Effect of pH on the Emergent Viscoelastic Properties of Cationic Phenylalanine-Derived Supramolecular Hydrogels
Abstract
1. Introduction
2. Results and Discussion
2.1. Self-Assembly and Hydrogelation of Fmoc-Phe-DAP Derivatives from pH 3–10
2.2. Determination of Gelator pKa by Titration
2.3. Assembly Morphology and Emergent Viscoelastic Properties of Fmoc-Phe-DAP Derivatives
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Self-Assembly Conditions
4.3. Determination of the Apparent pKa by Titration
4.4. Transmission Electron Microscopy (TEM)
4.5. Oscillatory Rheology
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DAP | diaminopropane |
| Fmoc | fluorenylmethoxycarbonyl |
| LMW | low molecular weight |
| Phe | phenylalanine |
| TEM | transmission electron microscopy |
References
- Saravanou, S.F.; Ioannidis, K.; Dimopoulos, A.; Paxinou, A.; Kounelaki, F.; Varsami, S.M.; Tsitsilianis, C.; Papantoniou, I.; Pasparakis, G. Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release. Carbohydr. Polym. 2023, 312, 120790. [Google Scholar] [CrossRef]
- Hu, X.; Grinstaff, M.W. Advances in Hydrogel Adhesives for Gastrointestinal Wound Closure and Repair. Gels 2023, 9, 282. [Google Scholar] [CrossRef]
- Priya, A.S.; Premanand, R.; Ragupathi, I.; Bhaviripudi, V.R.; Aepuru, R.; Kannan, K.; Shanmugaraj, K. Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications. J. Compos. Sci. 2024, 8, 457. [Google Scholar] [CrossRef]
- Lou, J.; Mooney, D.J. Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 2022, 6, 726–744. [Google Scholar] [CrossRef] [PubMed]
- Pamplona, R.; González-Lana, S.; Romero, P.; Ochoa, I.; Martín-Rapún, R.; Sánchez-Somolinos, C. Tuning of Mechanical Properties in Photopolymerizable Gelatin-Based Hydrogels for In Vitro Cell Culture Systems. ACS Appl. Polym. Mater. 2023, 5, 1487–1498. [Google Scholar] [CrossRef] [PubMed]
- García-Sobrino, R.; Lago, E.; Goñi, C.; Ramos, V.; García, C.; Reinecke, H.; Elvira, C.; Rodríguez-Hernández, J.; Gallardo, A.; Martínez-Campos, E. Fabrication of 3D cylindrical thermosensitive hydrogels as supports for cell culture and detachment of tubular cell sheets. Biomater. Adv. 2023, 144, 213210. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, T.; Wang, H.; Xu, B. Supramolecular catalysis and dynamic assemblies for medicine. Chem. Soc. Rev. 2017, 46, 6470–6479. [Google Scholar] [CrossRef]
- Ho, E.; Deng, Y.; Akbar, D.; Da, K.; Létourneau, M.; Morshead, C.M.; Chatenet, D.; Shoichet, M.S. Tunable Surface Charge Enables the Electrostatic Adsorption-Controlled Release of Neuroprotective Peptides from a Hydrogel–Nanoparticle Drug Delivery System. ACS Appl. Mater. Interfaces 2023, 15, 91–105. [Google Scholar] [CrossRef]
- Bianco, S.; Hasan, M.; Ahmad, A.; Richards, S.-J.; Dietrich, B.; Wallace, M.; Tang, Q.; Smith, A.J.; Gibson, M.I.; Adams, D.J. Mechanical release of homogenous proteins from supramolecular gels. Nature 2024, 631, 544–548. [Google Scholar] [CrossRef]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Dave, P.N.; Macwan, P.M.; Kamaliya, B. Biodegradable Gg-cl-poly(NIPAm-co-AA)/-o-MWCNT based hydrogel for combined drug delivery system of metformin and sodium diclofenac: In vitro studies. RSC Adv. 2023, 13, 22875–22885. [Google Scholar] [CrossRef]
- Raymond, D.M.; Abraham, B.L.; Fujita, T.; Watrous, M.J.; Toriki, E.S.; Takano, T.; Nilsson, B.L. Low-Molecular-Weight Supramolecular Hydrogels for Sustained and Localized In Vivo Drug Delivery. ACS Appl. Bio Mater. 2019, 2, 2116–2124. [Google Scholar] [CrossRef]
- Jagrosse, M.L.; Agredo, P.; Abraham, B.L.; Toriki, E.S.; Nilsson, B.L. Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins. ACS Biomater. Sci. Eng. 2023, 9, 784–796. [Google Scholar] [CrossRef]
- Eskandari, S.; Guerin, T.; Toth, I.; Stephenson, R.J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev. 2017, 110–111, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, F.; Luo, H.; Jiang, Y.; Zhuang, K.; Tan, L. Photocuring and Gelatin-Based Antibacterial Hydrogel for Skin Care. Biomacromolecules 2023, 24, 4218–4228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sun, Y.; Rui, B.; Lin, J.; Shen, J.; Xiao, H.; Liu, X.; Chai, Y.; Xu, J.; Yang, Y. A Photoannealed Granular Hydrogel Facilitating Hyaline Cartilage Regeneration via Improving Chondrogenic Phenotype. ACS Appl. Mater. Interfaces 2022, 14, 40674–40687. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Chen, J.; Wang, Y.; Ma, J.; Wu, G. Controlled Release of Protein from Biodegradable Multi-sensitive Injectable Poly(ether-urethane) Hydrogel. ACS Appl. Mater. Interfaces 2014, 6, 3640–3647. [Google Scholar] [CrossRef]
- Liu, H.; Ai, R.; Liu, B.-Z.; He, L. Tea polyphenol nano-crosslinked dynamical hyaluronic acid-based hydrogel for diabetic wound healing. Int. J. Biol. Macromol. 2024, 282, 136856. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Cui, H. Peptide-based supramolecular hydrogels for delivery of biologics. Bioeng. Transl. Med. 2016, 1, 306–322. [Google Scholar] [CrossRef]
- Du, X.; Zhou, J.; Shi, J.; Xu, B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev. 2015, 115, 13165–13307. [Google Scholar] [CrossRef]
- Wei, G.; Su, Z.; Reynolds, N.P.; Arosio, P.; Hamley, I.W.; Gazit, E.; Mezzenga, R. Self-assembling peptide and protein amyloids: From structure to tailored function in nanotechnology. Chem. Soc. Rev. 2017, 46, 4661–4708. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Gong, C.; Liu, B.; Li, Y.; Wang, L.; Su, Z.; Wei, G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter. 2020, 16, 10029–10045. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.L.; Kim, Y.S.; Koons, G.L.; Lam, J.; Navara, A.M.; Barrios, S.; Xie, V.Y.; Watson, E.; Smith, B.T.; Pearce, H.A.; et al. Bilayered, peptide-biofunctionalized hydrogels for in vivo osteochondral tissue repair. Acta Biomater. 2021, 128, 120–129. [Google Scholar] [CrossRef]
- Nambiar, M.; Schneider, J.P. Peptide hydrogels for affinity-controlled release of therapeutic cargo: Current and potential strategies. J. Pept. Sci. 2022, 28, e3377. [Google Scholar] [CrossRef]
- Saenz, G.; Pogostin, B.H.; Cole, C.C.; Agrawal, A.; Chew-Martinez, D.; Dubackic, M.; Pal, A.; Olsson, U.; McHugh, K.J.; Hartgerink, J.D. Nanofibrous Peptide Hydrogels Leveraging Histidine to Modulate pH-Responsive Supramolecular Assembly and Antibody Release. Biomacromolecules 2025, 26, 490–502. [Google Scholar] [CrossRef]
- Shi, J.; Shi, Z.; Dong, Y.; Wu, F.; Liu, D. Responsive DNA-Based Supramolecular Hydrogels. ACS Appl. Bio Mater. 2020, 3, 2827–2837. [Google Scholar] [CrossRef]
- Ghosh, T.; Das, A.K. Dynamic boronate esters cross-linked guanosine hydrogels: A promising biomaterial for emergent applications. Coord. Chem. Rev. 2023, 488, 215170. [Google Scholar] [CrossRef]
- Peters, G.M.; Skala, L.P.; Plank, T.N.; Oh, H.; Manjunatha Reddy, G.N.; Marsh, A.; Brown, S.P.; Raghavan, S.R.; Davis, J.T. G4-Quartet·M+ Borate Hydrogels. J. Am. Chem. Soc. 2015, 137, 5819–5827. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Mahadevan, G.; Verma, S.; Valiyaveettil, S. Bioinspired adenine–dopamine immobilized polymer hydrogel adhesives for tissue engineering. Chem. Commun. 2020, 56, 11303–11306. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Chaudhuri, R.; Das, K.S.; Mondal, R.; Mandal, S.; Dash, J. Cytidine-Derived Hydrogels with Tunable Antibacterial Activities. ACS Appl. Bio Mater. 2019, 2, 3171–3177. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Li, X.; Shen, Y.; Chang, G.; Yang, J.; Gu, Z. Self-healing pH-sensitive cytosine- and guanosine-modified hyaluronic acid hydrogels via hydrogen bonding. Polymer 2017, 108, 348–360. [Google Scholar] [CrossRef]
- Fitremann, J.; Lonetti, B.; Fratini, E.; Fabing, I.; Payré, B.; Boulé, C.; Loubinoux, I.; Vaysse, L.; Oriol, L. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays. J. Colloid. Interface Sci. 2017, 504, 721–730. [Google Scholar] [CrossRef]
- Cao, J.; Xiao, L.; Shi, X. Injectable drug-loaded polysaccharide hybrid hydrogels for hemostasis. RSC Adv. 2019, 9, 36858–36866. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gim, S.; Kim, D.; Arnon, Z.A.; Gazit, E.; Seeberger, P.H.; Delbianco, M. Oligosaccharides Self-Assemble and Show Intrinsic Optical Properties. J. Am. Chem. Soc. 2019, 141, 4833–4838. [Google Scholar] [CrossRef]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef]
- Binaymotlagh, R.; Chronopoulou, L.; Haghighi, F.H.; Fratoddi, I.; Palocci, C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022, 15, 5871. [Google Scholar] [CrossRef]
- Caliari, S.R.; Burdick, J.A. A practical guide to hydrogels for cell culture. Nat. Methods 2016, 13, 405–414. [Google Scholar] [CrossRef]
- Das, A.K.; Gavel, P.K. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter. 2020, 16, 10065–10095. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Mehta, D.; Dasgupta, U.; Bajaj, A. Advances in engineering of low molecular weight hydrogels for chemotherapeutic applications. Biomed. Mater. 2021, 16, 024102. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Hu, X.; Ding, J.; Wang, X.; Xue, Z.; Niu, Y.; Zhang, S.; Sun, C.; Xu, W. Mechanical Properties of Low-Molecular-Weight Peptide Hydrogels Improved by Thiol-Ene Click Chemistry. Langmuir 2023, 39, 16750–16759. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Liao, Y.; Xie, X. A Review on Low-Molecular-Weight Gels Driven by Halogen-Effect. Chem. Asian J. 2023, 18, e202300097. [Google Scholar] [CrossRef]
- Draper, E.R.; Adams, D.J. Low-Molecular-Weight Gels: The State of the Art. Chem 2017, 3, 390–410. [Google Scholar] [CrossRef]
- Das Gupta, B.; Halder, A.; Vijayakanth, T.; Ghosh, N.; Konar, R.; Mukherjee, O.; Gazit, E.; Mondal, S. A broad-spectrum antibacterial hydrogel based on the synergistic action of Fmoc–phenylalanine and Fmoc–lysine in a co-assembled state. J. Mater. Chem. B 2024, 12, 8444–8453. [Google Scholar] [CrossRef] [PubMed]
- Draper, E.R.; Morris, K.L.; Little, M.A.; Raeburn, J.; Colquhoun, C.; Cross, E.R.; McDonald, T.O.; Serpell, L.C.; Adams, D.J. Hydrogels formed from Fmoc amino acids. Cryst. Eng. Comm. 2015, 17, 8047–8057. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Smaldone, G.; Rosa, E.; Pecoraro, G.; Morelli, G.; Accardo, A. Fmoc-FF hydrogels and nanogels for improved and selective delivery of dexamethasone in leukemic cells and diagnostic applications. Sci. Rep. 2024, 14, 9940. [Google Scholar] [CrossRef] [PubMed]
- Fichman, G.; Guterman, T.; Adler-Abramovich, L.; Gazit, E. Synergetic functional properties of two-component single amino acid-based hydrogels. Cryst. Eng. Comm. 2015, 17, 8105–8112. [Google Scholar] [CrossRef]
- Diaferia, C.; Rosa, E.; Gallo, E.; Morelli, G.; Accardo, A. Differently N-Capped Analogues of Fmoc-FF. Chem. Eur. J. 2023, 29, e202300661. [Google Scholar] [CrossRef]
- Abraham, B.L.; Liyanage, W.; Nilsson, B.L. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. Langmuir 2019, 35, 14939–14948. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Q.; Yin, Y.; Liang, G. Phe–Phe-Based Macroscopic Supramolecular Hydrogel Construction Strategies and Biomedical Applications. Chem. Bio Eng. 2024, 1, 664–677. [Google Scholar] [CrossRef]
- Scarel, E.; Bellotto, O.; Rozhin, P.; Kralj, S.; Tortora, M.; Vargiu, A.V.; De Zorzi, R.; Rossi, B.; Marchesan, S. Single-atom substitution enables supramolecular diversity from dipeptide building blocks. Soft Matter. 2022, 18, 2129–2136. [Google Scholar] [CrossRef]
- Kralj, S.; Bellotto, O.; Parisi, E.; Garcia, A.M.; Iglesias, D.; Semeraro, S.; Deganutti, C.; D’Andrea, P.; Vargiu, A.V.; Geremia, S.; et al. Heterochirality and Halogenation Control Phe-Phe Hierarchical Assembly. ACS Nano 2020, 14, 16951–16961. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, H.; Takeda, K.; Higashi, S.L.; Shibata, A.; Kitamura, Y.; Ikeda, M. Self-assembly and hydrogel formation ability of Fmoc-dipeptides comprising α-methyl-L-phenylalanine. Polym. J. 2020, 52, 923–930. [Google Scholar] [CrossRef]
- Rajbhandary, A.; Raymond, D.M.; Nilsson, B.L. Self-Assembly, Hydrogelation, and Nanotube Formation by Cation-Modified Phenylalanine Derivatives. Langmuir 2017, 33, 5803–5813. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.L.; Mensah, S.G.; Gwinnell, B.R.; Nilsson, B.L. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. Soft Matter. 2022, 18, 5999–6008. [Google Scholar] [CrossRef]
- Abraham, B.L.; Agredo, P.; Mensah, S.G.; Nilsson, B.L. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. Langmuir 2022, 38, 15494–15505. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Smith, A.M.; Collins, R.F.; Ulijn, R.V.; Saiani, A. Fmoc-Diphenylalanine Self-Assembly Mechanism Induces Apparent pKa Shifts. Langmuir 2009, 25, 9447–9453. [Google Scholar] [CrossRef]
- Adams, D.J.; Mullen, L.M.; Berta, M.; Chen, L.; Frith, W.J. Relationship between molecular structure, gelation behaviour and gel properties of Fmoc-dipeptides. Soft Matter. 2010, 6, 1971–1980. [Google Scholar] [CrossRef]
- Cross, E.R.; Adams, D.J. Probing the self-assembled structures and pKa of hydrogels using electrochemical methods. Soft Matter. 2019, 15, 1522–1528. [Google Scholar] [CrossRef]
- Chen, L.; Revel, S.; Morris, K.; Serpell, L.C.; Adams, D.J. Effect of Molecular Structure on the Properties of Naphthalene−Dipeptide Hydrogelators. Langmuir 2010, 26, 13466–13471. [Google Scholar] [CrossRef]
- Srinivasan, B.; Naik, A.; Naether, C.; Bensch, W. Synthesis and structural characterization of bis(n-propylammonium) tetrasulfidometalate. Indian J. Chem. Sect. A 2009, 48A, 769–774. [Google Scholar]
- Kumar, P.; Cymes, G.D.; Grosman, C. Structure and function at the lipid–protein interface of a pentameric ligand-gated ion channel. Proc. Natl. Acad. Sci. USA 2021, 118, e2100164118. [Google Scholar] [CrossRef]
- Ghosh, S.; Distaffen, H.E.; Jones, C.W.; Nilsson, B.L. Multicomponent supramolecular hydrogels composed of cationic phenylalanine derivatives and anionic amino acids. Faraday Discuss. 2025, 260, 360–376. [Google Scholar] [CrossRef]
- Dawn, A.; Kumari, H. Low Molecular Weight Supramolecular Gels Under Shear: Rheology as the Tool for Elucidating Structure–Function Correlation. Chem. Eur. J. 2018, 24, 762–776. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, W.; Nilsson, B.L. Substituent Effects on the Self-Assembly/Coassembly and Hydrogelation of Phenylalanine Derivatives. Langmuir 2016, 32, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Po, H.N.; Senozan, N.M. The Henderson-Hasselbalch Equation: Its History and Limitations. J. Chem. Educ. 2001, 78, 1499. [Google Scholar] [CrossRef]
- Checchetti, A.; Lanzo, J. Qualitative Measurement of pH and Mathematical Methods for the Determination of the Equivalence Point in Volumetric Analysis. World J. Chem. Educ. 2015, 3, 64–69. [Google Scholar] [CrossRef]
- Ewoldt, R.H.; Johnston, M.T.; Caretta, L.M. Experimental Challenges of Shear Rheology: How to Avoid Bad Data. In Complex Fluids in Biological Systems: Experiment, Theory, and Computation; Spagnolie, S.E., Ed.; Springer: New York, NY, USA, 2015; pp. 207–241. [Google Scholar]








| Gelator | pKa 1 | pKa 2 | pKa 3 | pH in Water |
|---|---|---|---|---|
| Fmoc-Phe-DAP (1) | 2.46 | 6.82 | 10.6 | 7.0 ± 0.04 |
| Fmoc-3F-Phe-DAP (2) | 2.47 | 6.65 | – | 5.8 ± 0.05 |
| Fmoc-F5-Phe-DAP (3) | 2.53 | 6.78 | – | 5.0 ± 0.05 |
| Gelator | |||
|---|---|---|---|
| pH | Fmoc-Phe-DAP (1) (Pa) | Fmoc-3F-Phe-DAP (2) (Pa) | Fmoc-F5-Phe-DAP (3) (Pa) |
| 3.0 | G′: 12.3 ± 2.8 G″: 3.3 ± 0.4 | G′: 1172.6 ± 264.6 G″: 180.9 ± 67.6 | G′: 1103.3 ± 176.3 G″: 146.1 ± 37.2 |
| 5.0 | G′: 150.0 ± 27.3 G″: 18.9 ± 1.7 | G′: 1057.9 ± 287.9 G″: 173.2 ± 52.8 | G′: 1228.3 ± 199.5 G″: 154.5 ± 37.8 |
| 7.0 | G′: 604.7 ± 111.8 G″: 75.2 ± 5.9 | G′: 1684.4 ± 397.1 G″: 221.3 ± 47.7 | G′: 1423.0 ± 172.6 G″: 166.3 ± 37.8 |
| 9.0 | G′: 10.6 ± 2.9 G″: 2.3 ± 0.5 | G′: 2085.1 ± 319.7 G″: 171.8 ± 51.9 | G′: 26.0 ± 2.4 G″: 2.8 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agredo, P.; Ghosh, S.; Abraham, B.L.; Nilsson, B.L. Effect of pH on the Emergent Viscoelastic Properties of Cationic Phenylalanine-Derived Supramolecular Hydrogels. Gels 2025, 11, 877. https://doi.org/10.3390/gels11110877
Agredo P, Ghosh S, Abraham BL, Nilsson BL. Effect of pH on the Emergent Viscoelastic Properties of Cationic Phenylalanine-Derived Supramolecular Hydrogels. Gels. 2025; 11(11):877. https://doi.org/10.3390/gels11110877
Chicago/Turabian StyleAgredo, Pamela, Shruti Ghosh, Brittany L. Abraham, and Bradley L. Nilsson. 2025. "Effect of pH on the Emergent Viscoelastic Properties of Cationic Phenylalanine-Derived Supramolecular Hydrogels" Gels 11, no. 11: 877. https://doi.org/10.3390/gels11110877
APA StyleAgredo, P., Ghosh, S., Abraham, B. L., & Nilsson, B. L. (2025). Effect of pH on the Emergent Viscoelastic Properties of Cationic Phenylalanine-Derived Supramolecular Hydrogels. Gels, 11(11), 877. https://doi.org/10.3390/gels11110877

