Density, Viscosity and Free Energy of Activation for Viscous Flow of Monoethanol Amine (1) + H2O (2) + CO2 (3) Mixtures
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and CO2 Loading Analysis
2.2. Density Measurements
2.3. Viscosity Measurements
3. Experimental Uncertainty
4. Results and Discussion
4.1. Density of MEA (1) + H2O (2) + CO2 (3) Mixtures
4.2. Viscosity of MEA (1) + H2O (2) + CO2 (3) Mixtures
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, J.; Jin, J.; Eimer, D.A.; Melaaen, M.C. Density of water (1) + Monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and surface tension of water (1) + Monoethanolamine (2) from (303.15 to 333.15) K. J. Chem. Eng. Data 2012, 57, 1095–1103. [Google Scholar] [CrossRef]
- Nwaoha, C.; Saiwan, C.; Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Rongwong, W.; Al-Marri, M.J.; Benamor, A. Carbon dioxide (CO2) capture performance of aqueoustri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). Int. J. Greenh. Gas Control 2016, 53, 292–304. [Google Scholar] [CrossRef]
- Kidnay, A.J.; Parrish, W.R. Fundamentals of Natural Gas Processing; Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Maham, Y.; Teng, T.T.; Hepler, L.G.; Mather, A.E. Densities, excess molar volumes, and partial molar volumes for binary mixtures of Water with Monoethanolamine, Diethnolamine, and Triethanolamine from 25 to 80 °C. J. Solut. Chem. 1994, 23, 195–205. [Google Scholar] [CrossRef]
- Yang, F.; Wang, X.; Wang, W.; Liu, Z. Densities and excess properties of primary amines in alcoholic solutions. J. Chem. Eng. Data 2013, 58, 785–791. [Google Scholar] [CrossRef]
- Amundsen, T.G.; Øi, L.E.; Eimer, D.A. Density and viscosity of monoethanolamine + water + carbon dioxide from (25 to 80) °C. J. Chem. Eng. Data 2009, 54, 3096–3100. [Google Scholar] [CrossRef]
- Jayarathna, S.A.; Jayarathna, C.K.; Kottage, D.A.; Dayarathna, S.; Eimer, D.A.; Melaaen, M.C. Density and surface tension measurement of partially carbonated aqueous monoethanolamine solutions. J. Chem. Eng. Data 2013, 58, 343–348. [Google Scholar] [CrossRef]
- Jayarathna, S.; Weerasooriya, A.; Dayarathna, S.; Eimer, D.A.; Melaaen, M.C. Densities and surface tensions of CO2 loaded aqueous monoethanolamine solution with r = (0.2 to 0.7) at T = (303.15 to 333.15) K. J. Chem. Eng. Data 2013, 58, 986–992. [Google Scholar] [CrossRef]
- Weiland, R.H.; Dingman, J.C.; Cronin, D.B.; Browning, G.J. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. J. Chem. Eng. Data 1998, 43, 378–382. [Google Scholar] [CrossRef]
- Hartono, A.; Mba, E.O.; Svendsen, H.F. Physical properties of partially CO2 loaded aqueous monoethanolamine (MEA). J. Chem. Eng. Data 2014, 59, 1808–1816. [Google Scholar] [CrossRef]
- Arachchige, U.S.P.R.; Aryal, N.; Eimer, D.A.; Melaaen, M.C. Viscosities of pure and aqueous solutions of Monoethanolamine (MEA), Diethanolamine (DEA), and N-Methyldiethanolamine (MDEA). In Proceedings of the Annual Transactions of the Nordic Rheology Society, Copenhagen, Demark, 12–14 June 2013. [Google Scholar]
- Hsu, C.-H.; Li, M.-H. Viscosities of Aqueous Blended Amines. J. Chem. Eng. Data 1997, 42, 714–720. [Google Scholar] [CrossRef]
- Versteeg, G.F.; Van Swaaij, W.P.M. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. J. Chem. Eng. Data 1988, 33, 29–34. [Google Scholar] [CrossRef]
- Aronu, U.E.; Hartono, A.; Svendsen, H.F. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions. J. Chem. Thermodyn. 2012, 45, 90–99. [Google Scholar] [CrossRef]
- McAllister, R.A. The viscosity of liquid mixtures. AIChE. J. 1960, 6, 427–431. [Google Scholar] [CrossRef]
- Redlich, O.; Kister, A.T. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948, 40, 345–348. [Google Scholar] [CrossRef]
- Islam, M.N.; Islam, M.M.; Yeasmin, M.N. Viscosity of aqueous solution of 2-methoxyethanol, 2-ethoxyethanol, and ethanolamine. J. Chem. Thermodyn. 2004, 36, 889–893. [Google Scholar] [CrossRef]
- Eyring, H. Viscosity, Plasticity, and Diffusion as example of absolute reaction rates. J. Chem. Phys. 1936, 4, 283–291. [Google Scholar] [CrossRef]
- JCGM. Evaluation of measurement data—Supplement 1 to the Guide to the Expression of Uncertainty In Measurement—Propagation of Distributions Using a Monte Carlo Method. In JCGM 101: 2008; JCGM: Sevres, France, 2008. [Google Scholar]
- Ellison, S.L.R.; Williams, A. Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, 3rd ed.; 2012; Available online: http://www.eurachem.org (accessed on 15 November 2019).
- Nhaesi, A.H. A Study of the Predictive Models for the Viscosity of Multi-Component Liquid Regular Solutions. Ph.D. Thesis, University of Windsor, Windsor, UK, 1998. Available online: https://core.ac.uk/download/pdf/72774384.pdf (accessed on 15 November 2019).
- Macías-Salinas, R.; Aquino-Olivos, M.A.; García-Sánchez, F. Viscosity modelling of reservoir fluids over wide temperature and pressure ranges. Chem. Eng. Trans. 2013, 32, 1573–1578. [Google Scholar] [CrossRef]
- Korson, L.; Hansen, W.D.; Millero, F.J. Viscosity of water at various temperatures. J. Phys. Chem. 1969, 73, 34–39. [Google Scholar] [CrossRef]
- Kestin, J.; Sokolov, M.; Wakeham, W.A. Viscosity of liquid water in the range −8 °C to 150 °C. J. Phys. Chem. Ref. Data 1978, 7, 941–948. [Google Scholar] [CrossRef]
- Karunarathne, S.S.; Eimer, D.A.; Øi, L.E. Evaluation of systematic error and uncertainty of viscosity measurements of mixtures of monoethanol amine and water in coaxial cylinder rheometers. Int. J. Model. Optim. 2018, 8, 260–265. [Google Scholar] [CrossRef]
- Idris, Z.; Kummamuru, N.B.; Eimer, D.A. Viscosity measurement of unloaded and CO2-loaded aqueous monoethanolamine at higher concentrations. J. Mol. Liq. 2017, 243, 638–645. [Google Scholar] [CrossRef]
- Hartono, A.; Svendsen, H.F. Density, viscosity, and excess properties of aqueous solution of diethylenetriamine (DETA). J. Chem. Thermodyn. 2009, 41, 973–979. [Google Scholar] [CrossRef]
- Maham, Y.; Liew, C.N.; Mather, A.E. Viscosities and Excess Properties of Aqueous Solutions of Ethanolamines from 25 to 80 °C. J. Solut. Chem. 2002, 31, 743–756. [Google Scholar] [CrossRef]
- Heric, E.L.; Brewer, J.G. Viscosity of some binary liquid nonelectrolyte mixtures. J. Chem. Eng. Data 1967, 12, 574–583. [Google Scholar] [CrossRef]
- Mahajan, A.R.; Mirgane, S.R. Excess molar volumes and viscosities for the binary mixtures of n-Octane, n-Decane, n-Dodecane, and n-Tetradecane with Octan-2-ol at 298.15 K. J. Thermodyn. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Idris, Z.; Kummamuru, N.B.; Eimer, D.A. Viscosity measurement and correlation of unloaded and CO2 loaded 3-Amino-1-propanol solution. J. Chem. Eng. Data 2018, 63, 1454–1459. [Google Scholar] [CrossRef]
- Stec, M.; Spietz, T.; Wieclaw-Solny, L.; Tatarczuk, A.; Wilk, A.; Sobolewski, A. Density of unloaded and CO2-loaded aqueous solutions of piperazine and 2-amino-2-methyl-1-propanol and their mixtures from 293.15 to 333.15 K. Phys. Chem. Liq. 2015, 54, 475–486. [Google Scholar] [CrossRef]
- Matin, N.S.; Remias, J.E.; Liu, K. Application of electrolyte-NRTL model for prediction of the viscosity of carbon dioxide loaded aqueous amine solutions Ind. Eng. Chem. Res 2013, 52, 16979–16984. [Google Scholar] [CrossRef]
- Perticaroli, S.; Mostofian, B.; Ehlers, G.; Neuefeind, J.C.; Diallo, S.O.; Stanley, C.B.; Daemen, L.; Egami, T.; Katsaras, J.; Cheng, X.; et al. Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Phys. Chem. Chem. Phys. 2017, 19, 25859–25869. [Google Scholar] [CrossRef]










| Chemical Name | CAS Reg. No. | Mole Fraction Purity a | Source | Purification |
|---|---|---|---|---|
| monoethanol amine (MEA) | 141-43-5 | ≥0.995 (GC b) | Sigma–Aldrich | no |
| carbon dioxide (CO2) | 124-38-9 | 0.99999 | AGA Norge AS | no |
| nitrogen (N2) | 7727-37-9 | 0.99999 | AGA Norge AS | no |
| sodium hydroxide (NaOH) | 1310-73-2 | - | Merck KGaA | no |
| hydrochloric acid (HCl) | 7647-01-0 | - | Merck KGaA | no |
| barium chloride dihydrate (BaCl2·2H2O) | 10326-27-9 | ≥0.99 | Merck KGaA | no |
| T/K | No. Points | Parameters | |
|---|---|---|---|
| 0.3–0.9 | 293.15–363.15 | 56 | = 683.5 |
| = 1.344 × 105 | |||
| = −1.089 × 104 | |||
| = 145.2 | |||
| = 567.9 | |||
| AARD (%) | 0.12 | ||
| AMD (kg·m−3) | 3.45 | ||
| Measured Density ρ/kg·m−3 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| 293.15 K | 303.15 K | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | 363.15 K | ||
| 0.3 | 0.1122 | 1012.6 1012.68 d | 1008.2 1008.4 b 1008.31 d 1008.2 e | 1003.3 1003.3 b 1003.4 c 1003.45 d 1003.3 e | 997.9 998.1 b 998.1 c 998.07 d 998.1 e | 991.6 992.3 b 992.23 d 992.3 e | 986.0 986.1 b 985.8 c 985.96 d | 979.4 979.4 b 979.4 c 979.27 d | 972.3 972.5 b |
| 0.4 | 0.1643 | 1018.4 | 1013.3 1013.8 b 1013.3 e | 1007.8 1008.3 b 1007.7 c 1007.8 e | 1001.8 1002.3 b 1001.8 c 1002.1 e | 995.5 996.1 b 995.7 e | 988.9 989.4 b 988.9 c | 981.9 982.4 b 981.9 c | 974.6 975.0 b |
| 0.5 | 0.2278 | 1023.6 | 1017.8 1018.2 b 1017.8 e | 1011.6 1012.1 b 1011.7 c 1011.8 e | 1005.2 1005.6 b 1005.3 c 1005.4 e | 998.4 999.0 b 998.7 e | 991.4 991.9 b 991.5 c | 984.1 984.5 b 984.2 c | 976.4 976.9 b |
| 0.6 | 0.3067 | 1027.7 | 1021.2 1021.4 b 1021.3 e | 1014.5 1014.7 b 1014.6 e | 1007.6 1007.8 b 1007.8 e | 1000.4 1000.7 b 1000.6 e | 993.0 993.2 b | 985.4 985.6 b | 977.4 977.7 b |
| 0.7 | 0.4077 | 1029.3 | 1022.4 1022.8 b 1022.6 e | 1015.2 1015.7 b 1015.5 c 1015.5 e | 1007.9 1008.3 b 1008.2 c 1008.2 e | 1000.4 1000.8 b 1000.6 e | 992.7 993.1 b 993.0 c | 984.8 985.2 b 985.0 c | 976.4 977.1 b |
| 0.8 | 0.5412 | 1028.1 | 1020.8 1021.0 b | 1013.3 1013.5 b | 1005.7 1005.9 b | 997.9 998.2 b | 990.0 990.2 b | 981.9 982.1 b | 973.6 973.9 b |
| 0.9 | 0.7264 | 1023.5 | 1015.8 1016.2 b | 1008.1 1008.5 b 1008.4 c | 1000.3 1000.6 b 1000.6 c | 992.4 992.7 b | 984.3 984.6 b 984.6 c | 976.1 976.5 b 976.4 c | 967.8 968.1 b |
| 1 | 1.0000 | 1015.9 | 1008.1 1008.0 b | 1000.1 1000.0 b 1000.3 c | 992.1 992.0 b 992.3 c | 984.0 983.9 b | 975.9 975.8 b 976.0 c | 967.6 967.5 b 967.8 c | 959.3 959.2 b |
| 293.15 K | 303.15 K | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | ||
|---|---|---|---|---|---|---|---|---|
| 0.0000 | 0.000 | 1012.6 | 1008.2 | 1003.3 | 997.9 | 991.6 | 986.0 | 979.4 |
| 0.0105 | 0.095 | 1032.0 | 1027.6 | 1022.8 | 1017.4 | 1011.6 | 1005.1 | 995.5 |
| 0.0193 | 0.175 | 1052.5 | 1048.1 | 1043.3 | 1038.1 | 1032.4 | 1026.4 | 1020.1 |
| 0.0355 | 0.328 | 1077.8 | 1073.4 | 1068.6 | 1063.4 | 1057.9 | 1052.0 | 1044.1 |
| 0.0476 | 0.445 | 1103.3 | 1097.7 | 1092.8 | 1087.6 | 1082.1 | 1075.7 | 1069.3 |
| 0.0574 | 0.543 | 1123.1 | 1118.4 | 1113.4 | 1107.9 | |||
| 0.0000 | 0.000 | 1018.4 | 1013.3 | 1007.8 | 1001.9 | 995.5 | 988.9 | 981.9 |
| 0.0170 | 0.105 | 1045.6 | 1040.7 | 1035.3 | 1029.6 | 1023.6 | 1017.3 | 1010.6 |
| 0.0341 | 0.215 | 1073.4 | 1068.5 | 1063.3 | 1057.8 | 1051.9 | 1045.8 | 1039.4 |
| 0.0507 | 0.325 | 1102.0 | 1097.2 | 1092.0 | 1086.5 | 1080.8 | 1074.9 | 1068.6 |
| 0.0669 | 0.436 | 1130.3 | 1125.4 | 1120.2 | 1114.7 | 1109.2 | 1103.2 | 1097.0 |
| 0.0826 | 0.548 | 1155.5 | 1150.4 | 1145.1 | 1139.5 | |||
| 0.0000 | 0.000 | 1023.6 | 1017.8 | 1011.6 | 1005.2 | 998.4 | 991.4 | 984.1 |
| 0.0205 | 0.092 | 1052.3 | 1046.7 | 1040.9 | 1034.7 | 1028.3 | 1021.7 | 1014.8 |
| 0.0406 | 0.186 | 1082.4 | 1077.0 | 1071.4 | 1065.5 | 1059.4 | 1053.0 | 1046.4 |
| 0.0620 | 0.290 | 1112.7 | 1107.4 | 1101.9 | 1096.2 | 1090.3 | 1084.2 | 1077.9 |
| 0.0825 | 0.395 | 1144.5 | 1139.2 | 1133.8 | 1128.3 | 1122.5 | 1116.6 | 1110.5 |
| 0.1013 | 0.495 | 1175.7 | 1170.4 | 1165.0 | 1159.4 | 1153.6 | 1147.5 | |
| Parameters | |||
|---|---|---|---|
| 0.6802 | 0.7731 | 0.7506 | |
| 0.001951 | 0.001354 | 0.001494 | |
| −2.97 × 10−6 | −2.015 × 10−6 | −2.237 × 10−6 | |
| 2.346 | 2.164 | 2.015 | |
| AARD (%) | 0.15 | 0.08 | 0.15 |
| AMD (kg·m−3) | 4.2 | 2 | 3.8 |
| T/K | Parameters | |
|---|---|---|
| 0–1 | 298.15–363.15 | = 16.2 |
| = −0.03473 | ||
| = −4.853 | ||
| = 0.008315 | ||
| = −6.433 | ||
| = 0.02065 | ||
| R2 = 0.998 | ||
| /mPa·s | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| 293.15 K | 303.15 K | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | 363.15 K | ||
| 0.3 | 0.1122 | 2.836 2.874 b 2.879 b | 2.109 2.133 b 2.130 b | 1.628 1.628 b 1.638 b 1.67 c | 1.290 1.305 b 1.318 b 1.33 c | 1.046 1.055 b 1.067 b | 0.866 0.878 b 0.874 b 0.92 c | 0.740 0.742 b 0.740 b 0.77 c | 0.687 |
| 0.4 | 0.1643 | 4.285 | 3.080 | 2.305 2.28 c | 1.782 1.75 c | 1.417 | 1.154 1.14 c | 0.960 0.95 c | 0.808 |
| 0.5 | 0.2278 | 6.610 | 4.580 4.69 d | 3.310 3.39 c 3.37 d | 2.454 2.54 c 2.53 d | 1.915 1.94 d | 1.528 1.57 c 1.54 d | 1.243 1.28 c 1.26 d | 1.029 1.05 d |
| 0.6 | 0.3067 | 10.217 | 6.769 6.92 d | 4.736 4.77 d | 3.444 3.45 d | 2.602 2.62 d | 2.031 2.04 d | 1.620 1.62 d | 1.319 1.34 d |
| 0.7 | 0.4077 | 15.348 | 9.823 9.89 d | 6.664 6.96 c 6.69 d | 4.720 4.94 c 4.76 d | 3.461 3.49 d | 2.615 2.79 c 2.63 d | 2.029 2.18 c 2.04 d | 1.616 1.63 d |
| 0.8 | 0.5412 | 20.521 | 12.840 13.38 d | 8.534 8.82 d | 5.937 6.11 d | 4.295 4.41 d | 3.217 3.26 d | 2.483 2.49 d | 1.962 1.97 d |
| 0.9 | 0.7264 | 24.027 | 14.963 15.12 d | 9.879 10.20 c 9.95 d | 6.829 7.06 c 6.88 d | 4.936 4.94 d | 3.683 3.81 c 3.67 d | 2.832 2.93 c 2.82 d | 2.222 2.23 d |
| 1 | 1.0000 | 23.376 | 14.748 14.77 d | 10.108 9.61 c 9.84 d | 6.935 6.72 c 6.87 d | 5.067 4.98 d | 3.834 3.69 c 3.72 d | 2.974 2.85 c 2.85 d | 2.364 2.26 d |
| Source (s) | No. Parameters | AARD (%) | AMD (mPa·s) |
|---|---|---|---|
| This work | 6 | 1.4 | 0.79 |
| Hartono, et al. [10] | 4 | 2.4 | 0.66 |
| Arachchige, et al. [11] | 7 | 3.5 | 1.1 |
| Islam, et al. [17] | 4 | 5.1 | 0.59 |
| (η/mPa·s) | ||||||||
|---|---|---|---|---|---|---|---|---|
| 293.15 K | 303.15 K | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | ||
| 0.0000 | 0.000 | 2.836 | 2.109 | 1.628 | 1.290 | 1.046 | 0.866 | 0.740 |
| 0.0105 | 0.095 | 3.103 | 2.305 | 1.768 | 1.397 | 1.128 | 0.937 | 0.788 |
| 0.0193 | 0.175 | 3.338 | 2.476 | 1.910 | 1.511 | 1.228 | 1.021 | 0.865 |
| 0.0355 | 0.328 | 3.730 | 2.764 | 2.138 | 1.699 | 1.384 | 1.152 | 0.977 |
| 0.0476 | 0.445 | 4.164 | 3.105 | 2.403 | 1.913 | 1.562 | 1.308 | 1.118 |
| 0.0574 | 0.543 | 4.515 | 3.360 | 2.602 | 2.064 | 1.680 | 1.403 | 1.191 |
| 0.0000 | 0.000 | 4.285 | 3.080 | 2.305 | 1.782 | 1.417 | 1.154 | 0.960 |
| 0.0170 | 0.105 | 4.793 | 3.423 | 2.567 | 1.985 | 1.590 | 1.302 | 1.090 |
| 0.0341 | 0.215 | 5.524 | 3.944 | 2.968 | 2.308 | 1.851 | 1.526 | 1.286 |
| 0.0507 | 0.325 | 6.496 | 4.655 | 3.502 | 2.726 | 2.198 | 1.813 | 1.524 |
| 0.0669 | 0.436 | 7.639 | 5.442 | 4.084 | 3.177 | 2.556 | 2.111 | 1.781 |
| 0.0826 | 0.548 | 8.820 | 6.203 | 4.614 | 3.544 | 2.821 | 2.302 | 1.917 |
| 0.0000 | 0.000 | 6.610 | 4.580 | 3.310 | 2.454 | 1.915 | 1.528 | 1.243 |
| 0.0205 | 0.092 | 7.859 | 5.378 | 3.926 | 2.955 | 2.303 | 1.838 | 1.493 |
| 0.0406 | 0.186 | 9.518 | 6.529 | 4.756 | 3.594 | 2.813 | 2.269 | 1.866 |
| 0.0620 | 0.290 | 11.611 | 7.904 | 5.710 | 4.291 | 3.328 | 2.667 | 2.190 |
| 0.0825 | 0.395 | 14.854 | 10.073 | 7.247 | 5.422 | 4.227 | 3.409 | 2.809 |
| 0.1013 | 0.495 | 19.348 | 12.841 | 9.068 | 6.678 | 5.169 | 4.118 | 3.365 |
| T/K | Parameters | w1 = 0.5 | ||
|---|---|---|---|---|
| 298.15–343.15 | d1 | 4.536 | 2.554 | 8.533 |
| 0.006765 | 0.01205 | −0.0037 | ||
| 12.08 | 19.46 | 17.79 | ||
| AARD (%) | 0.58 | 1.13 | 1.25 | |
| AMD (mPa·s) | 0.03 | 0.22 | 1.04 | |
| T/K | 293.15 | 303.15 | 313.15 | 323.15 | 333.15 | 343.15 | 353.15 | |
|---|---|---|---|---|---|---|---|---|
| 0.3 | 0.0000 | 12.375 | 12.062 | 11.798 | 11.564 | 11.358 | 11.177 | 11.060 |
| 0.0105 | 12.571 | 12.262 | 11.988 | 11.753 | 11.539 | 11.376 | 11.222 | |
| 0.0193 | 12.721 | 12.413 | 12.159 | 11.931 | 11.740 | 11.583 | 11.451 | |
| 0.0355 | 12.970 | 12.667 | 12.428 | 12.220 | 12.044 | 11.900 | 11.783 | |
| 0.0476 | 13.210 | 12.931 | 12.702 | 12.507 | 12.347 | 12.228 | 12.150 | |
| 0.0574 | 13.382 | 13.105 | 12.883 | 12.685 | ||||
| 0.4 | 0.0000 | 13.595 | 13.240 | 12.936 | 12.674 | 12.448 | 12.255 | 12.094 |
| 0.0170 | 13.835 | 13.471 | 13.179 | 12.924 | 12.726 | 12.556 | 12.419 | |
| 0.0341 | 14.148 | 13.793 | 13.521 | 13.291 | 13.105 | 12.965 | 12.860 | |
| 0.0507 | 14.509 | 14.175 | 13.914 | 13.698 | 13.540 | 13.413 | 13.312 | |
| 0.0669 | 14.870 | 14.534 | 14.278 | 14.072 | 13.919 | 13.807 | 13.725 | |
| 0.0826 | 15.194 | 14.837 | 14.568 | 14.337 | ||||
| 0.5 | 0.0000 | 14.891 | 14.489 | 14.137 | 13.802 | 13.560 | 13.344 | 13.148 |
| 0.0205 | 15.275 | 14.853 | 14.538 | 14.255 | 14.022 | 13.819 | 13.631 | |
| 0.0406 | 15.701 | 15.299 | 14.992 | 14.733 | 14.526 | 14.366 | 14.230 | |
| 0.0620 | 16.147 | 15.741 | 15.426 | 15.165 | 14.945 | 14.779 | 14.648 | |
| 0.0825 | 16.707 | 16.309 | 16.002 | 15.747 | 15.559 | 15.427 | 15.325 | |
| 0.1013 | 17.311 | 16.879 | 16.543 | 16.262 | 16.069 | 15.918 | ||
| ΔH*/kJ·mol−1 | |||
|---|---|---|---|
| 0.3 | 0.0000 | 18.834 | 22.301 |
| 0.0105 | 19.150 | 22.696 | |
| 0.0193 | 18.902 | 21.360 | |
| 0.0355 | 18.716 | 19.895 | |
| 0.0476 | 18.400 | 18.003 | |
| 0.0574 | 20.173 | 23.234 | |
| 0.4 | 0.0000 | 20.897 | 25.215 |
| 0.0170 | 20.688 | 23.742 | |
| 0.0341 | 20.377 | 21.642 | |
| 0.0507 | 20.266 | 20.026 | |
| 0.0669 | 20.379 | 19.209 | |
| 0.0826 | 23.540 | 28.578 | |
| 0.5 | 0.0000 | 23391 | 29.339 |
| 0.0205 | 23147 | 27.247 | |
| 0.0406 | 22773 | 24.566 | |
| 0.0620 | 23389 | 25.142 | |
| 0.0825 | 23381 | 23.248 | |
| 0.1013 | 25441 | 28.114 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karunarathne, S.S.; Eimer, D.A.; Øi, L.E. Density, Viscosity and Free Energy of Activation for Viscous Flow of Monoethanol Amine (1) + H2O (2) + CO2 (3) Mixtures. Fluids 2020, 5, 13. https://doi.org/10.3390/fluids5010013
Karunarathne SS, Eimer DA, Øi LE. Density, Viscosity and Free Energy of Activation for Viscous Flow of Monoethanol Amine (1) + H2O (2) + CO2 (3) Mixtures. Fluids. 2020; 5(1):13. https://doi.org/10.3390/fluids5010013
Chicago/Turabian StyleKarunarathne, Sumudu S., Dag A. Eimer, and Lars E. Øi. 2020. "Density, Viscosity and Free Energy of Activation for Viscous Flow of Monoethanol Amine (1) + H2O (2) + CO2 (3) Mixtures" Fluids 5, no. 1: 13. https://doi.org/10.3390/fluids5010013
APA StyleKarunarathne, S. S., Eimer, D. A., & Øi, L. E. (2020). Density, Viscosity and Free Energy of Activation for Viscous Flow of Monoethanol Amine (1) + H2O (2) + CO2 (3) Mixtures. Fluids, 5(1), 13. https://doi.org/10.3390/fluids5010013

