Magnetic Ionogel and Its Applications
Abstract
:1. Introduction
2. Categorization of Ionogels
3. Magnetically Modified Ionogels (MIGs)
4. Applications of MIGs
5. Toxicity of Ionogels
6. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Datta, P. Magnetic gels. In Polymeric Gels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 441–465. [Google Scholar]
- Awasthi, S. A review on hydrogels and ferrogels for biomedical applications. JOM 2021, 73, 2440–2451. [Google Scholar]
- Dinislamova, O.A.; Bugayova, A.V.; Shklyar, T.F.; Safronov, A.P.; Blyakhman, F.A. Echogenic advantages of ferrogels filled with magnetic sub-microparticles. Bioengineering 2021, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Idumah, C.I. Recently emerging trends in magnetic polymer hydrogel nanoarchitectures. Polym.-Plast. Technol. Mater. 2022, 61, 1039–1070. [Google Scholar] [CrossRef]
- Zrinyi, M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym. Sci. 2000, 278, 98–103. [Google Scholar] [CrossRef]
- Szabo, D.; Szeghy, G.; Zrinyi, M. Shape transition of magnetic field sensitive polymer gels. Macromolecules 1998, 31, 6541–6548. [Google Scholar]
- Hernández, R.; Sarafian, A.; López, D.; Mijangos, C. Viscoelastic properties of poly(vinyl alcohol) hydrogels and ferrogels obtained through freezing–thawing cycles. Polymer 2004, 45, 5543–5549. [Google Scholar] [CrossRef]
- Marcus, M.; Karni, M.; Baranes, K.; Levy, I.; Alon, N.; Margel, S.; Shefi, O. Iron oxide nanoparticles for neuronal cell applications: Uptake study and magnetic manipulations. J. Nanobiotechnology 2016, 14, 37. [Google Scholar]
- Ziv-Polat, O.; Skaat, H.; Shahar, A.; Margel, S. Novel magnetic fibrin hydrogel scaffolds containing thrombin and growth factors conjugated iron oxide nanoparticles for tissue engineering. Int. J. Nanomed. 2012, 7, 1259–1274. [Google Scholar] [CrossRef]
- Corem-Salkmon, E.; Ram, Z.; Daniels, D.; Perlstein, B.; Last, D.; Salomon, S.; Tamar, G.; Shneor, R.; Guez, D.; Margel, S. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int. J. Nanomed. 2011, 6, 1595–1602. [Google Scholar]
- Ganguly, S.; Neelam; Grinberg, I.; Margel, S. Layer by layer controlled synthesis at room temperature of tri-modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applications. Polym. Adv. Technol. 2021, 32, 3909–3921. [Google Scholar]
- Xu, F. Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere 2018, 212, 662–677. [Google Scholar] [CrossRef]
- Goiti, E.; Salinas, M.; Arias, G.; Puglia, D.; Kenny, J.M.; Mijangos, C. Effect of magnetic nanoparticles on the thermal properties of some hydrogels. Polym. Degrad. Stab. 2007, 92, 2198–2205. [Google Scholar]
- Lawrence, M.B.; Rao, R. Structure of water in poly (vinyl alcohol)-based ferrogels: Effect of carbonyl iron concentration. J. Polym. Res. 2023, 30, 94. [Google Scholar]
- Saravanan, P.; Gnana, M.E.U.; Manoj, A.K.; Raja, S.B.; Srivastav, P.P. Gelation: Organogel, Aerogel, Hydrogel, Xerogel, Cryogel, Oleogel, and Oleofoam. In Structured Foods; CRC Press: Boca Raton, FL, USA, 2024; pp. 92–131. [Google Scholar]
- Zhang, G.; Luo, J.; Sun, M.; Yu, Y.; Wang, J.; Chen, B.; Ouyang, Q.; Qiu, Y.; Chen, G.; Shen, T. Effect of soft magnetic particles content on multi-physics field of magnetorheological composite gel clutch with complex flow channel excited by Halbach array arrangement. Compos. Part A Appl. Sci. Manuf. 2025, 188, 108576. [Google Scholar]
- Mao, Y.; Zhang, Y.; Li, T.; Chen, Y.; Wang, Z.; Jin, W.; Shen, W.; Li, J. Insight into the mechanism of gel properties, microstructure and flavor of surimi gels improved by wheat bran with different particle sizes. Food Res. Int. 2025, 201, 115601. [Google Scholar] [CrossRef] [PubMed]
- Sunaryono, S.; Hidayat, M.F.; Mufti, N.; Soontaranon, S.; Taufiq, A. The effect of Mn doping on nano structure and magnetic properties of MnXFe3-xO4-PEG/PVP/PVA based ferrogel. J. Polym. Res. 2020, 27, 284. [Google Scholar] [CrossRef]
- Attaran, A.; Brummund, J.; Wallmersperger, T. Development of a continuum model for ferrogels. J. Intell. Mater. Syst. Struct. 2017, 28, 1358–1375. [Google Scholar] [CrossRef]
- Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci. 2016, 83, 184–202. [Google Scholar] [CrossRef]
- Yuliantika, D.; Taufiq, A.; Hidayat, A.; Sunaryono; Hidayat, N.; Soontaranon, S. Exploring structural properties of cobalt ferrite nanoparticles from natural sand. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; p. 012047. [Google Scholar]
- Jun, Y.-W.; Seo, J.-W.; Cheon, J. Nanoscaling Laws of Magnetic Nanoparticles and Their Applicabilities in Biomedical Sciences. Acc. Chem. Res. 2008, 41, 179–189. [Google Scholar] [CrossRef]
- Singh, M.P.; Singh, R.K.; Chandra, S. Ionic liquids confined in porous matrices: Physicochemical properties and applications. Prog. Mater. Sci. 2014, 64, 73–120. [Google Scholar]
- Kusuma, V.A.; Macala, M.K.; Liu, J.; Marti, A.M.; Hirsch, R.J.; Hill, L.J.; Hopkinson, D. Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes. J. Membr. Sci. 2018, 545, 292–300. [Google Scholar]
- Zhang, S.; Zhang, Q.; Zhang, Y.; Chen, Z.; Watanabe, M.; Deng, Y. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog. Mater. Sci. 2016, 77, 80–124. [Google Scholar]
- Suen, J.W.; Elumalai, N.K.; Debnath, S.; Mubarak, N.M.; Lim, C.I.; Reddy, M.M. The role of interfaces in ionic liquid-based hybrid materials (ionogels) for sensing and energy applications. Adv. Mater. Interfaces 2022, 9, 2201405. [Google Scholar]
- Vlad, A.; Singh, N.; Galande, C.; Ajayan, P.M. Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 2015, 5, 1402115. [Google Scholar]
- Jiang, Q.; Zhang, M.; Mujumdar, A.S.; Chen, B. Effects of electric and magnetic field on freezing characteristics of gel model food. Food Res. Int. 2023, 166, 112566. [Google Scholar]
- Ganguly, S.; Margel, S. 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog. Polym. Sci. 2022, 131, 101574. [Google Scholar]
- De Paoli, V.M.; De Paoli Lacerda, S.H.; Spinu, L.; Ingber, B.; Rosenzweig, Z.; Rosenzweig, N. Effect of an oscillating magnetic field on the release properties of magnetic collagen gels. Langmuir 2006, 22, 5894–5899. [Google Scholar] [CrossRef]
- Ganguly, S.; Margel, S. Magnetic Polymeric Conduits in Biomedical Applications. Micromachines 2025, 16, 174. [Google Scholar] [CrossRef]
- Ganguly, S.; Margel, S. Fabrication and applications of magnetic polymer composites for soft robotics. Micromachines 2023, 14, 2173. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Margel, S.; Gedanken, A. Tailor made magnetic nanolights: Fabrication to cancer theranostics applications. Nanoscale Adv. 2021, 3, 6762–6796. [Google Scholar]
- Zhang, Y.-A.; Ma, K.; Chen, K.-Z.; Qiao, S.-L. Flexible wearable ionogels: Classification, fabrication, properties and applications. Sens. Actuators A Phys. 2024, 372, 115325. [Google Scholar] [CrossRef]
- Fan, X.; Liu, S.; Jia, Z.; Koh, J.J.; Yeo, J.C.C.; Wang, C.-G.; Surat’Man, N.E.; Loh, X.J.; Le Bideau, J.; He, C. Ionogels: Recent advances in design, material properties and emerging biomedical applications. Chem. Soc. Rev. 2023, 52, 2497–2527. [Google Scholar] [CrossRef] [PubMed]
- Kuddushi, M.; Xu, B.B.; Malek, N.; Zhang, X. Review of ionic liquid and ionogel-based biomaterials for advanced drug delivery. Adv. Colloid Interface Sci. 2024, 331, 103244. [Google Scholar] [CrossRef]
- Hopson, C.; Villar-Chavero, M.M.; Domínguez, J.C.; Alonso, M.V.; Oliet, M.; Rodriguez, F. Cellulose ionogels, a perspective of the last decade: A review. Carbohydr. Polym. 2021, 274, 118663. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Jia, X.; Wang, D.; Sun, X.; Liang, Q.; Tian, R.; Guo, L.; Yang, J.; Song, H. Stretchable ionogels: Recent advances in design, toughening mechanisms, material properties and wearable devices applications. Chem. Eng. J. 2024, 490, 151850. [Google Scholar] [CrossRef]
- Kopilovic, B.; e Silva, F.A.; Pedro, A.Q.; Coutinho, J.A.; Freire, M.G. Ionogels for Biomedical Applications. In Nanotechnology for Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 391–425. [Google Scholar]
- Clement, N.; Kandasubramanian, B. 3D printed ionogels in sensors. Polym.-Plast. Technol. Mater. 2023, 62, 632–654. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, B.; Ling, Z.; Liu, Q.; Fu, X.; Zhang, Y.; Zhang, R.; Hu, S.; Zhao, F.; Li, X. Advances in ionogels for proton-exchange membranes. Sci. Total Environ. 2024, 921, 171099. [Google Scholar] [CrossRef]
- Ratajczak, P.; Béguin, F. Ionogels with Carbon and Organic Polymer Matrices for Electrochemical Systems. Adv. Sustain. Syst. 2024, 8, 2400340. [Google Scholar] [CrossRef]
- Tripathi, A.K. Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery. Mater. Today Energy 2021, 20, 100643. [Google Scholar] [CrossRef]
- Hong, C.; Li, B.; Zhang, J.; Li, Y.; Sun, J. Supramolecular Polymer-Based Ionogels Enable Large-Scale Fabrication of Stable Smart Windows with Room-Temperature Closed-Loop Recyclability and Self-Healing Capability. Adv. Funct. Mater. 2024, 34, 2313781. [Google Scholar] [CrossRef]
- Flouda, P.; Bukharina, D.; Pierce, K.J.; Stryutsky, A.V.; Shevchenko, V.V.; Tsukruk, V.V. Flexible sustained ionogels with ionic hyperbranched polymers for enhanced ion-conduction and energy storage. ACS Appl. Mater. Interfaces 2022, 14, 27028–27039. [Google Scholar]
- Hu, B.; Tuokkola, A.; Dunn, B. Adapting sol-gel chemistry for ionogel solid electrolytes. J. Sol-Gel Sci. Technol. 2025, 113, 70–85. [Google Scholar]
- Le Bideau, J.; Viau, L.; Vioux, A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 2011, 40, 907–925. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Jing, R.; Jia, K.; Xu, H.; Luo, M.; Zhu, X.; Qing, X.; Wang, W.; Zhong, W.; Yang, L. Organic/Inorganic Hybrid Ionogel Fiber with Synergistically Enhanced Mechanical and Ionic Thermoelectric Performances. Adv. Funct. Mater. 2024, 35, 2415856. [Google Scholar]
- Na, W.; Lee, A.S.; Lee, J.H.; Hong, S.M.; Kim, E.; Koo, C.M. Hybrid ionogel electrolytes with POSS epoxy networks for high temperature lithium ion capacitors. Solid State Ion. 2017, 309, 27–32. [Google Scholar] [CrossRef]
- Zammali, M.; Liu, S.; Yu, W. A biomimetic skin-like sensor with multiple sensory capabilities based on hybrid ionogel. Sens. Actuators A Phys. 2021, 330, 112855. [Google Scholar]
- Li, X.; Li, S.; Zhang, Z.; Huang, J.; Yang, L.; Hirano, S.-i. High-performance polymeric ionic liquid–silica hybrid ionogel electrolytes for lithium metal batteries. J. Mater. Chem. A 2016, 4, 13822–13829. [Google Scholar]
- Wu, A.; Lu, F.; Sun, P.; Qiao, X.; Gao, X.; Zheng, L. Low-molecular-weight supramolecular ionogel based on host–guest interaction. Langmuir 2017, 33, 13982–13989. [Google Scholar]
- Shi, Y.; Wang, Y.; Gu, Y.; Zheng, L.; Ma, S.; Xu, X. Self-healable and stretchable ionogels serve as electrolytes and substrates for integrated all-in-one micro-supercapacitors. Chem. Eng. J. 2020, 392, 123645. [Google Scholar]
- Rizzo, C.; Marullo, S.; Campodonico, P.R.; Pibiri, I.; Dintcheva, N.T.; Noto, R.; Millan, D.; D’Anna, F. Self-sustaining supramolecular ionic liquid gels for dye adsorption. ACS Sustain. Chem. Eng. 2018, 6, 12453–12462. [Google Scholar]
- Minakuchi, N.; Hoe, K.; Yamaki, D.; Ten-No, S.; Nakashima, K.; Goto, M.; Mizuhata, M.; Maruyama, T. Versatile supramolecular gelators that can harden water, organic solvents and ionic liquids. Langmuir 2012, 28, 9259–9266. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xu, T.; Wang, B.; Mao, Z.; Sui, X.; Feng, X. Continuous fabrication of robust ionogel fibers for ultrastable sensors via dynamic reactive spinning. Chem. Eng. J. 2023, 455, 140796. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, B.; Mao, Z.; Sui, X.; Feng, X. Nonvolatile, stretchable and adhesive ionogel fiber sensor designed for extreme environments. Chem. Eng. J. 2022, 433, 133500. [Google Scholar] [CrossRef]
- Huang, J.; Yu, Z.; Wu, P. 3D Printing of Ionogels with Complementary Functionalities Enabled by Self-Regulating Ink. Adv. Sci. 2023, 10, 2302891. [Google Scholar] [CrossRef]
- Tian, F.; Yu, R.; Zuo, X.; Zhang, M.; Zhao, L.; Zhao, X.; Yang, X.; Zhang, Y.; Huang, W. Bioinspired 3D printed elastomer-hydrogel hybrid with robust interfacial bonding for flexible ionotronics. Chem. Eng. J. 2024, 489, 151164. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, H.; Gao, Z.; Song, H. Stretchable and thermo-mechanical stable ionogels with high thermoelectric properties for respiratory sensing and energy harvesting. Chem. Eng. J. 2024, 498, 155789. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, J.; Wang, C.; Gong, H.; Liu, W.; Cen, W.; Yuan, G.; Long, Y. 3D printing of dual cross-linked hydrogel for fingerprint-like iontronic pressure sensor. Smart Mater. Struct. 2021, 31, 015019. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, H.; Wang, J.; Cui, T.; Zhu, J.; Gui, Z. Unlocking intrinsic conductive dynamics of ionogel microneedle arrays as wearable electronics for intelligent fire safety. Adv. Fiber Mater. 2024, 6, 195–213. [Google Scholar] [CrossRef]
- Niu, C.; An, L.; Zhang, H. Mechanically Robust, Antifatigue, and Temperature-Tolerant Nanocomposite Ionogels Enabled by Hydrogen Bonding as Wearable Sensors. ACS Appl. Polym. Mater. 2022, 4, 4189–4198. [Google Scholar] [CrossRef]
- Xie, J.; Li, X.; Liu, J.; Su, F.; Gao, R.; Zhang, C.; Liang, J.; Ji, G.; Yao, D.; Zheng, Y. A transparent and robust ionogel prepared via phase separation for sensitive strain sensing. J. Mater. Chem. A 2024, 12, 16160–16173. [Google Scholar] [CrossRef]
- Xiang, S.; Zheng, F.; Chen, S.; Lu, Q. Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor. ACS Appl. Mater. Interfaces 2021, 13, 20653–20661. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Das, P.; Srinivasan, S.; Rajabzadeh, A.R.; Tang, X.S.; Margel, S. Superparamagnetic amine-functionalized maghemite nanoparticles as a thixotropy promoter for hydrogels and magnetic field-driven diffusion-controlled drug release. ACS Appl. Nano Mater. 2024, 7, 5272–5286. [Google Scholar] [CrossRef]
- Ganguly, S.; Margel, S. Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol. Adv. 2020, 44, 107611. [Google Scholar]
- Ganguly, S. Introduction to Magnetic Polymer Composites. In Magnetic Polymer Composites and Their Emerging Applications; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–22. [Google Scholar]
- Wang, Y.; Liu, Y.; Plamthottam, R.; Tebyetekerwa, M.; Xu, J.; Zhu, J.; Zhang, C.; Liu, T. Highly stretchable and reconfigurable ionogels with unprecedented thermoplasticity and ultrafast self-healability enabled by gradient-responsive networks. Macromolecules 2021, 54, 3832–3844. [Google Scholar]
- Nechausov, S.; Miriyev, A. 3D-Printable high-mixed-conductivity ionogel composites for soft multifunctional devices. Chem. Eng. J. 2024, 496, 153759. [Google Scholar] [CrossRef]
- Li, H.; Feng, Z.; Zhao, K.; Wang, Z.; Liu, J.; Liu, J.; Song, H. Chemically crosslinked liquid crystalline poly (ionic liquid) s/halloysite nanotubes nanocomposite ionogels with superior ionic conductivity, high anisotropic conductivity and a high modulus. Nanoscale 2019, 11, 3689–3700. [Google Scholar]
- Jayatissa, A.H. Applications of Nanocomposites; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- De Schutter, G.; Lesage, K. Active Rheology Control of Cementitious Materials; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Das, P.; Ganguly, S.; Marvi, P.K.; Sherazee, M.; Ahmed, S.R.; Tang, X.; Srinivasan, S.; Rajabzadeh, A.R. Borophene based 3D extrusion printed nanocomposite hydrogel for antibacterial and controlled release application. Adv. Funct. Mater. 2024, 34, 2314520. [Google Scholar]
- Yu, Z.; Bao, N.; Liu, H.; Zhou, X.; Yu, H.; Sun, Y.; Meng, D.; Zhu, L.; Aminov, N.; Li, H. Transparent, mechanically robust, adhesive, temperature-tolerant, and 3D printable nanocomposite ionogels for flexible sensors. ACS Appl. Mater. Interfaces 2023, 15, 51833–51845. [Google Scholar]
- Ziółkowski, B.; Bleek, K.; Twamley, B.; Fraser, K.J.; Byrne, R.; Diamond, D.; Taubert, A. Magnetic Ionogels (MagIGs) Based on Iron Oxide Nanoparticles, Poly (N-isopropylacrylamide), and the Ionic Liquid Trihexyl (tetradecyl) phosphonium Dicyanamide. Eur. J. Inorg. Chem. 2012, 2012, 5245–5251. [Google Scholar]
- Shojaee, S.; Azizi, N.; Mirjafary, Z.; Saeidian, H. Magnet-responsive choline carbomer ionogels as a versatile and recyclable catalyst for one-pot synthesis of benzopyran in water. Sci. Rep. 2023, 13, 21232. [Google Scholar]
- Mirmashhori, B.; Azizi, N.; Saidi, M.R. A simple, economical, and highly efficient synthesis of β-hydroxynitriles from epoxide under solvent free conditions. J. Mol. Catal. A Chem. 2006, 247, 159–161. [Google Scholar] [CrossRef]
- Yuan, Q.; Venkatasubramanian, R.; Hein, S.; Misra, R.D.K. A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater. 2008, 4, 1024–1037. [Google Scholar] [CrossRef]
- Xie, Z.-L.; Jeličić, A.; Wang, F.-P.; Rabu, P.; Friedrich, A.; Beuermann, S.; Taubert, A. Transparent, flexible, and paramagnetic ionogels based on PMMA and the iron-based ionic liquid 1-butyl-3-methylimidazolium tetrachloroferrate (III)[Bmim][FeCl4]. J. Mater. Chem. 2010, 20, 9543–9549. [Google Scholar] [CrossRef]
- Rotjanasuworapong, K.; Lerdwijitjarud, W.; Sirivat, A. Dual electro- and magneto-induced bending actuators of magnetite-loaded agarose ionogels. Carbohydr. Polym. 2023, 310, 120741. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, Y.; Yang, K.; Yin, X.; Ma, J.; Li, Z.; Sun, W.; Han, M. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins. Food Chem. 2019, 274, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Wulff, D.; Phan, C.-M.; Jones, L.W.; Tang, X.S. Injectable and 3D Extrusion Printable Hydrophilic Silicone-Based Hydrogels for Controlled Ocular Delivery of Ophthalmic Drugs. ACS Appl. Bio Mater. 2024, 7, 6286–6296. [Google Scholar] [CrossRef]
- Sun, J.; Lu, G.; Zhou, J.; Yuan, Y.; Zhu, X.; Nie, J. Robust Physically Linked Double-Network Ionogel as a Flexible Bimodal Sensor. ACS Appl. Mater. Interfaces 2020, 12, 14272–14279. [Google Scholar] [CrossRef]
- Santaniello, T.; Migliorini, L.; Yan, Y.; Lenardi, C.; Milani, P. Supersonic cluster beam fabrication of metal–ionogel nanocomposites for soft robotics. J. Nanoparticle Res. 2018, 20, 250. [Google Scholar] [CrossRef]
- Sun, L.; Huang, H.; Zhang, L.; Neisiany, R.E.; Ma, X.; Tan, H.; You, Z. Spider-Silk-Inspired Tough, Self-Healing, and Melt-Spinnable Ionogels. Adv. Sci. 2024, 11, 2305697. [Google Scholar] [CrossRef]
- Yang, L.; Sun, L.; Huang, H.; Zhu, W.; Wang, Y.; Wu, Z.; Neisiany, R.E.; Gu, S.; You, Z. Mechanically robust and room temperature self-healing ionogel based on ionic liquid inhibited reversible reaction of disulfide bonds. Adv. Sci. 2023, 10, 2207527. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Wang, T.; Shi, Z.; Wei, J.; Guo, Z.; Feng, Z.; Wang, Z. Ionogels, Promising Exploration for Flexible Optically Transparent Tunable All-Dielectric Electromagnetic Metamaterials. Adv. Mater. Technol. 2005, 10, 2401174. [Google Scholar]
- Xiong, J.; Duan, M.; Zou, X.; Gao, S.; Guo, J.; Wang, X.; Li, Q.; Li, W.; Wang, X.; Yan, F. Biocompatible Tough Ionogels with Reversible Supramolecular Adhesion. J. Am. Chem. Soc. 2024, 146, 13903–13913. [Google Scholar] [CrossRef]
- Kottsov, S.; Voshkin, A.; Baranchikov, A.; Fatyushina, E.; Levina, A.; Badulina, A.; Arhipenko, A.; Nikiforova, M.; Ivanov, V. Aliquat 336@ SiO2 ionogels: Synthesis of, and insight into, iron (III) extraction mechanisms. J. Mol. Liq. 2024, 399, 124354. [Google Scholar]
- Wang, Y.; He, M.; Tang, J.; Huang, L.; Wang, X.; Yu, J. Liquid Metal-Coated Textile with P (AAm-co-AA) Ionogel Encapsulation to Mitigate Electromagnetic Radiation Pollution. Adv. Mater. Technol. 2024, 9, 2400008. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Liu, M.; Chng, C.B.; Ler, E.P.Y.; Zhou, J.; Matsuhisa, N.; Tan, Y.J. Self-healing and hyperelastic magneto-iono-elastomers through molecular confinement of magnetic anions. Sci. Adv. 2025, 11, eadq7441. [Google Scholar] [CrossRef]
- Kottsov, S.Y.; Kopitsa, G.P.; Baranchikov, A.E.; Pavlova, A.A.; Khamova, T.V.; Badulina, A.O.; Gorshkova, Y.E.; Selivanov, N.A.; Simonenko, N.P.; Nikiforova, M.E. Structural Insight into Ionogels: A Case Study of 1-Methyl-3-octyl-imidazolium Tetrafluoroborate Confined in Aerosil. Langmuir 2024, 40, 23962–23972. [Google Scholar]
- Pedro, A.Q.; Castro, L.S.; Coutinho, J.A.; Freire, M.G. Ionogels as advanced materials for overcoming challenges in wound healing and drug delivery. Nano Mater. Sci. 2024. [Google Scholar] [CrossRef]
- Yan, C.C.; Li, W.; Liu, Z.; Zheng, S.; Hu, Y.; Zhou, Y.; Guo, J.; Ou, X.; Li, Q.; Yu, J. Ionogels: Preparation, properties and applications. Adv. Funct. Mater. 2024, 34, 2314408. [Google Scholar]
- Shmool, T.A.; Martin, L.K.; Jirkas, A.; Matthews, R.P.; Constantinou, A.P.; Vadukul, D.M.; Georgiou, T.K.; Aprile, F.A.; Hallett, J.P. Unveiling the rational development of stimuli-responsive silk fibroin-based ionogel formulations. Chem. Mater. 2023, 35, 5798–5808. [Google Scholar]
- Wang, M.; Hu, J.; Dickey, M.D. Getting Tough with Ionogels. Am. Sci. 2023, 111, 144–147. [Google Scholar]
- Ge, G.; Mandal, K.; Haghniaz, R.; Li, M.; Xiao, X.; Carlson, L.; Jucaud, V.; Dokmeci, M.R.; Ho, G.W.; Khademhosseini, A. Deep eutectic solvents-based ionogels with ultrafast gelation and high adhesion in harsh environments. Adv. Funct. Mater. 2023, 33, 2207388. [Google Scholar]
- Wang, M.; Hu, J.; Dickey, M.D. Tough ionogels: Synthesis, toughening mechanisms, and mechanical properties─ a perspective. JACS Au 2022, 2, 2645–2657. [Google Scholar]
- Zhang, C.; Zhu, L.; Wang, J.; Wang, J.; Zhou, T.; Xu, Y.; Cheng, C. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2017, 140, 235–240. [Google Scholar] [CrossRef]
- Ruokonen, S.-K.; Sanwald, C.; Sundvik, M.; Polnick, S.; Vyavaharkar, K.; Duša, F.; Holding, A.J.; King, A.W.T.; Kilpeläinen, I.; Lämmerhofer, M.; et al. Effect of Ionic Liquids on Zebrafish (Danio rerio) Viability, Behavior, and Histology; Correlation between Toxicity and Ionic Liquid Aggregation. Environ. Sci. Technol. 2016, 50, 7116–7125. [Google Scholar] [CrossRef]
- Borkowski, A.; Ławniczak, Ł.; Cłapa, T.; Narożna, D.; Selwet, M.; Pęziak, D.; Markiewicz, B.; Chrzanowski, Ł. Different antibacterial activity of novel theophylline-based ionic liquids—Growth kinetic and cytotoxicity studies. Ecotoxicol. Environ. Saf. 2016, 130, 54–64. [Google Scholar] [CrossRef]
- Docherty, K.M.; Kulpa, J.C.F. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005, 7, 185–189. [Google Scholar] [CrossRef]
Classification | Description | Examples | Applications | Ref. |
---|---|---|---|---|
Organic-Polymer-Based Ionogels | Ionogels where ionic liquids (ILs) are entrapped within a polymer matrix. The polymer can be physically or chemically crosslinked. | PMMA-IL ionogels, PVA-IL ionogels | Flexible electronics, sensors, energy storage | [42,43,44,45] |
Inorganic Sol–Gel-Derived Ionogels | ILs are encapsulated in an inorganic silica or metal–oxide network via sol–gel chemistry. | Silica-IL ionogels, alumina-IL ionogels | Electrolytes, catalysis, supercapacitors | [43,46,47] |
Hybrid Ionogels | Combination of organic polymers and inorganic networks to enhance mechanical and electrochemical properties. | Silica-PMMA-IL ionogels, MOF-IL hybrids | Advanced energy materials, bioelectronics | [48,49,50,51] |
Self-Assembled Supramolecular Ionogels | Ionogels formed by molecular self-assembly of amphiphilic molecules, peptides, or block copolymers with ILs. | Peptide-IL ionogels, cyclodextrin-IL gels | Drug delivery, biocompatible coatings | [52,53,54,55] |
Electrospun Fiber-Based Ionogels | ILs incorporated into electrospun nanofiber networks to enhance conductivity and mechanical strength. | PEO-IL nanofiber ionogels | Wearable sensors, high-performance membranes | [56,57] |
3D-Printed and Structurally Engineered Ionogels | Ionogels fabricated via additive manufacturing for customized architectures. | 3D-printed ionogels using SLA or DIW | Soft robotics, smart textiles, biomedical devices | [58,59,60,61,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganguly, S.; Margel, S. Magnetic Ionogel and Its Applications. Gels 2025, 11, 219. https://doi.org/10.3390/gels11040219
Ganguly S, Margel S. Magnetic Ionogel and Its Applications. Gels. 2025; 11(4):219. https://doi.org/10.3390/gels11040219
Chicago/Turabian StyleGanguly, Sayan, and Shlomo Margel. 2025. "Magnetic Ionogel and Its Applications" Gels 11, no. 4: 219. https://doi.org/10.3390/gels11040219
APA StyleGanguly, S., & Margel, S. (2025). Magnetic Ionogel and Its Applications. Gels, 11(4), 219. https://doi.org/10.3390/gels11040219