the Electrochemical Performance of Alloy Anodes for Lithium-Ion Batteries. J. Power Sources 2011, 196, 13–24. [Google Scholar] [CrossRef]
- Inagaki, M.; Yang, Y.; Kang, F. Carbon Nanofibers Prepared via Electrospinning. Adv. Mater. 2012, 24, 2547–2566. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Inden, Y.; Endo, M. Silicon/soft-carbon nanohybrid material with low expansion for high capacity and long cycle life lithium-ion battery. J. Power Sources 2016, 326, 235–241. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, B.-H.; Yang, K.S.; Oshida, K. Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile. Mater. Lett. 2012, 87, 157–161. [Google Scholar] [CrossRef]
- Oshida, K.; Murata, M.; Fujiwara, K.; Itaya, T.; Yanagisawa, T.; Kimura, K.; Nakazawa, T.; Kim, Y.A.; Endo, M.; Kim, B.-H.; et al. Structural analysis of nano structured carbon by transmission electron microscopy and image processing. Appl. Surf. Sci. 2013, 275, 409–412. [Google Scholar] [CrossRef]
- Yin, S.; Ji, Q.; Zuo, X.; Xie, S.; Fang, K.; Xia, Y.; Li, J.; Qiu, B.; Wang, M.; Ban, J.; et al. Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles. J. Mater. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Jasim, D.A.; Lozano, N.; Kostarelos, K. Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology. 2D Mater. 2016, 3, 1–17. [Google Scholar] [CrossRef]
Sample Names | Precursor and Additives/Solvent | Spinning Conditions | Stabilization | Carbonization |
---|---|---|---|---|
TEOS Carbon | 10 wt % [PAN + TEOS(7:3)]/DMF | 25 kV/15 cm | 260 °C | 1000 °C |
TEOS/Si Hybrid Carbon | [10 wt % [PAN + TEOS(7:3)] + 1 wt % Si]/DMF | 23 kV/15 cm | 240 °C | 700 °C |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minamisawa, T.; Oshida, K.; Kobayashi, N.; Ando, A.; Misawa, D.; Itaya, T.; Moriyama, M.; Osawa, K.; Hata, T.; Sugiyama, Y.; et al. Development of Electrode Materials of Lithium-Ion Battery Utilizing Nanospaces. C 2018, 4, 23. https://doi.org/10.3390/c4020023
Minamisawa T, Oshida K, Kobayashi N, Ando A, Misawa D, Itaya T, Moriyama M, Osawa K, Hata T, Sugiyama Y, et al. Development of Electrode Materials of Lithium-Ion Battery Utilizing Nanospaces. C. 2018; 4(2):23. https://doi.org/10.3390/c4020023
Chicago/Turabian StyleMinamisawa, Takunori, Kyoichi Oshida, Nozomi Kobayashi, Akinobu Ando, Daiki Misawa, Tomoyuki Itaya, Minoru Moriyama, Kozo Osawa, Toshimitsu Hata, Yuta Sugiyama, and et al. 2018. "Development of Electrode Materials of Lithium-Ion Battery Utilizing Nanospaces" C 4, no. 2: 23. https://doi.org/10.3390/c4020023
APA StyleMinamisawa, T., Oshida, K., Kobayashi, N., Ando, A., Misawa, D., Itaya, T., Moriyama, M., Osawa, K., Hata, T., Sugiyama, Y., Iguchi, H., & Kobayashi, N. (2018). Development of Electrode Materials of Lithium-Ion Battery Utilizing Nanospaces. C, 4(2), 23. https://doi.org/10.3390/c4020023