# Flow and Convection in Metal Foams: A Survey and New CFD Results

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Why Metal Foams?

## 3. Momentum Transfer Models

## 4. Heat Transfer Models

## 5. Heat Transfer Model for Ideal Metal Foams

## 6. A CFD Analysis of Metal Foams with a Periodic Structure

#### 6.1. CFD Results—Velocity Field

#### 6.2. CFD Results—Temperature Field

^{2}K)) obtained in the thermally developed region and the volumetric heat transfer coefficient h (W/(m

^{3}K)) described in Equation (26) are reported in Table 1.

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Boomsma, K.; Poulikakos, D.; Zwick, F. Metal foams as compact high performance heat exchangers. Mech. Mater.
**2003**, 35, 1161–1176. [Google Scholar] [CrossRef] - Krishnan, S.; Murthy, J.Y.; Garimella, S.V. Metal foams as passive thermal control systems. In Emerging Topics in Heat and Mass Transfer in Porous Media; Vadász, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 261–282. [Google Scholar]
- Mahjoob, S.; Vafai, K. A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Transf.
**2008**, 51, 3701–3711. [Google Scholar] [CrossRef] - Zhao, C.Y. Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf.
**2012**, 55, 3618–3632. [Google Scholar] [CrossRef] - Ranut, P. On the effective thermal conductivity of aluminum metal foams: Review and improvement of the available empirical and analytical models. Appl. Therm. Eng.
**2016**, 101, 496–524. [Google Scholar] [CrossRef] - Nield, D.A.; Bejan, A. Convection in Porous Media, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kuznetsov, A.V. Thermal nonequilibrium forced convection in porous media. In Transport Phenomena in Porous Media; Ingham, D.B., Pop, I., Eds.; Pergamon: Oxford, UK, 1998; pp. 103–129. [Google Scholar]
- Rees, D.A.S.; Pop, I. Local thermal non-equilibrium in porous medium convection. In Transport Phenomena in Porous Media III; Ingham, D.B., Pop, I., Eds.; Pergamon: Oxford, UK, 2005; pp. 147–173. [Google Scholar]
- Vadasz, P. Explicit conditions for local thermal equilibrium in porous media heat conduction. Transp. Porous Media
**2005**, 59, 341–355. [Google Scholar] [CrossRef] - Vadasz, P. Lack of oscillations in dual-phase-lagging heat conduction for a porous slab subject to imposed heat flux and temperature. Int. J. Heat Mass Transf.
**2005**, 48, 2822–2828. [Google Scholar] [CrossRef] - Vadasz, P. Absence of oscillations and resonance in porous media dual-phase-lagging Fourier heat conduction. J. Heat Transf.
**2005**, 127, 307–314. [Google Scholar] [CrossRef] - Vadasz, P. On the paradox of heat conduction in porous media subject to lack of local thermal equilibrium. Int. J. Heat Mass Transf.
**2007**, 50, 4131–4140. [Google Scholar] [CrossRef] - Wang, L.; Xu, M.; Wei, X. Dual-phase-lagging and porous-medium heat conduction processes. In Emerging Topics in Heat and Mass Transfer in Porous Media; Vadász, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–37. [Google Scholar]
- Vadasz, P. Small Nield number convection in a porous layer heated from below via a constant heat flux and subject to lack of local thermal equilibrium. J. Porous Media
**2012**, 15, 249–258. [Google Scholar] [CrossRef] - Straughan, B. Convection with Local Thermal Non-Equilibrium and Microfluidic Effects; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Banu, N.; Rees, D.A.S. Onset of Darcy-Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf.
**2002**, 45, 2221–2228. [Google Scholar] [CrossRef] - Barletta, A.; Rees, D.A.S. Local thermal non-equilibrium effects in the Darcy-Bénard instability with isoflux boundary conditions. Int. J. Heat Mass Transf.
**2012**, 55, 384–394. [Google Scholar] [CrossRef] [Green Version] - Rees, D.A.S. Microscopic modelling of the two-temperature model for conduction in heterogeneous media: Three-dimensional media. In Proceedings of the 4th International Conference on Application of Porous Media, Istanbul, Turkey, 10–12 August 2009. [Google Scholar]
- Rees, D.A.S. Microscopic modeling of the two-temperature model for conduction in heterogeneous media. J. Porous Media
**2010**, 13, 125–143. [Google Scholar] [CrossRef] - Jamalud-Din, S.D.; Rees, D.A.S.; Reddy, B.V.K.; Narasimhan, A. Prediction of natural convection flow using network model and numerical simulations inside enclosure with distributed solid blocks. Heat Mass Transf.
**2010**, 46, 333–343. [Google Scholar] [CrossRef] - Dixit, T.; Ghosh, I. An experimental study on open cell metal foam as extended heat transfer surface. Exp. Therm. Fluid Sci.
**2016**, 77, 28–37. [Google Scholar] [CrossRef] - Cancellara, S.; Greppi, M.; Dongellini, M.; Fabbri, G.; Biserni, C.; Morini, G.L. Experimental investigation on the pressure drop of air flows through aluminum and nickel-chromium metallic foams for HVAC applications. Energies
**2019**, 13, 172. [Google Scholar] [CrossRef] [Green Version] - Alazmi, B.; Vafai, K. Constant wall heat flux boundary conditions in porous media under local thermal non-equilibrium conditions. Int. J. Heat Mass Transf.
**2002**, 45, 3071–3087. [Google Scholar] [CrossRef] - Yang, K.; Vafai, K. Analysis of temperature gradient bifurcation in porous media—An exact solution. Int. J. Heat Mass Transf.
**2010**, 53, 4316–4325. [Google Scholar] [CrossRef] - Nield, D.A. A note on local thermal non-equilibrium in porous media near boundaries and interfaces. Transp. Porous Media
**2012**, 95, 581–584. [Google Scholar] [CrossRef] - Polyaev, V.M.; Mozhaev, A.P.; Galitseysky, B.M.; Lozhkin, A.L. A study of internal heat transfer in nonuniform porous structures. Exp. Therm. Fluid Sci.
**1996**, 12, 426–432. [Google Scholar] [CrossRef] - Ranut, P.; Nobile, E.; Mancini, L. High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams. Appl. Therm. Eng.
**2014**, 69, 230–240. [Google Scholar] [CrossRef] - Maskery, I.; Sturm, L.; Aremu, A.O.; Panesar, A.; Williams, C.B.; Tuck, C.J.; Wildman, R.D.; Ashcroft, I.A.; Hague, R.J.M. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer
**2018**, 152, 62–71. [Google Scholar] [CrossRef] - Iasiello, M.; Cunsolo, S.; Bianco, N.; Chiu, W.K.S.; Naso, V. Developing thermal flow in open-cell foams. Int. J. Therm. Sci.
**2017**, 111, 129–137. [Google Scholar] [CrossRef] - Wu, Z.; Caliot, C.; Flamant, G.; Wang, Z. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. Int. J. Heat Mass Transf.
**2011**, 54, 1527–1537. [Google Scholar] [CrossRef]

**Figure 3.**Creation of the gyroid from the unit surface (

**a**) to the metal foam structure (

**b**) and the fluid volume (

**c**).

**Figure 5.**Streamlines for the case $\mathrm{Re}=3.6$ on three planes $y/H=1/3$ (

**a**) $y/H=1/2$ (

**b**) and $y/H=2/3$ (

**c**).

**Figure 6.**Streamlines for the case $\mathrm{Re}=3.6$ on three planes $z/W=1/3$ (

**a**) $z/W=1/2$ (

**b**) and $z/W=2/3$ (

**c**).

**Figure 7.**Velocity distribution on different sections of the metal foam for the case $\mathrm{Re}=21.6$. Sections $x/L=4/7$ (

**a**) $x/L=5/7$ (

**b**) and $x/L=6/7$ (

**c**).

**Figure 8.**Pressure distribution for the case $\mathrm{Re}=3.6$ on three planes $y/H=1/3$ (

**a**) $y/H=1/2$ (

**b**) and $y/H=2/3$ (

**c**).

**Figure 10.**Temperature distribution obtained for the case $\mathrm{Re}=3.6$, ${T}_{s}=50$ °C on the planes $z/W=1/3$ (

**a**) and $z/W=2/3$ (

**b**).

**Figure 11.**Temperature distribution obtained on the plane $z/W=1/3$ for the cases $\mathrm{Re}=3.6$ (

**a**), $\mathrm{Re}=7.2$ (

**b**), $\mathrm{Re}=10.8$ (

**c**), $\mathrm{Re}=14.4$ (

**d**). For all the cases, ${T}_{s}=50$ °C.

**Figure 12.**Comparison of the volumetric heat transfer coefficient obtained in the present paper with Wu et al. correlation [30].

Inlet Velocity (m/s) | ${\mathit{h}}_{\mathit{I}}$ (W/(m^{2} K)) | h (W/(m^{3} K)) |
---|---|---|

0.001 | 15.0 | 3.038 $\times {10}^{4}$ |

0.002 | 36.0 | 7.290 $\times {10}^{4}$ |

0.003 | 48.1 | 9.720 $\times {10}^{4}$ |

0.004 | 60.0 | 1.215 $\times {10}^{5}$ |

0.005 | 68.4 | 1.385 $\times {10}^{5}$ |

0.006 | 76.8 | 1.555 $\times {10}^{5}$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pulvirenti, B.; Celli, M.; Barletta, A.
Flow and Convection in Metal Foams: A Survey and New CFD Results. *Fluids* **2020**, *5*, 155.
https://doi.org/10.3390/fluids5030155

**AMA Style**

Pulvirenti B, Celli M, Barletta A.
Flow and Convection in Metal Foams: A Survey and New CFD Results. *Fluids*. 2020; 5(3):155.
https://doi.org/10.3390/fluids5030155

**Chicago/Turabian Style**

Pulvirenti, Beatrice, Michele Celli, and Antonio Barletta.
2020. "Flow and Convection in Metal Foams: A Survey and New CFD Results" *Fluids* 5, no. 3: 155.
https://doi.org/10.3390/fluids5030155